809
Views
51
CrossRef citations to date
0
Altmetric
Original Article

Temporal phenotypic features distinguish polarized macrophages in vitro

, , &
Pages 161-176 | Received 11 Dec 2014, Accepted 06 Mar 2015, Published online: 31 Mar 2015

References

  • Charo, I. F., and M. B. Taubman. 2004. Chemokines in the pathogenesis of vascular disease. Circ. Res. 95: 858–866
  • Sprague, A. H., and R. A. Khalil. 2009. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 78: 539–552
  • Moore, K. J., F. J. Sheedy, and E. A. Fisher. 2013. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13: 709–721
  • Galeotti, C., J. Bayry, I. Kone-Paut, and S. V Kaveri. 2010. Kawasaki disease: aetiopathogenesis and therapeutic utility of intravenous immunoglobulin. Autoimmun. Rev. 9: 441–448
  • Weyand, C. M., and J. J. Goronzy. 2013. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 9: 731–740
  • Rizas, K. D., N. Ippagunta, and M. D. Tilson. 2009. Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm. Cardiol. Rev. 17: 201–210
  • Luo, F., X.-L. Zhou, J.-J. Li, and R.-T. Hui. 2009. Inflammatory response is associated with aortic dissection. Ageing Res. Rev. 8: 31–35
  • Zhang, X., R. Goncalves, and D. M. Mosser. (2008). The isolation and characterization of murine macrophages. Curr. Protoc. Immunol. Chapter 14: Unit 14.1
  • Nathan, C. F., H. W. Murray, M. E. Wiebe, and B. Y. Rubin. 1983. Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158: 670–689
  • Nathan, C. F. 1987. Secretory products of macrophages. J. Clin. Invest. 79: 319–326
  • Mosser, D. M., and J. P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8: 958–969
  • Martinez, F. O., and S. Gordon. 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6: 13 . Available at: http://f1000.com/prime/reports/b/6/13
  • Stein, M., S. Keshav, N. Harris, and S. Gordon. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176: 287–292
  • Doyle, A. G., G. Herbein, L. J. Montaner, et al. 1994. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-γ. Eur. J. Immunol. 24: 1441–1445
  • Gerber, J. S., and D. M. Mosser. 2001. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc receptors. J. Immunol. 166: 6861–6868
  • Elenkov, I. J., and G. P. Chrousos. 2002. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann. N. Y. Acad. Sci. 966: 290–303
  • Mantovani, A., A. Sica, S. Sozzani, et al. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25: 677–686
  • Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122: 787–795
  • Mantovani, A., S. K. Biswas, M. R. Galdiero, et al. 2013. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229: 176–185
  • Engström, A., A. Erlandsson, D. Delbro, and J. Wijkander. 2014. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int. J. Oncol. 44: 385–392
  • Cassol, E., L. Cassetta, C. Rizzi, et al. 2009. M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. J. Immunol. 182: 6237–6246
  • Guan, E., J. Wang, and M. A. Norcross. 2001. Identification of human macrophage inflammatory proteins 1α and 1β as a native secreted heterodimer. J. Biol. Chem. 276: 12404–12409
  • De Filippo, K., R. B. Henderson, M. Laschinger, and N. Hogg. 2008. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J. Immunol. 180: 4308–4315
  • Zhang, Y., K. McCluskey, K. Fujii, and L. M. Wahl. 1998. Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-α, granulocyte-macrophage CSF, and IL-1β through prostaglandin-dependent and -independent mechanisms. J. Immunol. 161: 3071–3076
  • Dufour, J. H., M. Dziejman, M. T. Liu, et al. 2002. IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168: 3195–3204
  • Huang, H., A. Fletcher, Y. Niu, et al. 2012. Characterization of lipopolysaccharide-stimulated cytokine expression in macrophages and monocytes. Inflamm. Res. 61: 1329–1338
  • Kota, R. S., J. C. Rutledge, K. Gohil, et al. 2006. Regulation of gene expression in RAW 264.7 macrophage cell line by interferon-γ. Biochem. Biophys. Res. Commun. 342: 1137–1146
  • Bouhlel, M. A., B. Derudas, E. Rigamonti, et al. 2007. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell. Metab. 6: 137–143
  • Sierra-Filardi, E., C. Nieto, A. Domínguez-Soto, et al. 2014. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J. Immunol. 192: 3858–3867
  • Sarafi, M. N. 1997. Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J. Exp. Med. 185: 99–110
  • Chai, Z. 1996. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J. Exp. Med. 183: 311–316
  • Bradley, J. R. 2008. TNF-mediated inflammatory disease. J. Pathol. 214: 149–160
  • Hsieh, C., S. Macatonia, C. Tripp, et al. 1993. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260: 547–549
  • Henderson, C., and R. Goldbach-Mansky. 2010. Monogenic IL-1 mediated autoinflammatory and immunodeficiency syndromes: finding the right balance in response to danger signals. Clin. Immunol. 135: 210–222
  • Castell, J. V, M. J. Gomez-lechon, M. David, et al. 1989. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 242: 237–239
  • Fukumoto, S., M. Hiroi, P. Dirgahayu, et al. 2012. Suppression of IP-10/CXCL10 gene expression in LPS- and/or IFN-γ-stimulated macrophages by parasite-secreted products. Cell. Immunol. 276: 101–109
  • Li, X., D. Klintman, Q. Liu, et al. 2004. Critical role of CXC chemokines in endotoxemic liver injury in mice. J. Leukoc. Biol. 75: 443–452
  • Uguccioni, M., M. D’Apuzzo, M. Loetscher, et al. 1995. Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1α and MIP-1β on human monocytes. Eur. J. Immunol. 25: 64–68
  • Maurer, M., and E. von Stebut. 2004. Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol. 36: 1882–1886
  • Ishii, M., H. Wen, C. Corsa, et al. 2009. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 114: 3244–3254
  • Raes, G., P. De Baetselier, W. Noël, et al. 2002. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J. Leukoc. Biol. 71: 597–602
  • Edwards, J. P., X. Zhang, K. A. Frauwirth, and D. M. Mosser. 2006. Biochemical and functional characterization of three activated macrophage populations. J. Leukoc. Biol. 80: 1298–1307
  • Murray, P. 2005. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl Acad. Sci. U. S. A. 102: 8686–8691
  • Lang, R., D. Patel, J. J. Morris, et al. 2002. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169: 2253–2263
  • Verreck, F. A. W., T. de Boer, D. M. L. Langenberg, et al. 2004. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl Acad. Sci. U. S. A. 101: 4560–4565
  • Martinez, F. O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27: 451–483
  • Kittan, N. A., R. M. Allen, A. Dhaliwal, et al. 2013. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One 8: e78045
  • Bode, J. G., C. Ehlting, and D. Häussinger. 2012. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell. Signal. 24: 1185–1194
  • Jaguin, M., N. Houlbert, O. Fardel, and V. Lecureur. 2013. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell. Immunol. 281: 51–61
  • Corna, G., L. Campana, E. Pignatti, et al. 2010. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95: 1814–1822
  • Lolmede, K., L. Campana, M. Vezzoli, et al. 2009. Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol. 85: 779–787
  • Tugal, D., X. Liao, and M. K. Jain. 2013. Transcriptional control of macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 33: 1135–1144
  • Martinez, F., S. Gordon, M. Locati, and A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177: 7303–7311
  • Smale, S. T. 2014. Transcriptional regulation in the immune system: a status report. Trends Immunol. 35: 190–194
  • Ivashkiv, L. B. 2013. Epigenetic regulation of macrophage polarization and function. Trends Immunol. 34: 216–223
  • Baltimore, D., M. P. Boldin, R. M. O’Connell, et al. 2008. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol. 9: 839–845
  • O’Connell, R. M., D. S. Rao, A. A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10: 111–122
  • Wong, L. Y. F., B. M. Y. Cheung, Y.-Y. Li, and F. Tang. 2005. Adrenomedullin is both proinflammatory and antiinflammatory: its effects on gene expression and secretion of cytokines and macrophage migration inhibitory factor in NR8383 macrophage cell line. Endocrinology 146: 1321–1327
  • Murray, P. J., J. E. Allen, S. K. Biswas, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41: 14–20
  • Kopydlowski, K. M., C. A. Salkowski, M. J. Cody, et al. 1999. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J. Immunol. 163: 1537–1544
  • Menzies, F. M., F. L. Henriquez, J. Alexander, and C. W. Roberts. 2010. Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation. Clin. Exp. Immunol. 160: 369–379
  • Tebaldi, T., A. Re, G. Viero, et al. 2012. Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genomics 13: 220
  • Schott, J., S. Reitter, J. Philipp, et al. 2014. Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet. 10: e1004368
  • Wu, W.-K., O. P. C. Llewellyn, D. O. Bates, et al. 2010. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. Immunobiology 215: 796–803
  • Xu, W., X. Zhao, M. R. Daha, and C. van Kooten. 2013. Reversible differentiation of pro- and anti-inflammatory macrophages. Mol. Immunol. 53: 179–186
  • Lucas, M., L. M. Stuart, J. Savill, and A. Lacy-Hulbert. 2003. Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J. Immunol. 171: 2610–2615
  • Islam, M. A., M. J. Uddin, E. Tholen, et al. 2013. Age-associated differential production of IFN-γ, IL-10 and GM-CSF by porcine alveolar macrophages in response to lipopolysaccharide. Vet. J. 198: 245–251
  • Shireman, P. K., V. Contreras-Shannon, S. M. Reyes-Reyna, et al. 2006. MCP-1 parallels inflammatory and regenerative responses in ischemic muscle. J. Surg. Res. 134: 145–157
  • Bustin, S. A., V. Benes, J. A. Garson, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611–622
  • Hornung, R. W., and L. D. Reed. 1990. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 5: 46–51
  • Gersuk, G. M., L. W. Razai, and K. A. Marr. 2008. Methods of in vitro macrophage maturation confer variable inflammatory responses in association with altered expression of cell surface dectin-1. J. Immunol. Methods 329: 157–166
  • Lumeng, C. N., and A. R. Saltiel. 2011. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121: 2111–2117
  • Chawla, A., K. D. Nguyen, and Y. P. S. Goh. 2011. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11: 738–749
  • Van Overmeire, E., D. Laoui, J. Keirsse, et al. 2014. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front. Immunol. 5: 127
  • Stockmann, C., D. Schadendorf, R. Klose, and I. Helfrich. 2014. The Impact of the immune system on tumor: angiogenesis and vascular remodeling. Front. Oncol. 4: 69
  • Fairweather, D., and D. Cihakova. 2009. Alternatively activated macrophages in infection and autoimmunity. J. Autoimmun. 33: 222–230
  • Androulidaki, A., D. Iliopoulos, A. Arranz, et al. 2009. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31: 220–231
  • Fleetwood, A. J., T. Lawrence, J. A. Hamilton, and A. D. Cook. 2007. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178: 5245–5252
  • Krausgruber, T., K. Blazek, T. Smallie, et al. 2011. IRF5 promotes inflammatory macrophage polarization and T(H)1-T(H)17 responses. Nat. Immunol. 12: 231–238
  • Sierra-Filardi, E., A. Puig-Kröger, F. J. Blanco, et al. 2011. Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 117: 5092–5101
  • Banerjee, S., H. Cui, N. Xie, et al. 2013. miR-125a-5p regulates differential activation of macrophages and inflammation. J. Biol. Chem. 288: 35428–35436
  • Brochériou, I., S. Maouche, H. Durand, et al. 2011. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis 214: 316–324
  • Ma, J., T. Chen, J. Mandelin, et al. 2003. Regulation of macrophage activation. Cell. Mol. Life Sci. 60: 2334–2346
  • Rückerl, D., S. J. Jenkins, N. N. Laqtom, et al. 2012. Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 120: 2307–2316
  • He, M., Z. Xu, T. Ding, et al. 2009. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPβ. Cell. Mol. Immunol. 6: 343–352
  • Wynes, M. W., and D. W. H. Riches. 2003. Induction of macrophage insulin-like growth factor-I expression by the Th2 cytokines IL-4 and IL-13. J. Immunol. 171: 3550–3559
  • Barleon, B., P. Reusch, F. Totzke, et al. 2001. Soluble VEGFR-1 secreted by endothelial cells and monocytes is present in human serum and plasma from healthy donors. Angiogenesis 4: 143–154
  • Xia, L., Z. Dong, Y. Zhang, et al. 2014. Interleukin-4 and granulocyte-macrophage colony-stimulating factor mediates the upregulation of soluble vascular endothelial growth factor receptor-1 in RAW264.7 cells – a process in which p38 mitogen-activated protein kinase signaling has an important role. J. Microbiol. Immunol. Infect. http://dx.doi.org/10.1016/j.jmii.2014.06.008
  • Gundra, U. M., N. M. Girgis, D. Ruckerl, et al. 2014. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123: e110–e122
  • Eubank, T. D., R. Roberts, M. Galloway, et al. 2004. GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity 21: 831–842
  • Eubank, T. D., R. D. Roberts, M. Khan, et al. 2009. Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res. 69: 2133–2140
  • Kodelja, V., C. Müller, S. Tenorio, et al. 1997. Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology 197: 478–493
  • Mantovani, A., S. Sozzani, M. Locati, et al. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555
  • Haghnegahdar, H., J. Du, D. Wang, et al. 2000. The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J. Leukoc. Biol. 67: 53–62
  • Dentelli, P., L. Del Sorbo, A. Rosso, et al. 1999. Human IL-3 stimulates endothelial cell motility and promotes in vivo new vessel formation. J. Immunol. 163: 2151–2159
  • Luster, A. D., S. M. Greenberg, and P. Leder. 1995. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J. Exp. Med. 182: 219–231
  • Sgadari, C., A. L. Angiolillo, and G. Tosato. 1996. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87: 3877–3882
  • Zajac, E., B. Schweighofer, T. A. Kupriyanova, et al. 2013. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 122: 4054–4067
  • Barleon, B., S. Sozzani, D. Zhou, et al. 1996. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343
  • Zhu, C., Z. Xiong, X. Chen, et al. 2011. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF. Inflamm. Res. 60: 769–774
  • Weis, S. M., and D. A. Cheresh. 2005. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437: 497–504
  • Liu, J., H. Zhang, Y. Liu, et al. 2007. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages. Biochem. Biophys. Res. Commun. 362: 575–581
  • Luo, C., X. Yang, L. Yao, et al. 2012. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation. Int. J. Mol. Med. 29: 25–31
  • Fernando, M. R., J. L. Reyes, J. Iannuzzi, et al. 2014. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One 9: e94188
  • Donahue, R., J. Seehra, M. Metzger, et al. 1988. Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241: 1820–1823
  • Frendl, G., M. J. Fenton, and D. I. Beller. 1990. Regulation of macrophage activation by IL-3. II. IL-3 and lipopolysaccharide act synergistically in the regulation of IL-1 expression. J. Immunol. 144: 3400–3410
  • Khwaja, A., I. E. Addison, B. Johnson, et al. 1994. Interleukin-3 administration enhances human monocyte function in vivo. Br. J. Haematol. 88: 515–519
  • Kuroda, E., V. Ho, J. Ruschmann, et al. 2009. SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils. J. Immunol. 183: 3652–3660
  • Makino, Y., D. N. Cook, O. Smithies, et al. 2002. Impaired T cell function in RANTES-deficient mice. Clin. Immunol. 102: 302–309
  • Turner, M. D., B. Nedjai, T. Hurst, and D. J. Pennington. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843: 2563–2582
  • Roca, H., Z. S. Varsos, S. Sud, et al. 2009. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J. Biol. Chem. 284: 34342–34354
  • Ricardo, S. D., H. van Goor, and A. A. Eddy. 2008. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118: 3522–3530
  • Schiaffino, S., and C. Mammucari. 2011. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle 1: 4. doi:10.1186/2044-5040-1-4
  • Delafontaine, P., Y.-H. Song, and Y. Li. 2004. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler. Thromb. Vasc. Biol. 24: 435–444
  • Welch, J. S., L. Escoubet-Lozach, D. B. Sykes, et al. 2002. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J. Biol. Chem. 277: 42821–42829
  • Tong, Q., L. Zheng, B. Li, et al. 2006. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells. Exp. Cell Res. 312: 3559–3569
  • Teng, X., D. Li, H. C. Champion, and R. A. Johns. 2003. FIZZ1/RELMα, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. Circ. Res. 92: 1065–1067
  • Madala, S. K., R. Edukulla, K. R. Davis, et al. 2012. Resistin-like molecule α1 (Fizz1) recruits lung dendritic cells without causing pulmonary fibrosis. Respir. Res. 13: 51. doi:10.1186/1465-9921-13-51
  • Truscott, M., D. A. Evans, M. Gunn, and K. F. Hoffmann. 2013. Schistosoma mansoni hemozoin modulates alternative activation of macrophages via specific suppression of Retnla expression and secretion. Infect. Immun. 81: 133–142
  • Nair, M. G., Y. Du, J. G. Perrigoue, et al. 2009. Alternatively activated macrophage-derived RELMα is a negative regulator of type 2 inflammation in the lung. J. Exp. Med. 206: 937–952
  • Pesce, J. T., T. R. Ramalingam, M. S. Wilson, et al. 2009. Retnla (relmα/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog. 5: e1000393
  • Munitz, A., A. Waddell, L. Seidu, et al. 2008. Resistin-like molecule α enhances myeloid cell activation and promotes colitis. J. Allergy Clin. Immunol. 122: 1200–1207.e1
  • Cai, Y., R. K. Kumar, J. Zhou, et al. 2009. Ym1/2 promotes Th2 cytokine expression by inhibiting 12/15(S)-lipoxygenase: identification of a novel pathway for regulating allergic inflammation. J. Immunol. 182: 5393–5399

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.