534
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Epigenetics changes associated to environmental triggers in autoimmunity

, , , &
Pages 1-11 | Received 12 Feb 2015, Accepted 15 Aug 2015, Published online: 15 Sep 2015

References

  • Feinberg, A. P. 2007. Phenotypic plasticity and the epigenetics of human disease. Nature 447: 433–440
  • Reik, W. 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447: 425–432
  • Weaver, I. C., N. Cervoni, F. A. Champagne, et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7: 847–854
  • Lillycrop, K. A., E. S. Phillips, C. Torrens, et al. 2008. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br. J. Nutr. 100: 278–282
  • Buganim, Y., D. A. Faddah, and R. Jaenisch. 2013. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 14: 427–439
  • Ballestar, E. 2010. Epigenetics lessons from twins: prospects for autoimmune disease. Clin. Rev. Allergy Immunol. 39: 30e41
  • Thabet, Y., F. Cañas, I. Ghedira, et al. 2012. Altered patterns of epigenetic changes in systemic lupus erythematosus and autoantibody production: is there a link?. J. Autoimmun. 39: 154e160
  • Dogini, D. B., V. D. Pascoal, S. H. Avansini, et al. 2014. The new world of RNAs. Genet. Mol. Biol. 37: 285–293
  • Hamilton, A. J., and D. C. Baulcombe. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952
  • Lee, R. C., R. Feinbaum, and V. Ambros. 2004. A short history of a short RNA. Cell S116: S89–S92
  • Lee, R. C., R. Feinbaum, and V. Ambros. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854
  • Aravin, A. A., N. M. Naumova, A. V. Tulin, et al. 2001. Double-stranded RNA-mediated silencing of genomic tandem repeats transposable elements in the D. melanogaster germline. Curr. Biol. 11: 1017–1027
  • Hurwitz, J. 2005. The discovery of RNA polymerase. J. Biol. Chem. 280: 42477–42485
  • Kornberg, R. D. 2007. The molecular basis of eukaryotic transcription. Proc. Natl. Acad. Sci. USA 104: 12955–12961
  • Armstrong, L. 2014. Epigenetics. New York: Galand Science, Taylor & Francis Group Editor
  • Goll, M. G., and T. H. Bestor. 2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74: 481–514
  • Denis, H., M. N. Ndlovu, and F. Fuksa. 2011. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 12: 647–656
  • Weber, M., J. J. Davies, D. Wittig, et al. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37: 853–862
  • Carey, T. S., I. Choi, C. A. Wilson, et al. 2014. Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage. Stem Cells Dev. 23: 219–229
  • Deaton, A. M., and A. Bird. 2011. CpG islands and the regulation of transcription. Genes Dev. 25: 1010–1022
  • Detich, N., J. Theberge, and M. Szyf. 2002. Promoter-specific activation and demethylation by MBD2/demethylase. J. Biol. Chem. 277: 35791–35794
  • Jackson-Grusby, L., C. Beard, R. Possemato, et al. 2001. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat. Genet. 27: 31–39
  • Okano, M., D. W. Bell, D. A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257
  • Reik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science 293: 1089–1093
  • Faulk, C. and D. C. Dolinoy. 2001. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6: 791–797
  • Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dep. 16: 6–21
  • Peaston, A. E., and E. Whitelaw. 2006. Epigenetics and phenotypic variation in mammals. Mamm. Genome. 17: 365–374
  • Bollati, V., and A. Baccarelli. 2010. Environmental epigenetics. Heredity 105: 105–112
  • Wilson, A. S., B. E. Power, and P. L. Molloy. 2007. DNA hypomethylation and human diseases. Biochim. Biophys. Acta. 1775: 138–162
  • Javierre, B. M., A. F. Fernández, J. Richter, et al. 2010. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20: 170–179
  • Kaplan, M. J., Q. Lu, A. Wu, et al. 2004. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J. Immunol. 172: 3652–3661
  • Lu, Q., M. Kaplan, D. Ray, et al. 2002. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 46: 1282–1291
  • Neidhart, M., J. Rethage, S. Kuchen, et al. 2000. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum. 43: 2634–2647
  • Mastronardi, F. G., A. Noor, D. D. Wood, et al. 2007. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J. Neurosci. Res. 85: 2006–2016
  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell. 128: 693–705
  • Sterner, D. E., and S. L. Berger. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. 64: 435–459
  • Zhang, Y., and D. Reinberg. 2006. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15: 2343–2360
  • Nowak, S. J., and V. G. Corces. 2004. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20: 214–220
  • Shilatifard, A. 2006. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75: 243–269
  • Nathan, D., K. Ingvarsdottir, D. E. Sterner, et al. 2006. Histone sumoylation is a negative regulator in Saccharomyces Saccharomyces cerevisiae and shows dynamic interplay with positiveacting histone modifications. Genes Dev. 20: 966–976
  • Hassa, P. O., S. S. Haenni, M. Elser, M. O. Hottiger. 2006. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70: 789–829
  • Cuthbert, G. L., S. Daujat, A. W. Snowden, et al. 2004. Histone deimination antagonizes arginine methylation. Cell 118: 545–553
  • Nelson, C. J., H. Santos-Rosa, and T. Kouzarides. 2006. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126: 905–916
  • Zhang, Z., L. Song, K. Maurer, et al. 2010. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 11: 124–133
  • Mishra, N., D. Brown, I. Olorenshaw, and G. Kammer. 2001. Trichostatin A reverses skewed expression of CD154, interleukin-10, and interferon-gamma gene and protein expression in lupus T cells. Proc. Biol. Sci. 98: 2628–2633
  • Hu, N., X. Qiu, Y. Luo, et al. 2008. Abnormal histone modification patterns in lupus CD4+ T cells. J. Rheumatol. 35: 804–810
  • Garcia, B. A., S. A. Busby, J. Shabanowitz, et al. 2005. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J. Proteome Res. 4: 2032–2042
  • Cline, A. M., and M. Z. Radic. 2004. Apoptosis, subcellular particles, and autoimmunity. Clin. Immunol. 112: 175–82
  • Muñoz, L. E., C. Peter, M. Herrmann, et al. 2010. Scent of dying cells: the role of attraction signals in the clearance of apoptotic cells and its immunological consequences. Autoimmun. Rev. 9: 425–430
  • Doyle, H. A., and M. J. Mamula. 2005. Posttranslational modifications of self-antigens. Ann. N. Y. Acad. Sci. 1050: 1–9
  • Brinkmann, V., and A. Zychlinsky. 2012. Neutrophil extracellular traps: is immunity the second function of chromatin?. J. Cell. Biol. 198: 773–783
  • Dwivedi, N., and M. Radic. 2014. Citrullination of autoantigens implicates NETosis in the induction of autoimmunity. Ann. Rheum. Dis. 73: 483–491
  • Brenner, C., and F. Fuks. 2007. A methylation rendezvous: reader meets writers. Dev. Cell. 12: 843–844
  • Ooi, S. K., C. Qiu, E. Bernstein, et al. 2007. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448: 714–717
  • Jeong, S., G. Liang, S. Sharma, et al. 2009. Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol. Cell. Biol. 29: 5366–5376
  • Sharma, S., D. D. De Carvalho, S. Jeong, et al. 2011. Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet. 7: e1001286
  • Garzon, R., S. Liu, M. Fabbri, et al. 2009. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 113: 6411–6418
  • Fabbri, M., R. Garzon, A. Cimmino, et al. 2007. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. USA. 104: 15805–15810
  • Duursma, A. M., M. Kedde, M. Schrier, et al. 2008. miR-148 targets human DNMT3b protein coding region. RNA 14: 872–877
  • Braconi, C., N. Huang, and T. Patel. 2010. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51: 881–890
  • Pan, W., S. Zhu, M. Yuan, et al. 2010. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184: 6773–6781
  • Kiss, E., G. Lakos, G. Szegedi, et al. 2009. Anti-nuscleosome antibody, a reliable indicator for lupus nephritis. Autoimmunity 42: 393–398
  • Mortensen, E. S., and O. P. Rekvig. 2009. Nephritogenic potential of anti-DNA antibodies against necrotic nucleosomes. J. Am. Soc. Nephrol. 20: 696–704
  • Rekvig, O. P., and E. S. Mortensen. 2012. Immunity and autoimmunity to dsDNA and chromatin – the role of immunogenic DNA-binding proteins and nuclease deficiencies. Autoimmunity 45: 588–592
  • Pinegin, B., N. Vorobjeva, and V. Pinegin. 2015. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun. Rev. 14: 633–640
  • Zan, H., C. Tat, and P. Casali. 2014. MicroRNAs in lupus. Autoimmunity 47: 272–285
  • Selmi, C., Q. Lu, and M. C. Humble. 2012. Heritability versus the role of environment in autoimmunity. J. Autoimmun. 39: 249–252
  • Bayry, J., S. Siberil, F. Triebel, et al. 2007. Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov. Today 12: 548–552
  • Linterman, M. A., R. J. Rigby, R. K. Wong, et al. 2009. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206: 561–576
  • Quddus, J., K. L. Johnson, J. Gavalchin, et al. 1993. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92: 38–53
  • Renaudineau, Y., and P. Youinou. 2011. Epigenetics and autoimmunity, with special emphasis on methylation. Keio J. Med. 60: 10e6
  • Tan, E. M., A. S. Cohen, J. F. Fries, et al. 1982. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25: 1271–1277
  • Wysenbeek, A. J., D. A. Block, and J. F. Fries. 1989. Prevalence and expression of photosensitivity in systemic lupus erythematosus. Ann. Rheum. Dis. 48: 461–463
  • Lehmann, P., E. Hölzle, P. Kind, et al. 1990. Experimental reproduction of skin lesions in lupus erythematosus by UVA and UVB radiation. J. Am. Acad. Dermatol. 22: 181–187
  • Abeyama, K., W. Eng, J. V. Jester, et al. 2000. A role for NF-kappaB-dependent gene transactivation in sunburn. J. Clin. Invest. 105: 1751–1759
  • Maverakis, E., Y. Miyamura, M. P. Bowen, et al. 2010. Light, including ultraviolet. J. Autoimmun. 34: J247–J257
  • Kastan, M. B., B. J. Gowans, and M. W. Lieberman. 1982. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA. Cell 30: 509–516
  • Lieberman, M. W., L. R. Beach, and R. D. Palmiter. 1983. Ultraviolet radiation-induced metallothionein-I gene activation is associated with extensive DNA demethylation. Cell 35: 207–214
  • Zhu, X., F. Li, B. Yang, et al. 2013. Effects of ultraviolet B exposure on DNA methylation in patients with systemic lupus erythematosus. Exp. Ther. Med. 5: 1219–1225
  • Uetrecht, J. P. 1997. Current trends in drug-induced autoimmunity. Toxicology 119: 37–43
  • Rubin, R. L. 2005. Drug-induced lupus. Toxicology 209: 135–147
  • Diaz, J. C., S. Vallejo, and C. A. Cañas. 2012. Drug-induced lupus in anti-TNF-alpha therapy and its treatment with rituximab. Rheumatol. Int. 32: 3315–3317
  • Cutolo, M., S. Capellino, A. Sulli, et al. 2006. Estrogens and autoimmune diseases. Ann. NY Acad. Sci. 1089: 538–547
  • Mongey, A. B., E. Sim, A. Risch, and E. Hess. 1999. Acetylation status is associated with serological changes but not clinically significant disease in patients receiving procainamide. J. Rheumatol. 26: 1721–1726
  • Speirs, C., A. H. Fielder, H. Chapel, et al. 1989. Complement system protein C4 and susceptibility to hydralazine-induced systemic lupus erythematosus. Lancet 1: 922–924
  • Totoritis, M. C., E. M. Tan, E. M. McNally, and R. L. Rubin. 1988. Association of antibody to histone complex H2A–H2B with symptomatic procainamide induced lupus. N. Engl. J. Med. 318: 1431–1436
  • Chang, C., and M. E. Gershwin. 2010. Drugs and autoimmunity – a contemporary review and mechanistic approach. J. Autoimmun. 34: J266–J275
  • Quddus, J., K. J. Johnson, J. Gavalchin, et al. 1993. Treating activated CD4þ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92: 38–53
  • Pollard, K. M., P. Hultman, and D. H. Kono. 2010. Toxicology of autoimmune diseases. Chem. Res. Toxicol. 23: 455–466
  • D’Cruz, D. 2000. Autoimmune diseases associated with drugs, chemicals and environmental factors. Toxicol. Lett. 15: 112–113
  • Hess, E. V. 2002. Environmental chemicals and autoimmune disease: cause and effect. Toxicology 181–182: 65–70
  • Klareskog, L., L. Padyukov, and L. Alfredsson. 2007. Smoking as a trigger for inflammatory rheumatic diseases. Curr. Opin. Rheumatol. 19: 49–54
  • Tsay, G. J., and M. Zouali. 2008. Toxicogenomics – a novel opportunity to probe lupus susceptibility and pathogenesis. Int. Immunopharmacol. 8: 1330–1337
  • Reeves, W. H., P. Y. Lee, J. S. Weinstein, et al. 2009. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol. 30: 455–464
  • Cruickshank, B., and M. J. Thomas. 1984. Mineral oil (follicular) lipidosis: II. Histologic studies of spleen, liver, lymph nodes, and bone marrow. Hum. Pathol. 15: 731–737
  • Garrett, L. R., and M. A. Cuchens. 1991. Pristane induced effects on chromatin of rat lymphoid cells. J. Cell. Biochem. 45: 311–316
  • Young, A. L., J. P. Giesy, P. D. Jones, and M. Newton. 2004. Environmental fate and bioavailability of Agent Orange and its associated dioxin during the Vietnam War. Environ. Sci. Pollut. Res. 11: 359–370
  • Funatake, C. J., N. B. Marshall, L. B. Steppan, et al. 2005. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells. J. Immunol. 175: 4184–4188
  • Gomez-Durán, A., E. Ballestar, J. M. Carvajal-Gonzalez, et al. 2008. Recruitment of CREB1 and histone deacetylase 2 (HDAC2) to the mouse Ltbp-1 promoter regulates its constitutive expression in a dioxin receptor-dependent manner. J. Mol. Biol. 380: 1–16
  • Singh, N. P., U. P. Singh, B. Singh, et al. 2011. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS One 6: e23522
  • Cai, P., R. Konig, P. J. Boor, et al. 2008. Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice. Toxicol. Appl. Pharmacol. 228: 68–75
  • Palbykin, B., J. Borg, P. T. Caldwell, et al. 2011. Trichloroethylene induces methylation of the Serca2 promoter in H9c2 cells and embryonic heart. Cardiovasc. Toxicol. 11: 204–214
  • Martinez-Zamudio, R., and H. C. Ha. 2011. Environmental epigenetics in metal exposure. Epigenetics 6: 820–827
  • Stevens, J. L., H. Liu, M. Halleck, et al. 2000. Linking gene expression to mechanisms of toxicity. Toxicol. Lett. 112–113: 479–486
  • Fraga, M. F., R. Agrelo, and M. Esteller. 2007. Cross-talk between aging and cancer: the epigenetic language. Ann. NY Acad. Sci. 1100: 60–74
  • Edwards, T. M., and J. P. Myers. 2007. Environmental exposures and gene regulation in disease etiology. Environ. Health Perspect. 115: 1264–1270
  • Koehler, K. M., S. L. Pareo-Tubbeh, L. J. Romero, et al. 1997. Folate nutrition and older adults: challenges and opportunities. J. Am. Diet. Assoc. 97: 167–173
  • Jones, D. P., L. A. Brown, and P. Sternberg. 1995. Variability in glutathione-dependent detoxication in vivo and its relevance to detoxication of chemical mixtures. Toxicology 105: 267–274
  • Ketterer, B., B. Coles, and D. J. Meyer. 1983. The role of glutathione in detoxication. Environ. Health Perspect. 49: 59–69
  • Lertratanangkoon, K., C. J. Wu, N. Savaraj, and M. L. Thomas. 1997. Alterations of DNA methylation by glutathione depletion. Cancer Lett. 120: 149–156
  • Barker, D. J. 2004. The developmental origins of adult disease. J. Am. Coll. Nutr. 23: 588S–595S
  • Rakyan, V. K., M. E. Blewitt, R. Druker, et al. 2002. Metastable epialleles in mammals. Trends Genet. 18: 348–351
  • Vasicek, T. J., L. Zeng, X. J. Guan, et al. 1997. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics 147: 777–786
  • Waterland, R. A., D. C. Dolinoy, J. R. Lin, et al. 2006. Maternal methyl supplements increase offspring DNA methylation at axin fused. Genesis 44: 401–406
  • Duhl, D. M., H. Vrieling, K. A. Miller, et al. 1994. Neomorphic agouti mutations in obese yellow mice. Nat. Genet. 8: 59–65
  • Waterland, R. A., and R. L. Jirtle. 2003. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23: 5293–5300
  • Dolinoy, D. C., D. Huang, and R. L. Jirtle. 2007. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. USA 104: 13056–13061
  • Heijmans, B. T., E. W. Tobi, A. D. Stein, et al. 2008. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 105: 17046–17049
  • Gluckman, P. D., M. A. Hanson, C. Cooper, and K. L. Thornburg. 2008. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359: 61–73
  • Miller, F. W., K. M. Pollard, C. G. Parks, et al. 2012. Criteria for environmentally associated autoimmune disease. J. Autoimmun. 39: 253–258
  • Selhub, J. 2002. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health. 6: 39–42
  • Salbaum, J. M., and C. Kappen. 2012. Genetic and epigenomic footprints of folate. Prog. Mol. Biol. Transl. Sci. 108: 129–158
  • Amaral, C. L., B. Bueno Rde, R. V. Burim, et al. 2011. The effects of dietary supplementation of methionine on genomic stability and p53 gene promoter methylation in rats. Mutat. Res. 722: 78–83
  • Niculescu, M. D., C. N. Craciunescu, and S. H. Zeisel. 2006. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 20: 43–49
  • Ba, Y., H. Yu, F. Liu, et al. 2011. Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. Eur. J. Clin. Nutr. 65: 480–485
  • Ross, S. A., and L. Poirier. 2002. Proceedings of the Trans-HHS Workshop: diet, DNA methylation processes and health. J. Nutr. 132: 2329S–2332S
  • Gorelik, G. J., S. Yarlagadda, and B. C. Richardson. 2012. Protein kinase C delta oxidation contributes to ERK inactivation in lupus T cells. Arthritis Rheum. 64: 2964–2974
  • Araújo-Fernández, S., M. Ahijón-Lana, and D. A. Isenberg. 2014. Drug-induced lupus: including anti-tumour necrosis factor and interferon induced. Lupus 23: 545–553
  • Lazzerini, P. E., P. L. Capecchi, E. Selvi, et al. 2007. Hyperhomocysteinemia: a cardiovascular risk factor in autoimmune diseases? Lupus 16: 852–862
  • Wu, T., C. Xie, J. Han, et al. 2012. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One 7: e37210
  • Strickland, F. M., A. Hewagama, A. Wu, et al. 2013. Diet influences expression of autoimmune-associated genes and disease severity by epigenetic mechanisms in a transgenic mouse model of lupus. Arthritis Rheum. 65: 1872–1881
  • Vahid, F., H. Zand, E. Nosrat-Mirshekarlou, et al. 2015. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562: 8–15
  • Kivity, S., N. Agmon-Levin, M. Blank, and Y. Shoenfeld. 2009. Infections and autoimmunity: friends or foes? Trends Immunol. 30: 409–414
  • Lundberg, K., N. Wegner, T. Yucel-Lindberg, and P. J. Venables. 2010. Periodontitis in RA the citrullinated enolase connection. Nat. Rev. Rheumatol. 6: 727–730
  • Farquharson, D., J. P. Butcher, and S. Culshaw. 2012. Periodontitis, porphyromonas, and the pathogenesis of rheumatoid arthritis. Mucosal Immunol. 5: 112–120
  • Ciavatta, D. J., J. Yang, G. A. Preston, et al. 2010. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J. Clin. Invest. 120: 3209–3219
  • Konstantinov, K. N., C. J. Ulff-Møller, and A. H. Tzamaloukas. 2015. Infections and antineutrophil cytoplasmic antibodies: triggering mechanisms. Autoimmun. Rev. 14: 201–203
  • Kobiyama, K., A. Kawashima, N. Jounai, et al. 2013. Role of extrachromosomal histone H2B on recognition of DNA viruses and cell damage. Front. Genet. 23: 91
  • Incorvaia, E., L. Sicouri, S. K. Petersen-Mahrt, and K. M. Schmitz. 2013. Hormones and AID: balancing immunity and autoimmunity. Autoimmunity. 46: 128–137
  • Strickland, F. M., A. Hewagama, Q. Lu, et al. 2012. Environmental exposure, estrogen and two X chromosomes are required for disease development in an epigenetic model of lupus. J. Autoimmun. 38: J135–J143
  • Barreto, G., A. Schäfer, J. Marhold, et al. 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 445: 671–675
  • Salvador, J. M., M. C. Hollander, A. T. Nguyen, et al. 2002. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity. 16: 499–508
  • Hui, A. M., W. Zhang, W. Chen, et al. 2004. Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res. 64: 9115–9123
  • Oki, T., Y. Sowa, T. Hirose, et al. 2004. Genistein induces Gadd45 gene and G2/M cell cycle arrest in the DU145 human prostate cancer cell line. FEBS Lett. 577: 55–59
  • Yamagata, K., S. Fujiyama, S. Ito, et al. 2009. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol. Cell. 36: 340–347

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.