41
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Melatonin, Immune Modulation and Aging

, , , , , & show all
Pages 43-53 | Received 29 Oct 1997, Published online: 07 Jul 2009

References

  • Savino W., Dardenne M., Papienik M. Thymic hormone-containing cells. Characterization and localization of serum thymic factor in young mouse thymus by monoclonal antibodies. J Exp Med 1982; 156: 628–32
  • Champion S., Imhof B. A, Savagner P. The embryonic thymus produces chemotatic peptides involved in the homing of hemopoietic precursors. Cell 1986; 44
  • Gupta D. An integrated communication network between the immune and neuroendocrine system. Neuroendocrinology: New Frontiers, D. Gupta, H. H. Wollmanna, M. B. Ranke. Brain Research Promotion, New York 1990; 265–85
  • Pierpaoli W., Yi C. X. The involvement of pineal gland and melatonin in immunity and aging. I. Thymus mediated, immunereconstituting and antiviral activity of thyrotropin releasing hormone. J Neuroimmunol 1990; 27: 99–109
  • Maestrone G. J. M., Conti A., Pierpaoli W. Role of the pineal gland in immunity. 11. Melatonin enhances the antibody response via an poiatergic mechanism. Clin Exp Immunol 1987; 68: 384–91
  • Dardenne M., Itoh T., Homo-Delarche F. Presence of glucocorticoid receptors in cultured thymic epithelial cells. Cell Immunol 1986; 100: 112–20
  • Ban E., Gangerault M. C., Jammes H. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells. Life Sci 1991; 48: 2141–8
  • Persengiev S., Marinova C. H., Patchev V. Steroid hormone receptor in the thymus: A site of immunomodulatory action of melatonin. Int J Biochem 1991a; 23: 1483–5
  • Persengiev S., Patchev V., Velev B. Melatonin effects on thymus steroid receptors in the course of primary antibody response: Significance of circulating glucocorticoid levels. Int J Biochem 1991b; 23: 1487–9
  • Harbour D. V., Smith E. M., Meyer W. J. Thyrotropin releasing hormone (TRH) receptors in the immune system. Soc Neurosci Abstr 1988; 14: 3043
  • Lesnikov V. A., Korneva E. A. The involvement of pineal gland and melatonin in immunity and aging: 11. Thyrotropin-releasing hormone and melatonin forestall involution and promote reconstitution of the thymus in anterior hypothalamic area (AHA)-lesioned mice. Int J Neurosci 1992; 62: 141–53
  • Breder C. D., Dinarello C. A., Saper C. B. Interleukin-1 βimmuno-reactive innervation of the human hypothalamus. Science 1988; 240: 321–4
  • Lechan R. M., Toni R., Clark 8. D. Immunoreactive interleukin-I localization in the rat forebrain. Brain Res 1990; 514: 135–40
  • Dardenne M., Savino W., Gagnerault M. C. Effect of endogenous opioids on the thymic epithelial cells. Cell Immunol Bioch Suppl. 1988; 12D: 310–8
  • Wybran D., Appleboom T., Famaey J. P. Suggestive evidence for morphine and methionine-enkephalin receptor-like structures on normal blood T lymphocytes. J Immunol 1979; 123: 1068–70
  • Grorges I. M. Maestroni, Ario Conti. Anti-stress role of the melatonin-immuno-opioid network: evidence for a physiological mechanism involving T cell-derived, immuno-reactive,β-endorphin and met-enkephalin binding to thymic opioid receptors. Int J Neurosci 1991; 61: 289–98
  • Ovadia H., Nitsan P., Abramsky O. Characterization of opiate binding sites on membranes of rat lymphocytes. J Neuroimmunol 1989; 21: 93–102
  • Maestroni G. J. M., Conti A. The pineal neurohormone melatonin stimulates activated CD4+ Thy+ cells to release opioid agonists with immunoenhancing and anti-stress properties. J Neuroimmunol 1990; 28: 167–76
  • Carvo J. R., Rafii-El-Idrissi M., Pozo D. Immunomodulatory role of melatonin: specific binding sites in human and rodent lymphoid cells. J Pineal Res 1995; 18: 119–26
  • Lopez-Gonzalez M. A., Calvo J. R., Osuna C. Interaction of melatonin with human lymphocytes: Evidence for binding sites coupled to potentiation of cyclic AMP stimulation by vasoactive intestinal peptide and activation of cyclic GMP production. J Pineal Res 1992a; 12: 97–104
  • Calvo J. R., Guerrero J. M., Molinero P. Interaction of vasoactive intestinal peptide (VIP) with human peripheral blood lymphocytes: specific binding and cyclic AMP production. Gen Pharmacol 1986; 17: 185–9
  • Guerrero J. M., Prieto J. C, Eloza F. L. Interaction of vasoactive intestinal peptide with human blood mononuclear cells. Mol Cell Endocrinol 1981; 21: 151–60
  • Ottaway C. A. Selective effects of vasoactive intestinal peptide on the mitogenic response of murine T cells. Immunology 1987; 62: 291–7
  • Del Prete G., Maggi E., Romagnani S. Human Thl and Th2 cells: Functional properties, mechanisms of regulation and role in disease. Lab Invest 1994; 70: 299–307
  • Stanisz A. M., Befus D., Bienenstock J. Differential effects of vasoactive intestinal peptide, subtance P. and somatostatin on immunoglobulin synthesis and proliferation by lymphocytes from Peyer's patches, mesenteric lymph nodes and spleen. J Immunol 1986; 136: 152–6
  • Gomzalez-Haba M. G., Garcia M. S., Calvo J. R. High-affinity binding of melatonin by human circulating T lymphocytes (CD4+). FASEB J. 1995; 9: 1331–5
  • Maestroni G. M. I. T-helper-2 lymphocytes as a peripheral target of melatonin. J Pineal Res 1995; 18: 84–9
  • Maestroni G. J. M., Covacci V., Conti A. Hematopoietic rescue via T-cell-dependent, endogenous GM-CSF by the pineal neurohormone melatonin in tumor bearing mice. Cancer Res 1994; 54: 2429–32
  • Lopez-Gonzalez M. A., Martin-Cacao A., Clavo J. R. Specific binding of 2-[125]Iodomelatonin by partially purified membranes of rat thymus. J Neuroimmunol 1993; 45: 121–6
  • Muzzioli M., Pierpaoli W., Fabris N. The immune-reconstituting effect of melatonin or pineal grafting and its relation to zinc pool in aging mice. J Neuroimmunol 1994; 53: 189–201
  • Raffi-El-Idrissi M., Calvo J. R., Poza D. A. Specific binding of 2-[125I]Iodomelatonin by rat spleno-cytes: Characterization and its role on regulation of cyclic AMP production. J Neuroimmunol 1995; 57: 171–8
  • Steinhhilber D., Brungs M., Werz O. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem 1995; 270: 7073–40
  • Turnlund J. R., Durvin N., Costa F. Stable isotope studies of zinc absorption and retention in young and elderly men. J Nutr 1986; 116: 1239–47
  • Fabris N., Mocchegiani D., Muzzioli M. The role of zinc in neuroendocrine-immune inuteactions during aging. Ann N Y Aca Sci 1991; 61: 314–26
  • Morton D. J. Alteration of plasma cation levels in rats kept in constant light. J Pineal Res 1990; 9: 95–101
  • Maestroni G. M. I., Conti A., Lissoni P. Colony-stimulating activity and hematopoietic rescue from cancer chemotherapy compounds are induced by melatonin via endogenous interleukin 4. Cancer Res 1994; 54: 4740–3
  • Kuby Janis. Function of cytokines. Immunology. W. H. Freeman and Company, New York 1994; 302–4
  • Cristina M. C, Daniela F., Giuseppe N. Melatonin as immunomodulator in immunodeficient mice. Immunopharmacology 1992; 23: 81–9
  • Lucas L. C, Guan-Jie C, Maria C. L. Melatonin induced increase in gamma-interferon production by murine splenocytes. Immunol Lett 1992; 33: 123–6
  • Lissoni P., Barni S. Endocrine and immune effect of melatonin therapy in metastic cancer patients. Eur J Cancer Clin Oncol 1989; 25: 789–95
  • Kuribayashi K., Gillis S., Kern D. E. Murine NK cell culture: Effects of interleukin-2 and interferon on cell growth and cytotoxic reactivity. J Immunol 1981; 126: 2321–7
  • Smith K. A. Interleukin-2: inception, impact and implication. Science 1988; 240: 1169–76
  • Grabstein K., Dower S., Gillis S. Expression of interleukin 2, interferon-γ, and the IL 2 receptor by human peripheral blood lymphocytes. J Immunol 1986; 136: 4503–8
  • Banchereau J., Thomson A. Interleukin-4. The cytokine handbook. Academic Press, London 1991; 119–49
  • Withyachumnarnkul B., Nonaka K. O., Santana C. Interferon-gamma modulates melatonin production in rat pineal gland in organ culture. J interferon Res 1990; 10: 403–11
  • Morrey K. M., McLachlan L. A., Bakouche O. Activation of human monocytes by the pineal hormone melatonin. J Immunol 1994; 152: 2671–80
  • Georges J. M., Maestroni A. C., Walter Pierpaoli. Role of the pineal gland in immunity: Orcadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J Neuroimmunol 1986; 13: 19–30
  • Holdaway I. M., Mason B. H., Gibbs E. E. Seasonal changes in serum melatonin in women with previous breast cancer. Br J Cancer 1991; 64: 149–53
  • Blask D. E., Hill S. M. Melatonin and cancer: aspects in Miles A. Melatonin-Clinical Prospectives, D. R. S. Philbrick, C. Thompson. Oxford Medical Publications, Oxford 1988; 128–73
  • Bartsch C, Bartsch H., Fuchs U. Stage-dependent depression of melatonin in patients with primary breast cancer: correlation with prolactin, thyroid stimulating hormone and steroid receptors. Cancer 1989; 64: 426–33
  • Bartsch C, Bartsch H., Bellmann O. Depression of serum melatonin in patients with primary prostate cancer is not due to an increased peripheral metabolism. Cancer 1991; 67: 1681–4
  • Bartsch C, Bartsch H., Fluchter S. H. Evidence for modulation of melatonin secretion in men with benign or malignent tumors of the prostate: relationship with the pituitary hormones. J Pineal Res 1985; 2: 121–32
  • Bartsch C, Bartsch H., Fluchter S. H. Diminished pineal function coincides with disturbed circadian rhythmicity in untreated primary cancer patients: consequence of premature aging or of tumor growth?. Ann NY Acad Sci 1994; 719: 502–25
  • Lapin V., Frowein A. Effects of growing tumors on pineal melatonin levels in male rats. Journal of Neurotransmitters 1981; 52: 123–36
  • Bartsch C, Bartsch H., Gupta D. Pineal melatonin synthesis and secretion during induction and growth of mammary cancer in female rats. Neuroendocrinology: new frontiers, D. Gupta, M B. Wollman Ranke. Brain Research Promotion, London, Tubingen 1990; 326–32
  • Bartsch H., Bartsch C, Simon W. E. Antitumor activity of the pineal gland: Effect of unidentified substances versus the effect of melatonin. Oncology, 49: 27–30
  • Bartsch C, Bartsch H., Buchberger A. Serial transplants of DMBA-induced mammary tumors in Fischer rats as model system for human breast cancer. Oncology 1995; 52: 279–83
  • Hill S. M., Spriggs L. L., Simon M. A. The growth inhibitory action of melatonin on human breast cancer cells is linked to the estrogen response system. Cancer Lett 1992; 64: 249–56
  • Blask D. E., Hill S. M. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. Journal of Neurotransmitters Suppl. 1986; 21: 433–49
  • Wilson S. T., Blask D. E., Lemus-Wilson A. M. Melatonin augments the sensitivity of MCF-7 human breast cancer cells to tamoxifen in vitro. J Clin Endocrinol Metab 1992; 75: 7669–058
  • Lissoni P., Barni S., Meregalli S. Modulation of cancer endocrine therapy by melatonin: A phase II study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone. Br J Cancer 1995; 71: 854–6
  • Barni S., Lissoni P., Cazzaniga M. A randomized study of low-dose subcutaneous interleukin-2 plus melatonin versus supportive care alone in metastatic colorectal cancer patients progressing under 5-fluorouracil and folates. Oncology 1995; 52: 243–5
  • Cos S., Sanchez-Barcelo E. J. Differences between pulsatile or continuous exposure to melatonin on MCF-7 human breast cancer cell proliferation. Cancer Lett 1994; 85: 105–9
  • Tommasi M. S., Brocchi A., Fiorelli C. Effects of melatonin on cytokine production in patients with advanced solid tumors. Euro-Immunoanalyse, Lyon France 1993; 4–5
  • Bruno N., Carlo F., Fausto M. Modulation of human lymphoblastoid interferon activity by melatonin in metastatic renal cell carcinoma. Cancer 1994; 73: 3016–9
  • Wanebo H. J., Pace R., Hargett S. Production and blood lymphocytes of cancer patients. Cancer 1985; 57: 656–62
  • Lissoni P., Barni S., Ardizzoia A. Randomized study with the pineal hormone melatonin versus supportive care alone in advanced non-small cell lung cancer resistant to a first-line chemotherapy containing cisplatin. Oncology 1992; 49: 336–9
  • Lissoni P., Tisi E., Barni S. Biological and clinical results of a neuroimmunotherapy with interleukin-2 and the pineal hormone melatonin as a first line treatment in advanced non-small cell lung cancer. Br J Cancer 1992; 66: 155–8
  • Maestroni G. J., Covacci V., Conti A. Hematopoietic rescue via T-cell dependent, endogenous granulocyte-macrophage colony stimulating factor induced by the pineal neurohormone melatonin in tumor-bearing mice. Cancer Res 1994; 54: 2429–32
  • Lissoni P., Meregalli S., Fossati V. A randomized study of immunotherapy with low-dose subcutaneous interleukin-2 plus melatonin vs chemotherapy with cisplatin and etoposide as first-line therapy for advanced non-small cell lung cancer. Tumori 1994; 80: 464–7
  • Aldeghi R., Lissoni P., Barni S. Low-dose Interleukin-2 subcutaneous immunotherapy in association with the pineal hormone melatonin as a first-line therapy in locally advanced or metastatic hepatocellular carcinoma. Eur J Cancer 1994; 30(A)167–70
  • Lissoni P., Barni S., Tancini G. Immunotherapy with subcutaneous low-dose interleukin-2 and the pineal indole melatonin as a new effective therapy in advanced cancers of the digestive tract. Br J Cancer 1993; 67: 1404–7
  • Lissoni P., Barni S., Cazzaniga M. Efficacy of the concomitant administration of the pineal hormone melatonin in cancer immunotherapy with low-dose 1L-2 in patients with advanced solid tumors who had progressed on IL-2 alone. Oncology 1994; 51: 344–7
  • Lissoni P., Barni S., Tancini G. A randomized study with subcutaneous low-dose interleukin-2 alone vs interleukin-2 plus the pineal neurohormone melatonin in advanced solid neoplasms other than renal cancer and melatonin. Br J Cancer, 69: 196–9
  • Lissoni P., Barni S., Brivia F. A biological study on the efficacy of low-dose subcutaneous interleukin-2 plus melatonin in the treatment of cancer-related thrombocytopenia. Oncology 1995; 52: 360
  • Reiter R. J. Pineal gland: Interface between the photoperiodic environment and the endocrine system. Trends Endocrinol Metab 1991; 2: 13–9
  • Reiter R. J. Pineal melatonin: Cell biology of its synthesis and of its physiologic interactions. Endocr Rev 1991; 12: 151–80
  • Ben-Nathan D., Feuerstein G. The influence of cold or isolation stress on resistance of mice to West Nile virus encephalitis. Experientia 1990; 46: 285–90
  • Neri B., Brocchi A., Cagnoni M. Effects of melatonin administration on cytokine production in patients with advanced solid tumors. Oncology Reports 1995; 2: 45–7
  • Baiter M. Cytokines move from the margins into the spotlight. Science 1995; 268: 205–6
  • Steinhilber D. B., Brungs M., Carlberg C. The nuclear recepter for melatonin represses 5-lipoxygenase gene expression in human B-lymphocytes. J bio chem 1995; 270: 7037–40
  • Russel J. R., Robinson J. O. Melatonin. Bantam Books, New York 1995; 47–58
  • Buttke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunol Today 1994; 15: 7–10
  • Zeller J. Immune mechanism in AIDS. The person with AIDS: Nursing perspective, J. D. Durham, F. I. Cohen. Springer Publishing Co, New York 1991; 60–71
  • Yarchoan R., Mitsuya H., Broder S. Challenges in the therapy of HIV infection. Immunol Today. 1993; 361–84
  • Tan D. X., Chen L. D., Reiter R. J. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocri J 1993; 1: 57–60
  • Viswanathan M., Laitinen J. T., Saavedra J. M. Expression of melatonin receptors in arteries involved in thermoregulation. Proc Natl Acad Sci 1990; 87: 1165–71
  • Lopez-Gonzalez M. A., Calvo J. R., Rubio A. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat. Life Sci 1991; 48: 1165–71
  • Morgan P. J. Molecular signaling via the melatonin receptor. Adv Pineal Res 1991; 5: 191–7
  • Reiter R. J. The pineal gland. New York 1984; 1–200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.