414
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Lentiviral vectors for immune cells targeting

, &
Pages 208-218 | Received 11 Sep 2009, Accepted 16 Oct 2009, Published online: 20 Jan 2010

References

  • Anderson, W.F., Blaese, R.M., Culver, K. The ADA human gene therapy clinical protocol: Points to Consider response with clinical protocol, July 6, 1990. Hum. Gene Ther. 1990, 1, 331–362.
  • Thrasher, A.J., Gaspar, H.B., Baum, C., Modlich, U., Schambach, A., Candotti, F., Otsu, M., Sorrentino, B., Scobie, L., Cameron, E., Blyth, K., Neil, J., Abina, S.H., Cavazzana-Calvo, M., Fischer, A.Gene therapy: X-SCID transgene leukaemogenicity. Nature. 2006, 443, E5–6; discussion E6.
  • Dass, C.R.Biochemical and biophysical characteristics of lipoplexes pertinent to solid tumour gene therapy. Int. J. Pharm. 2002, 241, 1–25.
  • Gardlik, R., Palffy, R., Hodosy, J., Lukacs, J., Turna, J., Celec, P. Vectors and delivery systems in gene therapy. Med. Sci. Monit. 2005, 11, 110–121.
  • Forrest, M.L., Pack, D.W.On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design. Mol. Ther. 2002, 6, 57–66.
  • Edelstein, M.L., Abedi, M.R., Wixon, J.Gene therapy clinical trials worldwide to 2007–an update. J. Gene Med. 2007, 9, 833–842.
  • Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R., Wilson, J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999, 6, 1574–1583.
  • Kostense, S., Koudstaal, W., Sprangers, M., Weverling, G.J., Penders, G., Helmus, N., Vogels, R., Bakker, M., Berkhout, B., Havenga, M., Goudsmit, J. Adenovirus types 5 and 35 seroprevalence in AIDS risk groups supports type 35 as a vaccine vector. AIDS. 2004, 18, 1213–1216.
  • Muruve, D.A. The innate immune response to adenovirus vectors. Hum. Gene Ther. 2004, 15, 1157–1166.
  • Howitt, J., Anderson, C.W., Freimuth, P. Adenovirus interaction with its cellular receptor CAR. Curr. Top. Microbiol. Immunol. 2003, 272, 331–364.
  • Smith-Arica, J.R., Thomson, A.J., Ansell, R., Chiorini, J., Davidson, B., McWhir, J. Infection efficiency of human and mouse embryonic stem cells using adenoviral and adeno-associated viral vectors. Cloning. Stem Cells 2003, 5, 51–62.
  • Clemens, P.R., Kochanek, S., Sunada, Y., Chan, S., Chen, H.H., Campbell, K.P., Caskey, C.T. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther. 1996, 3, 965–972.
  • Dong, J.Y., Fan, P.D., Frizzell, R.A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther. 1996, 7, 2101–2112.
  • Shenk, T.E., Adenoviridae: the viruses and their replication. In: Fields Virology (p. 2111–2148), David M. Knipe, P.M.H., Diane E. Griffin Malcolm, A. Martin Robert, A.Lamb, , eds. New York: Lippincott Williams & Wilkins, 2006.
  • Coffin, J.M., Hughes, S.H., Varmus, H.E., Retroviruses. Woodbury, NY: Cold Spring Harbor Laboratory Press, 1997.
  • Schaffer, D.V., Koerber, J.T., Lim, K.I. Molecular engineering of viral gene delivery vehicles. Annu. Rev. Biomed. Eng. 2008, 10, 169–194.
  • Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E., Sorensen, R., Forster, A., Fraser, P., Cohen, J.I., de Saint Basile, G., Alexander, I., Wintergerst, U., Frebourg, T., Aurias, A., Stoppa-Lyonnet, D., Romana, S., Radford-Weiss, I., Gross, F., Valensi, F., Delabesse, E., Macintyre, E., Sigaux, F., Soulier, J., Leiva, L.E., Wissler, M., Prinz, C., Rabbitts, T.H., Le Deist, F., Fischer, A., Cavazzana-Calvo, M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003, 302, 415–419.
  • Lewis, P., Hensel, M., Emerman, M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 1992, 11, 3053–3058.
  • Weinberg, J.B., Matthews, T.J., Cullen, B.R., Malim, M.H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 1991, 174, 1477–1482.
  • Case, S.S., Price, M.A., Jordan, C.T., Yu, X.J., Wang, L., Bauer, G., Haas, D.L., Xu, D., Stripecke, R., Naldini, L., Kohn, D.B., Crooks, G.M. Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2988–2993.
  • Naldini, L., Blömer, U., Gage, F.H., Trono, D., Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 11382–11388.
  • De Palma, M., Montini, E., Santoni de Sio, F.R., Benedicenti, F., Gentile, A., Medico, E., Naldini, L. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood. 2005, 105, 2307–2315.
  • Frecha, C., Szécsi, J., Cosset, F.L., Verhoeyen, E. Strategies for targeting lentiviral vectors. Curr. Gene Ther. 2008, 8, 449–460.
  • Zaiss, A.K., Son, S., Chang, L.J. RNA 3′ read through of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J. Virol. 2002, 76, 7209–7219.
  • Emery, D.W., Yannaki, E., Tubb, J., Nishino, T., Li, Q., Stamatoyannopoulos, G. Development of virus vectors for gene therapy of beta chain hemoglobinopathies: flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo. Blood. 2002, 100, 2012–2019.
  • Cronin, J., Zhang, X.Y., Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 2005, 5, 387–398.
  • Carneiro, F.A., Lapido-Loureiro, P.A., Cordo, S.M., Stauffer, F., Weissmüller, G., Bianconi, M.L., Juliano, M.A., Juliano, L., Bisch, P.M., Da Poian, A.T., Poian, A.T. Probing the interaction between vesicular stomatitis virus and phosphatidylserine. Eur. Biophys. J. 2006, 35, 145–154.
  • Coil, D.A., Miller, A.D. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J. Virol. 2004, 78, 10920–10926.
  • Coil, D.A., Miller, A.D. Enhancement of enveloped virus entry by phosphatidylserine. J. Virol. 2005, 79, 11496–11500.
  • Watson, D.J., Kobinger, G.P., Passini, M.A., Wilson, J.M., Wolfe, J.H. Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol. Ther. 2002, 5, 528–537.
  • Ory, D.S., Neugeboren, B.A., Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 11400–11406.
  • DePolo, N.J., Reed, J.D., Sheridan, P.L., Townsend, K., Sauter, S.L., Jolly, D.J., Dubensky, T.W.Jr. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol. Ther. 2000, 2, 218–222.
  • Hanawa, H., Kelly, P.F., Nathwani, A.C., Persons, D.A., Vandergriff, J.A., Hargrove, P., Vanin, E.F., Nienhuis, A.W. Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. 2002, 5, 242–251.
  • Kelly, P.F., Vandergriff, J., Nathwani, A., Nienhuis, A.W., Vanin, E.F. Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood. 2000, 96, 1206–1214.
  • Porter, C.D., Collins, M.K., Tailor, C.S., Parkar, M.H., Cosset, F.L., Weiss, R.A., Takeuchi, Y. Comparison of efficiency of infection of human gene therapy target cells via four different retroviral receptors. Hum. Gene Ther. 1996, 7, 913–919.
  • Sandrin, V., Boson, B., Salmon, P., Gay, W., Nègre, D., Le Grand, R., Trono, D., Cosset, F.L. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood. 2002, 100, 823–832.
  • Jakobsson, J., Lundberg, C. Lentiviral vectors for use in the central nervous system. Mol. Ther. 2006, 13, 484–493.
  • Wong, L.F., Azzouz, M., Walmsley, L.E., Askham, Z., Wilkes, F.J., Mitrophanous, K.A., Kingsman, S.M., Mazarakis, N.D. Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol. Ther. 2004, 9, 101–111.
  • Kahl, C.A., Pollok, K., Haneline, L.S., Cornetta, K. Lentiviral vectors pseudotyped with glycoproteins from Ross River and vesicular stomatitis viruses: variable transduction related to cell type and culture conditions. Mol. Ther. 2005, 11, 470–482.
  • Klimstra, W.B., Nangle, E.M., Smith, M.S., Yurochko, A.D., Ryman, K.D. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J. Virol. 2003, 77, 12022–12032.
  • Kahl, C.A., Marsh, J., Fyffe, J., Sanders, D.A., Cornetta, K. Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J. Virol. 2004, 78, 1421–1430.
  • Kang, Y., Stein, C.S., Heth, J.A., Sinn, P.L., Penisten, A.K., Staber, P.D., Ratliff, K.L., Shen, H., Barker, C.K., Martins, I., Sharkey, C.M., Sanders, D.A., McCray, P.B.Jr, Davidson, B.L. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J. Virol. 2002, 76, 9378–9388.
  • Morizono, K., Bristol, G., Xie, Y.M., Kung, S.K., Chen, I.S. Antibody-directed targeting of retroviral vectors via cell surface antigens. J. Virol. 2001, 75, 8016–8020.
  • Gardner, J.P., Frolov, I., Perri, S., Ji, Y., MacKichan, M.L., zur Megede, J., Chen, M., Belli, B.A., Driver, D.A., Sherrill, S., Greer, C.E., Otten, G.R., Barnett, S.W., Liu, M.A., Dubensky, T.W., Polo, J.M. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J. Virol. 2000, 74, 11849–11857.
  • Yang, L., Yang, H., Rideout, K., Cho, T., Joo, K.I., Ziegler, L., Elliot, A., Walls, A., Yu, D., Baltimore, D., Wang, P. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat. Biotechnol. 2008, 26, 326–334.
  • Lavillette, D., Russell, S.J., Cosset, F.L. Retargeting gene delivery using surface-engineered retroviral vector particles. Curr. Opin. Biotechnol. 2001, 12, 461–466.
  • Sandrin, V., Russell, S.J., Cosset, F.L. Targeting retroviral and lentiviral vectors. Curr. Top. Microbiol. Immunol. 2003, 281, 137–178.
  • Waehler, R., Russell, S.J., Curiel, D.T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 2007, 8, 573–587.
  • Gollan, T.J., Green, M.R. Redirecting retroviral tropism by insertion of short, nondisruptive peptide ligands into envelope. J. Virol. 2002, 76, 3558–3563.
  • Han, X., Kasahara, N., Kan, Y.W. Ligand-directed retroviral targeting of human breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 9747–9751.
  • Valsesia-Wittmann, S., Drynda, A., Deléage, G., Aumailley, M., Heard, J.M., Danos, O., Verdier, G., Cosset, F.L. Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J. Virol. 1994, 68, 4609–4619.
  • Guibinga, G.H., Hall, F.L., Gordon, E.M., Ruoslahti, E., Friedmann, T. Ligand-modified vesicular stomatitis virus glycoprotein displays a temperature-sensitive intracellular trafficking and virus assembly phenotype. Mol. Ther. 2004, 9, 76–84.
  • Somia, N.V., Zoppé, M., Verma, I.M. Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 7570–7574.
  • Benedict, C.A., Tun, R.Y., Rubinstein, D.B., Guillaume, T., Cannon, P.M., Anderson, W.F. Targeting retroviral vectors to CD34-expressing cells: binding to CD34 does not catalyze virus-cell fusion. Hum. Gene Ther. 1999, 10, 545–557.
  • Jiang, A., Chu, T.H., Nocken, F., Cichutek, K., Dornburg, R. Cell-type-specific gene transfer into human cells with retroviral vectors that display single-chain antibodies. J. Virol. 1998, 72, 10148–10156.
  • Martín, F., Chowdhury, S., Neil, S., Phillipps, N., Collins, M.K. Envelope-targeted retrovirus vectors transduce melanoma xenografts but not spleen or liver. Mol. Ther. 2002, 5, 269–274.
  • Maurice, M., Verhoeyen, E., Salmon, P., Trono, D., Russell, S.J., Cosset, F.L. Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood. 2002, 99, 2342–2350.
  • Chadwick, M.P., Morling, F.J., Cosset, F.L., Russell, S.J. Modification of retroviral tropism by display of IGF-I. J. Mol. Biol. 1999, 285, 485–494.
  • Nguyen, T.H., Pagès, J.C., Farge, D., Briand, P., Weber, A. Amphotropic retroviral vectors displaying hepatocyte growth factor-envelope fusion proteins improve transduction efficiency of primary hepatocytes. Hum. Gene Ther. 1998, 9, 2469–2479.
  • Snitkovsky, S., Young, J.A. Cell-specific viral targeting mediated by a soluble retroviral receptor-ligand fusion protein. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 7063–7068.
  • Boerger, A.L., Snitkovsky, S., Young, J.A. Retroviral vectors preloaded with a viral receptor-ligand bridge protein are targeted to specific cell types. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9867–9872.
  • Roux, P., Jeanteur, P., Piechaczyk, M. A versatile and potentially general approach to the targeting of specific cell types by retroviruses: application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 9079–9083.
  • Morizono, K., Xie, Y., Ringpis, G.E., Johnson, M., Nassanian, H., Lee, B., Wu, L., Chen, I.S. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med. 2005, 11, 346–352.
  • Somia, N.V., Miyoshi, H., Schmitt, M.J., Verma, I.M. Retroviral vector targeting to human immunodeficiency virus type 1-infected cells by receptor pseudotyping. J. Virol. 2000, 74, 4420–4424.
  • Endres, M.J., Jaffer, S., Haggarty, B., Turner, J.D., Doranz, B.J., O’Brien, P.J., Kolson, D.L., Hoxie, J.A. Targeting of HIV- and SIV-infected cells by CD4-chemokine receptor pseudotypes. Science. 1997, 278, 1462–1464.
  • Lamb, R.A. Paramyxovirus fusion: a hypothesis for changes. Virology. 1993, 197, 1–11.
  • Lin, A.H., Kasahara, N., Wu, W., Stripecke, R., Empig, C.L., Anderson, W.F., Cannon, P.M. Receptor-specific targeting mediated by the coexpression of a targeted murine leukemia virus envelope protein and a binding-defective influenza hemagglutinin protein. Hum. Gene Ther. 2001, 12, 323–332.
  • Yang, L., Bailey, L., Baltimore, D., Wang, P. Targeting lentiviral vectors to specific cell types in vivo. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11479–11484.
  • Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., Selz, F., Hue, C., Certain, S., Casanova, J.L., Bousso, P., Deist, F.L., Fischer, A. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000, 288, 669–672.
  • Aiuti, A., Slavin, S., Aker, M., Ficara, F., Deola, S., Mortellaro, A., Morecki, S., Andolfi, G., Tabucchi, A., Carlucci, F., Marinello, E., Cattaneo, F., Vai, S., Servida, P., Miniero, R., Roncarolo, M.G., Bordignon, C. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002, 296, 2410–2413.
  • Ott, M.G., Schmidt, M., Schwarzwaelder, K., Stein, S., Siler, U., Koehl, U., Glimm, H., Kühlcke, K., Schilz, A., Kunkel, H., Naundorf, S., Brinkmann, A., Deichmann, A., Fischer, M., Ball, C., Pilz, I., Dunbar, C., Du, Y., Jenkins, N.A., Copeland, N.G., Lüthi, U., Hassan, M., Thrasher, A.J., Hoelzer, D., von Kalle, C., Seger, R., Grez, M. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. 2006, 12, 401–409.
  • Bushman, F., Lewinski, M., Ciuffi, A., Barr, S., Leipzig, J., Hannenhalli, S., Hoffmann, C. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol. 2005, 3, 848–858.
  • Cavazzana-Calvo, M., Fischer, A. Gene therapy for severe combined immunodeficiency: are we there yet? J. Clin. Invest. 2007, 117, 1456–1465.
  • Gaspar, H.B., Parsley, K.L., Howe, S., King, D., Gilmour, K.C., Sinclair, J., Brouns, G., Schmidt, M., Von Kalle, C., Barington, T., Jakobsen, M.A., Christensen, H.O., Al Ghonaium, A., White, H.N., Smith, J.L., Levinsky, R.J., Ali, R.R., Kinnon, C., Thrasher, A.J. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004, 364, 2181–2187.
  • Goverdhana, S., Puntel, M., Xiong, W., Zirger, J.M., Barcia, C., Curtin, J.F., Soffer, E.B., Mondkar, S., King, G.D., Hu, J., Sciascia, S.A., Candolfi, M., Greengold, D.S., Lowenstein, P.R., Castro, M.G. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol. Ther. 2005, 12, 189–211.
  • Frecha, C., Szecsi, J., Cosset, F.L., Verhoeyen, E. Strategies for targeting lentiviral vectors. Curr. Gene Ther. 2008, 8, 449–460.
  • Moreau, T., Bardin, F., Imbert, J., Chabannon, C., Tonnelle, C. Restriction of transgene expression to the B-lymphoid progeny of human lentivirally transduced CD34+ cells. Mol. Ther. 2004, 10, 45–56.
  • Laurie, K.L., Blundell, M.P., Baxendale, H.E., Howe, S.J., Sinclair, J., Qasim, W., Brunsberg, U., Thrasher, A.J., Holmdahl, R., Gustafsson, K. Cell-specific and efficient expression in mouse and human B cells by a novel hybrid immunoglobulin promoter in a lentiviral vector. Gene Ther. 2007, 14, 1623–1631.
  • Taher, T.E., Tulone, C., Fatah, R., D’Acquisto, F., Gould, D.J., Mageed, R.A. Repopulation of B-lymphocytes with restricted gene expression using haematopoietic stem cells engineered with lentiviral vectors. Gene Ther. 2008, 15, 998–1006.
  • Lutzko, C., Senadheera, D., Skelton, D., Petersen, D., Kohn, D.B. Lentivirus vectors incorporating the immunoglobulin heavy chain enhancer and matrix attachment regions provide position-independent expression in B lymphocytes. J. Virol. 2003, 77, 7341–7351.
  • Werner, M., Kraunus, J., Baum, C., Brocker, T. B-cell-specific transgene expression using a self-inactivating retroviral vector with human CD19 promoter and viral post-transcriptional regulatory element. Gene Ther. 2004, 11, 992–1000.
  • Indraccolo, S., Minuzzo, S., Roccaforte, F., Zamarchi, R., Habeler, W., Stievano, L., Tosello, V., Klein, D., Günzburg, W.H., Basso, G., Chieco-Bianchi, L., Amadori, A. Effects of CD2 locus control region sequences on gene expression by retroviral and lentiviral vectors. Blood. 2001, 98, 3607–3617.
  • Marodon, G., Mouly, E., Blair, E.J., Frisen, C., Lemoine, F.M., Klatzmann, D. Specific transgene expression in human and mouse CD4+ cells using lentiviral vectors with regulatory sequences from the CD4 gene. Blood. 2003, 101, 3416–3423.
  • Dardalhon, V., Herpers, B., Noraz, N., Pflumio, F., Guetard, D., Leveau, C., Dubart-Kupperschmitt, A., Charneau, P., Taylor, N. Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap. Gene Ther. 2001, 8, 190–198.
  • Lois, C., Hong, E.J., Pease, S., Brown, E.J., Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002, 295, 868–872.
  • Bonkobara, M., Zukas, P.K., Shikano, S., Nakamura, S., Cruz, P.D.Jr, Ariizumi, K. Epidermal Langerhans cell-targeted gene expression by a dectin-2 promoter. J. Immunol. 2001, 167, 6893–6900.
  • Dresch, C., Edelmann, S.L., Marconi, P., Brocker, T. Lentiviral-mediated transcriptional targeting of dendritic cells for induction of T cell tolerance in vivo. J. Immunol. 2008, 181, 4495–4506.
  • Kozmik, Z., Czerny, T., Busslinger, M. Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 1997, 16, 6793–6803.
  • Lopes, L., Dewannieux, M., Gileadi, U., Bailey, R., Ikeda, Y., Whittaker, C., Collin, M.P., Cerundolo, V., Tomihari, M., Ariizumi, K., Collins, M.K. Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8+ and CD4+ T-cell responses. J. Virol. 2008, 82, 86–95.
  • Morita, Y., Yang, J., Gupta, R., Shimizu, K., Shelden, E.A., Endres, J., Mulé, J.J., McDonagh, K.T., Fox, D.A. Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J. Clin. Invest. 2001, 107, 1275–1284.
  • Ageichik, A., Collins, M.K., Dewannieux, M. Lentivector targeting to dendritic cells. Mol. Ther. 2008, 16, 1008–1009.
  • Cui, Y., Golob, J., Kelleher, E., Ye, Z., Pardoll, D., Cheng, L. Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood. 2002, 99, 399–408.
  • Schröder, A.R., Shinn, P., Chen, H., Berry, C., Ecker, J.R., Bushman, F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002, 110, 521–529.
  • Lesniak, M.S., Kelleher, E., Pardoll, D., Cui, Y. Targeted gene therapy to antigen-presenting cells in the central nervous system using hematopoietic stem cells. Neurol. Res. 2005, 27, 820–826.
  • Follenzi, A., Battaglia, M., Lombardo, A., Annoni, A., Roncarolo, M.G., Naldini, L. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood. 2004, 103, 3700–3709.
  • Annoni, A., Battaglia, M., Follenzi, A., Lombardo, A., Sergi-Sergi, L., Naldini, L., Roncarolo, M.G. The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells. Blood. 2007, 110, 1788–1796.
  • Prioleau, M.N., Nony, P., Simpson, M., Felsenfeld, G. An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J. 1999, 18, 4035–4048.
  • Zhang, F., Thornhill, S.I., Howe, S.J., Ulaganathan, M., Schambach, A., Sinclair, J., Kinnon, C., Gaspar, H.B., Antoniou, M., Thrasher, A.J. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood. 2007, 110, 1448–1457.
  • Recillas-Targa, F., Valadez-Graham, V., Farrell, C.M. Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays. 2004, 26, 796–807.
  • Negri, D.R., Michelini, Z., Baroncelli, S., Spada, M., Vendetti, S., Buffa, V., Bona, R., Leone, P., Klotman, M.E., Cara, A. Successful immunization with a single injection of non-integrating lentiviral vector. Mol. Ther. 2007, 15, 1716–1723.
  • Gollan, T.J., Green, M.R. Redirecting retroviral tropism by insertion of short, nondisruptive peptide ligands into envelope. J. Virol. 2002, 76, 3558–3563.
  • Kueng, H.J., Leb, V.M., Haiderer, D., Raposo, G., Thery, C., Derdak, S.V., Schmetterer, K.G., Neunkirchner, A., Sillaber, C., Seed, B., Pickl, W.F. General strategy for decoration of enveloped viruses with functionally active lipid-modified cytokines. J. Virol. 2007, 81, 8666–8676.
  • Morizono, K., Xie, Y., Ringpis, G.E., Johnson, M., Nassanian, H., Lee, B., Wu, L., Chen, I.S. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med. 2005, 11, 346–352.
  • Maurice, M., Mazur, S., Bullough, F.J., Salvetti, A., Collins, M.K., Russell, S.J., Cosset, F.L. Efficient gene delivery to quiescent interleukin-2 (IL-2)-dependent cells by murine leukemia virus-derived vectors harboring IL-2 chimeric envelope glycoproteins. Blood. 1999, 94, 401–410.
  • Fielding, A.K., Maurice, M., Morling, F.J., Cosset, F.L., Russell, S.J. Inverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells. Blood. 1998, 91, 1802–1809.
  • Gennari, F., Lopes, L., Verhoeyen, E., Marasco, W., Collins, M.K. Single-chain antibodies that target lentiviral vectors to MHC class II on antigen-presenting cells. Hum. Gene Ther. 2009, 20, 554–562.
  • Karavanas, G., Marin, M., Bachrach, E., Papavassiliou, A.G., Piechaczyk, M. The insertion of an anti-MHC I ScFv into the N-terminus of an ecotropic MLV glycoprotein does not alter its fusiogenic potential on murine cells. Virus Res. 2002, 83, 57–69.
  • Marin, M., Noël, D., Valsesia-Wittman, S., Brockly, F., Etienne-Julan, M., Russell, S., Cosset, F.L., Piechaczyk, M. Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J. Virol. 1996, 70, 2957–2962.
  • Chowdhury, S., Chester, K.A., Bridgewater, J., Collins, M.K., Martin, F. Efficient retroviral vector targeting of carcinoembryonic antigen-positive tumors. Mol. Ther. 2004, 9, 85–92.
  • Dreja, H., Piechaczyk, M. The effects of N-terminal insertion into VSV-G of an scFv peptide. Virol. J. 2006, 3, 69.
  • Verhoeyen, E., Dardalhon, V., Ducrey-Rundquist, O., Trono, D., Taylor, N., Cosset, F.L. IL-7 surface-engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood. 2003, 101, 2167–2174.
  • Verhoeyen, E., Wiznerowicz, M., Olivier, D., Izac, B., Trono, D., Dubart-Kupperschmitt, A., Cosset, F.L. Novel lentiviral vectors displaying “early-acting cytokines” selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells. Blood. 2005, 106, 3386–3395.
  • Pan, D., Gunther, R., Duan, W., Wendell, S., Kaemmerer, W., Kafri, T., Verma, I.M., Whitley, C.B. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol. Ther. 2002, 6, 19–29.
  • Kueng, H.J., Leb, V.M., Haiderer, D., Raposo, G., Thery, C., Derdak, S.V., Schmetterer, K.G., Neunkirchner, A., Sillaber, C., Seed, B., Pickl, W.F. General strategy for decoration of enveloped viruses with functionally active lipid-modified cytokines. J. Virol. 2007, 81, 8666–8676.
  • Chandrashekran, A., Gordon, M.Y., Casimir, C. Targeted retroviral transduction of c-kit+ hematopoietic cells using novel ligand display technology. Blood. 2004, 104, 2697–2703.
  • Kaikkonen, M.U., Lesch, H.P., Pikkarainen, J., Räty, J.K., Vuorio, T., Huhtala, T., Taavitsainen, M., Laitinen, T., Tuunanen, P., Gröhn, O., Närvänen, A., Airenne, K.J., Ylä-Herttuala, S. (Strept)avidin-displaying lentiviruses as versatile tools for targeting and dual imaging of gene delivery. Gene Ther. 2009, 16, 894–904.
  • Liang, M., Pariente, N., Morizono, K., Chen, I.S. Targeted transduction of CD34+ hematopoietic progenitor cells in nonpurified human mobilized peripheral blood mononuclear cells. J. Gene Med. 2009, 11, 185–196.
  • Yang, H., Ziegler, L., Joo, K.I., Cho, T., Lei, Y., Wang, P. Gamma-retroviral vectors enveloped with an antibody and an engineered fusogenic protein achieved antigen-specific targeting. Biotechnol. Bioeng. 2008, 101, 357–368.
  • Lei, Y., Joo, K.I., Wang, P. Engineering fusogenic molecules to achieve targeted transduction of enveloped lentiviral vectors. J. Biol. Eng. 2009, 3, 8.
  • Ziegler, L., Yang, L., Joo, K., Yang, H., Baltimore, D., Wang, P. Targeting lentiviral vectors to antigen-specific immunoglobulins. Hum. Gene Ther. 2008, 19, 861–872.
  • Yang, H., Joo, K.I., Ziegler, L., Wang, P. Cell type-specific targeting with surface-engineered lentiviral vectors co-displaying OKT3 antibody and fusogenic molecule. Pharm. Res. 2009, 26, 1432–1445.
  • Froelich, S., Ziegler, L., Stroup, K., Wang, P. Targeted gene delivery to CD117-expressing cells in vivo with lentiviral vectors co-displaying stem cell factor and a fusogenic molecule. Biotechnol. Bioeng. 2009, 104, 206–215.
  • Funke, S., Maisner, A., Mühlebach, M.D., Koehl, U., Grez, M., Cattaneo, R., Cichutek, K., Buchholz, C.J. Targeted cell entry of lentiviral vectors. Mol. Ther. 2008, 16, 1427–1436.
  • Logan, A.C., Lutzko, C., Kohn, D.B. Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Curr. Opin. Biotechnol. 2002, 13, 429–436.
  • Pawliuk, R., Westerman, K.A., Fabry, M.E., Payen, E., Tighe, R., Bouhassira, E.E., Acharya, S.A., Ellis, J., London, I.M., Eaves, C.J., Humphries, R.K., Beuzard, Y., Nagel, R.L., Leboulch, P. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science. 2001, 294, 2368–2371.
  • Lavenu-Bombled, C., Izac, B., Legrand, F., Cambot, M., Vigier, A., Massé, J.M., Dubart-Kupperschmitt, A. Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector. Stem. Cells 2007, 25, 1571–1577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.