154
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Effect of Agaricus brasiliensis-derived cold water extract on Toll-like receptor 2-dependent cytokine production in vitro

, , , , &
Pages 561-570 | Received 19 Aug 2011, Accepted 17 Oct 2011, Published online: 29 Nov 2011

References

  • Wasser, S.P., Didukh, M.Y., de, A., Amazonas, M.L.A., Nevo, E., Stamets, P., da Eira, A.F. Is a Widely Cultivated Culinary-Medicinal Royal Sun Agaricus (the Himematsutake Mushroom) Indeed Agaricus blazei Murrill? Int J Med Mushr. 2002;4:267–290.
  • Didukh, M.Y., Wasser, S.P., Nevo, E. Medicinal Value of Species of the Family Agaricaceae Cohn (Higher Basidiomycetes): Current Stage of Knowledge and Future Perspectives. Int J Med Mushr. 2003;5:133–152.
  • Ohno, N., Akanuma, A.M., Miura. N.N., Adachi, Y., Motoi, M. (1→3)-β-D-glucan in the fruit bodies of Agaricus blazei. Pharm Pharmacol Lett. 2001;11:87–90.
  • Zhong, M., Tai, A., Yamamoto, I. In vitro augmentation of natural killer activity and interferon-gamma production in murine spleen cells with Agaricus blazei fruiting body fractions. Biosci Biotechnol Biochem 2005, 69, 2466–2469.
  • Yuminamochi, E., Koike, T., Takeda, K., Horiuchi, I., Okumura, K. Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill. Immunology 2007, 121, 197–206.
  • Bouike, G., Nishitani, Y., Shiomi, H., Yoshida, M., Azuma, T., Hashimoto, T., Kanazawa, K., Mizuno, M. Oral Treatment with Extract of Agaricus blazei Murill Enhanced Th1 Response through Intestinal Epithelial Cells and Suppressed OVA-Sensitized Allergy in Mice. Evid Based Complement Alternat Med 2011, 1–11.
  • Sorimachi, K., Akimoto, K., Ikehara, Y., Inafuku, K., Okubo, A., Yamazaki, S. Secretion of TNF-alpha, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro. Cell Struct Funct 2001, 26, 103–108.
  • Johnson, E., Førland, D.T., Saetre, L., Bernardshaw, S.V., Lyberg, T., Hetland, G. Effect of an extract based on the medicinal mushroom Agaricus blazei murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo. Scand J Immunol 2009, 69, 242–250.
  • Førland, D.T., Johnson, E., Tryggestad, A.M., Lyberg, T., Hetland, G. An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro. Cytokine 2010, 49, 245–250.
  • Fujimiya, Y., Suzuki, Y., Oshiman, K., Kobori, H., Moriguchi, K., Nakashima, H., Matumoto, Y., Takahara, S., Ebina, T., Katakura, R. Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol Immunother 1998, 46, 147–159.
  • Kawagishi, H., Inagaki, R., Kanao, T., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T., Nakamura, T. Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Carbohydr Res 1989, 186, 267–273.
  • Ohno, N., Furukawa, M., Miura, N.N., Adachi, Y., Motoi, M., Yadomae, T. Antitumor β glucan from the cultured fruit body of Agaricus blazei. Biol Pharm Bull 2001, 24, 820–828.
  • Mizuno, M., Minato, K., Ito, H., Kawade, M., Terai, H., Tsuchida, H. Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem Mol Biol Int 1999, 47, 707–714.
  • Ellertsen, L.K., Hetland, G. An extract of the medicinal mushroom Agaricus blazei Murill can protect against allergy. Clin Mol Allergy 2009, 7, 6.
  • Liu, Y., Fukuwatari, Y., Okumura, K., Takeda, K., Ishibashi, K.I., Furukawa, M., Ohno, N., Mori, K., Gao, M., Motoi, M. Immunomodulating Activity of Agaricus brasiliensis KA21 in Mice and in Human Volunteers. Evid Based Complement Alternat Med 2008, 5, 205–219.
  • Furukawa, M., Miura, N.N., Adachi, Y., Motoi, M., Ohno, N. Effect of Agaricus brasiliensis S. wasser et al. (agaricomycetideae) on murine diabetic model C57BL/Ksj-db/db. Int J Med Mushr. 2006;8:115–128.
  • Choi, Y.H., Yan, G.H., Chai, O.H., Choi, Y.H., Zhang, X., Lim, J.M., Kim, J.H., Lee, M.S., Han, E.H., Kim, H.T., Song, C.H. Inhibitory effects of Agaricus blazei on mast cell-mediated anaphylaxis-like reactions. Biol Pharm Bull 2006, 29, 1366–1371.
  • Grinde, B., Hetland, G., Johnson, E. Effects on gene expression and viral load of a medicinal extract from Agaricus blazei in patients with chronic hepatitis C infection. Int Immunopharmacol 2006, 6, 1311–1314.
  • Kasai, H., He, L.M., Kawamura, M., Yang, P.T., Deng, X.W., Munkanta, M., Yamashita, A., Terunuma, H., Hirama, M., Horiuchi, I., Natori, T., Koga, T., Amano, Y., Yamaguchi, N., Ito, M. IL-12 Production Induced by Agaricus blazei Fraction H (ABH) Involves Toll-like Receptor (TLR). Evid Based Complement Alternat Med 2004, 1, 259–267.
  • Mizuno, M., Kawakami, S. An Immunomodulating Polysaccharide in Agaricus brasiliensis S. Wasser et al. (Agaricomycetideae) Activates Macrophages through Toll-like Receptor 4. Int J Med Mushr. 2006;8:223–229.
  • Brown, G.D., Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 2001, 413, 36–37.
  • Harada, T., Miura, N.N., Adachi, Y., Nakajima, M., Yadomae, T., Ohno, N. Highly expressed dectin-1 on bone marrow-derived dendritic cells regulates the sensitivity to β-glucan in DBA/2 mice. J Interferon Cytokine Res 2008, 28, 477–486.
  • Tada, R., Ikeda, F., Aoki, K., Yoshikawa, M., Kato, Y., Adachi, Y., Tanioka, A., Ishibashi, K., Tsubaki, K., Ohno, N. Barley-derived β-D-glucan induces immunostimulation via a dectin-1-mediated pathway. Immunol Lett 2009, 123, 144–148.
  • Nakamura, K., Miyazato, A., Koguchi, Y., Adachi, Y., Ohno, N., Saijo, S., Iwakura, Y., Takeda, K., Akira, S., Fujita, J., Ishii, K., Kaku, M., Kawakami, K. Toll-like receptor 2 (TLR2) and dectin-1 contribute to the production of IL-12p40 by bone marrow-derived dendritic cells infected with Penicillium marneffei. Microbes Infect 2008, 10, 1223–1227.
  • Pang, Z., Otaka, K., Maoka, T., Hidaka, K., Ishijima, S., Oda, M., Ohnishi, M. Structure of β-glucan oligomer from laminarin and its effect on human monocytes to inhibit the proliferation of U937 cells. Biosci Biotechnol Biochem 2005, 69, 553–558.
  • Ohno, N., Uchiyama, M., Tsuzuki, A., Tokunaka, K., Miura, N.N., Adachi, Y., Aizawa, M.W., Tamura, H., Tanaka, S., Yadomae, T. Solubilization of yeast cell-wall β-(1–>3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction. Carbohydr Res 1999, 316, 161–172.
  • Hashimoto, S., Akanuma, A.M., Motoi, M., Imai, N., Rodrignes, C.A., Nameda, S., Miura, N.N., Adachi, Y., Ohno, N. Effect of culture conditions on the chemical composition and biological activities of Agaricus brasiliensis S. Wasser et al. (Agaricomycetideae). Int J Med Mushr. 2006;8:329–341.
  • Harada, T., Miura, N.N., Adachi, Y., Nakajima, M., Yadomae, T., Ohno, N. Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3-β-D-glucan SCG in DBA/2 mice in vitro. J Interferon Cytokine Res 2004, 24, 478–489.
  • Kawagishi, H., Kanao, T., Inagaki, R., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T., Nakamura, T. formolysis of a potent antitumor (1-6)-β-D-glucan-protein complex from agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydrate Polymers. 1990;12:393–404.
  • Mizuno, T., Hagiwara, T., Nakamura, T., Ito, H., Shimura, K., Sumiya, T., Asakura, A. Antitumor activity and some properties of water-soluble polysaccharides from ‘‘Himematsutake’’, the fruiting body of Agaricus blazei Murril. Agric Biol Chem. 1990;54:2889–2996.
  • Chiu, Y.C., Lin, C.Y., Chen, C.P., Huang, K.C., Tong, K.M., Tzeng, C.Y., Lee, T.S., Hsu, H.C., Tang, C.H. Peptidoglycan enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, focal adhesion kinase, Akt, and AP-1- dependent pathway. J Immunol 2009, 183, 2785–2792.
  • Tang, C.H., Hsu, C.J., Yang, W.H., Fong, Y.C. Lipoteichoic acid enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, PKCdelta and c-Src dependent pathways. Biochem Pharmacol 2010, 79, 1648–1657.
  • Van Snick, J. Interleukin-6: an overview. Annu Rev Immunol 1990, 8, 253–278.
  • Azuma, M., Sawahata, R., Akao, Y., Ebihara, T., Yamazaki, S., Matsumoto, M., Hashimoto, M., Fukase, K., Fujimoto, Y., Seya, T. The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation. PLoS ONE 2010, 5. Article No: e12550.
  • Martinez, J., Huang, X., Yang, Y. Direct TLR2 signaling is critical for NK cell activation and function in response to vaccinia viral infection. PLoS Pathog 2010, 6, e1000811.
  • Lindgren, A., Pavlovic, V., Flach, C.F., Sjöling, A., Lundin, S. Interferon-gamma secretion is induced in IL-12 stimulated human NK cells by recognition of Helicobacter pylori or TLR2 ligands. Innate Immun 2011, 17, 191–203.
  • Komai-Koma, M., Jones, L., Ogg, G.S., Xu, D., Liew, F.Y. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci USA 2004, 101, 3029–3034.
  • Brown, G.D., Taylor, P.R., Reid, D.M., Willment, J.A., Williams, D.L., Martinez-Pomares, L., Wong, S.Y., Gordon, S. Dectin-1 is a major β-glucan receptor on macrophages. J Exp Med 2002, 196, 407–412.
  • Maruyama, K., Selmani, Z., Ishii, H., Yamaguchi, K. Innate immunity and cancer therapy. Int Immunopharmacol 2011, 11, 350–357.
  • Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S., Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 2003, 197, 1107–1117.
  • Viriyakosol, S., Fierer, J., Brown, G.D., Kirkland, T.N. Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and Dectin-1. Infect Immun 2005, 73, 1553–1560.
  • Yadav, M., Schorey, J.S. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 2006, 108, 3168–3175.
  • Ikeda, Y., Adachi, Y., Ishii, T., Miura, N., Tamura, H., Ohno, N. Dissociation of Toll-like receptor 2-mediated innate immune response to Zymosan by organic solvent-treatment without loss of Dectin-1 reactivity. Biol Pharm Bull 2008, 31, 13–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.