166
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of inflammatory mediators and reactive oxygen and nitrogen species by some depsidones and diaryl ether derivatives isolated from Corynespora cassiicola, an endophytic fungus of Gongronema latifolium leaves

, , , , &
Pages 662-668 | Received 28 Jun 2013, Accepted 12 Aug 2013, Published online: 16 Sep 2013

References

  • Aly AH, Debbab A, Proksch P. Fungal endophytes: unique plant inhabitants with great promise. Appl Microbial Biotechnol 2011;90:1829–1845
  • Debbab A, Aly AH, Lin W, et al. Bioactive compounds from marine bacteria and fungi. Microbial Biotechnol 2010;3:544–563
  • Okoye FBC, Lu S, Nworu CS, et al. Depsidone and diaryl ether derivatives from the fungus Corynespora cassiicola, an endophyte of Gongronema latifolium. Tetrahedron Lett 2013;54:4210--4214
  • Ebrahim W, Aly AH, Mandi A, et al. Decalactone derivatives from Corynespora cassiicola, an endophytic fungus of the Mangrove plant Laguncularia racemosa. Eur J Org Chem 2012;2012:3476–3484
  • Chomcheon P, Wiyakrutta S, Sriubolmas N, et al. Aromatase inhibitory, radical scavenging, and antioxidant activities of depsidones and diaryl ethers from the endophytic fungus Corynespora cassiicola L36. Phytochemistry 2009;70:407–413
  • Legaz ME, Armas R, Vicente V, et al. Bioproduction of depsidones for pharmaceutical purposes. In: Rundfeldt C, ed. Drug development – a case study based insight into modern strategies. In Tech; 2011:492–493. ISBN: 978-953-307-257-9, doi:10.5772/27051. Available from: http://www.intechopen.com/books/drug-development-a-case-study-based-insight-into-modern-strategies/bioproduction-of-depsidones-for-pharmaceutical-purposes [last accessed 25 Jul 2013]
  • Honda NK, Pavan FE, Coelho RG, et al. Antimicrobacterial activity of lichen substances. Phytomedicine 2010;17:328–332
  • Tay T, Türk AO, Yilmaz M, et al. Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid and protocetratic acid constituents. Z Naturforsch C 2004;59:384–388
  • Lohéznic-Le Dévéhat F, Tomasi S, Elix JA, et al. Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. J Natural Prod 2007;70:1218–1220
  • Hildago ME, Fernández E, Quilhot W, et al. Antioxidant activity of depsides and depsidones. Phytochemistry 1994;37:1585–1587
  • Correche E, Carrasco M, Giannini F, et al. Cytotoxic screening activity of secondary lichen metabolites. Acta Farmaceutica Bonaerense 2002;21:273–278
  • Russo A, MPiovano M, Garbarino L, et al. Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 2008;83:468–474
  • Khumkomkhet P. Kanokmedhakul S, Kwanjai Kanokmedhakul K, et al. Antimalarial and cytotoxic depsidones from the fungus Chaetomium brasiliense. J Natural Prod 2009;72:1487–1491
  • Hong YH, Chao WW, Chen ML, et al. Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo. J Biomed Sci 2009;16:64
  • Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:281–286
  • Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454:428–435
  • Schett G. Rheumatoid arthritis: inflammation and bone loss. Wien Med Wochenschr 2006;156:34–41
  • Libby P, Ridker P, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135–1143
  • Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5:749–759
  • Tili E, Michaille J-J, Wernicke D, et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci USA 2011;108:4908--4913
  • Nworu CS, Akah PA, Okoye FBC, et al. The leaf extract of Spondias mombin L. displays an anti-inflammatory effect and suppresses inducible formation of tumor necrosis factor-α and nitric oxide (NO). J Immunotoxicol 2011;8:10–16
  • Pearson W, Fletcher RS, Kott LSHurtig MB. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata. BMC Complement Altern Med 2010;10:19 doi:10.1186/1472-6882-10-19
  • Nworu CS, Akah PA, Okoye FBC. Inhibition of pro-inflammatory cytokinesand inducible nitric oxide by extract of Emilia sonchifolia L. aerial parts. Immunopharmacol Immnunotoxicol 2012;34:925–931
  • Nworu CS, Nwuke HC, Akah PA, et al. Extracts of Ficus exasperata leaf inhibit topical and systemic inflammation in rodents and suppress lipopolysaccharide-induced expression of mediators of inflammation in macrophages. J Immunotoxicol 2012;10:302–310
  • Kedzierska K, Crowe SM. Cytokines and HIV-1: interactions and clinical implications. Antivir Chem Chemother 2001;12:133–150
  • Hanna MG, Jr. Immunologic aspects of BCG-mediated regression of established tumors and metastases in guinea pigs. Semin Oncol 1974;1:319–335
  • Han KY, Kwon TH, Lee TH, et al. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells. BMB Rep 2008;41:328–333
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63
  • Król W, Czuba ZP, Threadgill MD, et al. Modulation of luminol-dependent chemiluminescence of murine macrophages by flavone and its synthetic derivatives. Arzneimittelforschung 1995;45:815–818
  • Szliszka E, Skaba D, Czuba ZP, et al. Inhibition of inflammatory mediators by neobavaisoflavone in activated RAW264.7 macrophages. Molecules 2011;16:3701–3712
  • Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res 2008;659:15–30
  • Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature 2008;454:436–444
  • Gaiotti D, Chung J, Iglesias M, et al. Tumor necrosis factor-alpha promotes human papillomavirus (HPV) E6/E7 RNA expression and cyclin-dependent kinase activity in HPV-immortalized keratinocytes by a ras-dependent pathway. Mol Carcinog 2000;27:97–109
  • Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–142
  • Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003;54:469–487
  • Zhou HY, Shin EM, Guo LY, et al. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation. Eur J Pharmacol 2008;586:340–349
  • Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment ofinflammatory diseases and cancer. Expert Opin Investig Drugs 2009;18:1893–1905
  • Lojek A, ČÍŽ M, Marnila P, et al. Measurement of whole blood phagocyte chemiluminescence in the Wistar rat. J Biolumin Chemilumin 1997;12:225–231
  • Gupta SC, Hevia D, Patchva S, et al. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 2012;16:1295–1322
  • Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 2003;34:1507–1516
  • Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys 2004;423:12–22
  • Rutkowski R, Pancewicz SA, Rutkowski K, et al. Reactive oxygen and nitrogen species in inflammatory process. Pol Merkur Lekarski 2007;134:131–136
  • Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 2005;1754:253–262
  • Gîlcă M, Chirilă M, Dinu V. Effect of fasting (80h) on the luminol-enhanced chemiluminescence of the polymorphonuclear leukocytes in healthy human subjects. Rom J Intern Med 2003;41:75–81
  • Qiao S, Li W, Tsubouchi R, et al. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic Res 2005;39:995–1003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.