1,082
Views
36
CrossRef citations to date
0
Altmetric
Review Article

Old and new therapeutics for Rheumatoid Arthritis: in vivo models and drug development

&
Pages 2-13 | Received 16 Sep 2015, Accepted 25 Nov 2015, Published online: 15 Jan 2016

References

  • Klareskog L, Padyukov L, Lorentzen J, Alfredsson L. Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat Clin Pract Rheumatol 2006;2:425–433.
  • Yarwood A, Huizinga TWJ, Worthington J. The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology 2014; doi: 10.1093/rheumatology/keu323.
  • Boissier MC, Semerano L, Challal S, et al. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. J Autoimmun 2012;39:222–228.
  • Kochi Y, Suzuki A, Yamamoto K. Genetic basis of rheumatoid arthritis: a current review. Biochem Biophys Res Commun 2014;452:254–262.
  • Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2012;51:v3–v11.
  • Holmdahl R, Malmström V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation – The three stages of rheumatoid arthritis. Eur J Immunol 2014;44:1593–1599.
  • Smolen JS, Aletaha D, Koeller M, et al. New therapies for treatment of rheumatoid arthritis. Lancet 2007;370:1861–1874.
  • Colmegna I, Ohata BR, Menard HA. Current understanding of rheumatoid arthritis therapy. Clin Pharmacol Ther 2012;91:607–620.
  • Burmester GR, Feist E, Dörner T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol 2014;10:77–88.
  • Trentham DE. Collagen arthritis as a relevant model for rheumatoid arthritis. Arthritis Rheum 1982;25:911–916.
  • Holmdahl R, Andersson ME, Goldschmidt TJ, et al. Collagen induced arthritis as an experimental model for rheumatoid arthritis. Immunogenetics, pathogenesis and autoimmunity. APMIS 1989;97:575–584.
  • Ahlqvist E, Hultqvist M, Holmdahl R. The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis. Arthritis Res Ther 2009;11:226–236.
  • Billiau A, Matthys P. Cytokine & growth factor reviews collagen-induced arthritis and related animal models: how much of their pathogenesis is auto-immune, how much is auto-inflammatory? Cytokine Growth Factor Rev 2011;22:339–344
  • Staines NA, Ekong TA, Thompson HS, et al. Low affinity antibodies against collagen type II are associated with pathology in collagen-induced arthritis in mice. J Autoimmun 1990;3:643–657.
  • Murphy Ca, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003;198:1951–1957.
  • Van Hamburg JP, Asmawidjaja PS, Davelaar N, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 2011;63:73–83.
  • Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol 2015;11:415–429.
  • Schurgers E, Billiau A, Matthys P. Collagen-Induced Arthritis as an Animal Model for Rheumatoid Arthritis: Focus on Interferon-γ. J Interferon Cytokine Res 2011;31:917–926.
  • Glant TT, Finnegan AMK. Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol 2003;23:199–250.
  • Taurog JD, Argentieri DCMR. Adjuvant arthritis. Meth Enzymol 1988;162:339–355.
  • Kim EY, Moudgil KD. The determinants of susceptibility/resistance to adjuvant arthritis in rats. Arthritis Res Ther 2009;11:239–248.
  • Kleinau S, Erlandsson H, Holmdahl RKL. Adjuvant oils induce arthritis in the DA rat. I. Characterization of the disease and evidence for an immunological involvement. J Autoimmun 1991;4:871–880.
  • Holmdahl R, Lorentzen JC, Lu S, et al. Arthritis induced in rats with nonimmunogenic adjuvants as models for rheumatoid arthritis. Immunol Rev 2001;184:184–202.
  • Brackertz D, Mitchell GFMI. Antigen-induced arthritis in mice. I. Induction of arthritis in various strains of mice. Arthritis Rheum 1977;20:841–850.
  • Nickdel MB, Conigliaro P, Valesini G, et al. Dissecting the contribution of innate and antigen-specific pathways to the breach of self-tolerance observed in a murine model of arthritis. Ann Rheum Dis 2009;68:1059–1066.
  • Van den Broek MF, van den Berg WB, van de Putte LB, Severijnena J. Streptococcal cell wall-induced arthritis and flare-up reaction in mice induced by homologous or heterologous cell walls. Am J Pathol 1988;133:139–149.
  • Esser RE, Stimpson SA, Cromartie WJSJ. Reactivation of streptococcal cell wall-induced arthritis by homologous and heterologous cell wall polymers. Arthritis Rheum 1985;28:1402–1411.
  • Nandakumar KSHR. Collagen antibody induced arthritis. Methods Mol Med 2007;136:215–223.
  • Terato K, Hasty KA, Reife RA, et al. Induction of arthritis with monoclonal antibodies to collagen. J Immunol 1992;148:2103–2108.
  • Nandakumar KS. Pathogenic antibody recognition of cartilage. Cell Tissue Res 2010;339:213–220.
  • Korganow AS, Hong J, Mangialaio S, et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 1999;10:451–461.
  • Ditzel HJ. The K/BxN mouse: a model of human inflammatory arthritis. Trends Mol Med 2004;10:40–45.
  • Kouskoff V, Korganow AS, Duchatelle V, et al. Organ-specific disease provoked by systemic autoimmunity. Cell 1996;87:811–822.
  • Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol 2001;167:1601–1608.
  • Schubert D, Maier B, Morawietz L, et al. Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. J Immunol 2004;172:4503–4509.
  • Keffer J, Probert L, Caziaris H, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. Embo J 1991;10:4025–4031.
  • Kollias G, Douni E, Kassiotis GKD. On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 1999;169:175–194.
  • Li P, Schwarz EM. The TNF-alpha transgenic mouse model of inflammatory arthritis. . Springer Semin Immunopathol 2003;25:19–33.
  • Sakaguchi S, Sakaguchi N, Yoshitomi H, et al. Spontaneous development of autoimmune arthritis due to genetic anomaly of T cell signal transduction: part 1. Semin Immunol 2006;18:199–206.
  • Sakaguchi N, Takahashi T, Hata H, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 2003;426:454–460.
  • Kobayashi K, Suda T, Nan-ya K, et al. Cytokine production profile of splenocytes derived from zymosan A-treated SKG mice developing arthritis. Inflamm Res 2006;55:335–341.
  • Ernst M, Inglese M, Waring P, et al. Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J Exp Med 2001;194:189–203.
  • Naka T, Kishimoto T. Joint disease caused by defective gp130-mediated STAT signaling. Arthritis Res 2002;4:154–156.
  • Blüml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol 2014;36:531–540.
  • Van Lent PL, Van De Loo FA, Holthuysen AE, et al. Major role for interleukin 1 but not for tumor necrosis factor in early cartilage damage in immune complex arthritis in mice. J Rheumatol 1995;22:2250–2258.
  • Niki Y, Yamada H, Seki S, et al. Macrophage- and neutrophil-dominant arthritis in human IL-1 alpha transgenic mice. J Clin Invest 2001;107:1127–1135.
  • Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 2000;191:313–320.
  • Koenders MI, Devesa I, Marijnissen RJ, et al. Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum 2008;58:3461–3470.
  • Laev SS, Salakhutdinov NF. Anti-arthritic agents: progress and potential. Bioorg Med Chem 2015;23:3059–3080.
  • Neurath MF, Hildner K, Becker C, et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin Exp Immunol 1999;115:42–55.
  • Williams a, Goodfellow R, Topley N, et al. The suppression of rat collagen-induced arthritis and inhibition of macrophage derived mediator release by liposomal methotrexate formulations. Inflamm Res 2000;49:155–161.
  • Lange F, Bajtner E, Rintisch C, et al. Methotrexate ameliorates T cell dependent autoimmune arthritis and encephalomyelitis but not antibody induced or fibroblast induced arthritis. Ann Rheum Dis 2005;64:599–605.
  • Kim YH, Kang JS. Effect of methotrexate on collagen-induced arthritis assessed by micro-computed tomography and histopathological examination in female rats. Biomol Ther (Seoul) 2015;23:195–200.
  • Kerwar SS, Oronsky AL. Methotrexate in rheumatoid arthritis: studies with animal models. Adv Enzyme Regul 1989;29:247–265.
  • Jaffee BD, Kerr JS, Jones EA, et al. The effect of immunomodulating drugs on adjuvant-induced arthritis in Lewis rats. Agents Actions 1989;27:344–346.
  • Sakuma S, Nishigaki F, Magari K, et al. FK506 is superior to methotrexate in therapeutic effects on advanced stage of rat adjuvant-induced arthritis. Inflamm Res 2001;50:509–514.
  • Magari K, Miyata S, Nishigaki F, et al. Comparison of anti-arthritic properties of leflunomide with methotrexate and FK506: effect on T cell activation-induced inflammatory cytokine production in vitro and rat adjuvant-induced arthritis. Inflamm Res 2004;53:544–550.
  • Spurlock CF, Gass HM, Bryant CJ, et al. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology 2014;178–187.
  • Jessop JD, Currey HL. Influence of gold salts on adjuvant arthritis in the rat. Ann Rheum Dis 1968;27:577–581.
  • Sofia RD, Douglas JF. The prophylactic and therapeutic effects of gold sodium thiomalate against adjuvant-induced polyarthritis in rats. Agents Action 1973;3:335–343.
  • McCune WJ, Trentham DE, David JR. Gold does not alter the arthritic, humoral, or cellular responses in rats with type II collagen-induced arthritis. Arthritis Rheum 1980;23:932–936.
  • Phadke K, Carroll JAN, Nanda S, et al. Effects of various anti-inflammatory drugs on type II collagen-induced arthritis in rats. Clin Exp Immunol 1982;47:579–586.
  • Lewis aJ, Carlson RP, Chang J, DeLustro F. Effect of gold salts, D-penicillamine and benoxaprofen on type II collagen-induced arthritis in rats. Agents Actions 1984;14:707–714.
  • Cannon GW, McCall S, Cole BC, et al. Effects of gold sodium thiomalate, cyclosporin A, cyclophosphamide, and placebo on collagen-induced arthritis in rats. Agents Actions 1993;38:240–246.
  • Wong RL. Mechanisms of action of cyclosporin a in animal models of rheumatoid arthritis. Inflammopharmacology 1993;2:177–195.
  • Takagishi K, Kaibara N, Hotokebuchi T, et al. Effects of cyclosporin on collagen induced arthritis in mice. Ann Rheum Dis 1986;45:339–344.
  • Wilder RL, Allen JB, Hansen C. Thymus-dependent and -independent regulation of Ia antigen expression in situ by cells in the synovium of rats with streptococcal cell wall-induced arthritis. Differences in site and intensity of expression in euthymic, athymic, and cyclosporin A-treated LEW and F344 rats. J Clin Invest 1987;79:1160–1171.
  • Stuart JM, Myers LK, Townes AS, Kang AH. Effect of cyclophosphamide, hydrocortisone and levamisole on collagen-induced arthritis in rats. Arthritis Rheum 1981;24:790–794.
  • Yamaki K, Nakagawa H, Tsurufuji S. Inhibitory effects of anti-inflammatory drugs on type II collagen induced arthritis in rats. Ann Rheum Dis 1987;46:543–548.
  • Richardson S, Isaacs J. Novel immunotherapies for rheumatoid arthritis. Clin Med J R Coll Physicians London 2013;13:391–394.
  • Piguet PF, Grau GE, Vesin C, et al. Evolution of collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology 1992;77:510–514.
  • Thorbecke GJ, Shah R, Leu CH, et al. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci USA 1992;89:7375–7379.
  • Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad. Sci USA 1992;89:9784–9788.
  • Mori L, Iselin S, Libero C, et al. Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1 (TNFR1)-IgG1-treated and TNFR1-deficient mice. J Immunol 1996;157:3178–3182.
  • Bendele AM, Chlipala ES, Scherrer JON, et al. Combination benefit of treatment with the cytokin inhibitors Interleukin-1 Receptor antagonist and pegylated soluble tumor necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum 2000;43:2648–2659.
  • Bendele a, McAbee T, Sennello G, et al. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum 1999;42:498–506.
  • Feige U, Hu Y, Gasser J, et al. Anti-interleukin-1 and anti-tumor necrosis factor-alpha synergistically inhibit adjuvant arthritis in Lewis rats. . Cell Mol Life Sci 2000;57:1457–1470.
  • Kay J, Rahman MU. Golimumab: a novel human anti-TNF-alpha monoclonal antibody for the treatment of rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. Core Evid 2010;4:159–170.
  • Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001;19:163–196.
  • Weinblatt ME, Keystone EC, Furst DE, et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 2003;48:35–45.
  • Abramson SB, Amin a. Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology (Oxford) 2002;41:972–980.
  • Cohen SB. The use of anakinra, an interleukin-1 receptor antagonist, in the treatment of rheumatoid arthritis. Rheum Dis Clin North Am 2004;30:365–380.
  • Siebert S, Tsoukas A, Robertson J, Mcinnes I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev 2015;67:280–309.
  • Wooley PH, Whalen JD, Chapman DL, et al. The effect of an interleukin-1 receptor antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum 1993;36:1305–1314.
  • Joosten LA, Helsen MM, Saxne T, et al. IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol 1999;163:5049–5055.
  • Van den Berg WB, Joosten La, Kollias G, van De Loo FA. Role of tumour necrosis factor alpha in experimental arthritis: separate activity of interleukin 1beta in chronicity and cartilage destruction. Ann Rheum Dis 1999;58:I40–148.
  • Ma Y, Thornton S, Boivin GP, et al. Altered susceptibility to collagen-induced arthritis in transgenic mice with aberrant expression of interleukin-1receptor antagonist. Arthritis Rheum 1998;48:1798–1805.
  • Palmer G, Talabot-Ayer D, Szalay-Quinodoz I, et al. Mice transgenic for intracellular interleukin-1 receptor antagonist type 1 are protected from collagen-induced arthritis. Eur J Immunol 2003;33:434–440.
  • Furst DE. Anakinra: review of recombinant human interleukin-I receptor antagonist in the treatment of rheumatoid arthritis. Clin Ther 2004;26:1960–1975.
  • McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007;7:429–442.
  • Klementiev B, Li S, Korshunova I, et al. Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist. J Neuroinflammation 2014;11:27–45
  • Goh AXH, Bertin-Maghit S, Yeo SP, et al. A novel human anti-interleukin-1β neutralizing monoclonal antibody showing in vivo efficacy. MABS 2014;6:765–773.
  • Alonzi BT, Fattori E, Lazzaro D, et al. Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 1998;187:461–468.
  • Sasai M, Saeki Y, Ohshima S, et al. Delayed onset and reduced severity of collagen-induced arthritis in interleukin-6-deficient mice. Arthritis Rheum 1999;42:1635–1643.
  • Ohshima S, Saeki Y, Mima T, et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci USA 1998;95:8222–8226.
  • Hata H, Sakaguchi N, Yoshitomi H, et al. Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. . J Clin Invest 2004;114:582–588.
  • Yoshizaki K, Nishimoto N, Mihara M, Kishimoto T. Therapy of rheumatoid arthritis by blocking IL-6 signal transduction with a humanized anti-IL-6 receptor antibody. Springer Semin Immunopathol 1998;20:247–259.
  • Nishimoto N, Kishimoto T, Yoshizaki K. Anti-interleukin 6 receptor antibody treatment in rheumatic disease. Ann Rheum Dis 2000;59:i21–i27.
  • Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006;8:S3
  • Yao X, Huang J, Zhong H, et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther 2014;141:125–129.
  • Takagi N, Mihara M, Moriya Y, et al. Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum 1998;41:2117–2121.
  • Nowell Ma, Richards PJ, Horiuchi S, et al. Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J Immunol 2003;171:3202–3209.
  • Uchiyama Y, Yorozu K, Hashizume M, et al. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, ameliorates joint swelling in established monkey collagen-induced arthritis. Biol Pharm Bull 2008;31:1159–1163.
  • Genovese MC, Fleischmann R, Kivitz AJ, et al. Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study. Arthritis Rheumatol 2015;67:1424–1437.
  • D G. Regeneron’s arthritis drug aces Phase III with the FDA in sight [Internet]. 2015. Available from: http://www.fiercebiotech.com/story/regenerons-arthritis-drug-aces-phase-iii-fda-sight/2015-05-21 [last accessed 10 Sept 2015].
  • Webb LMC, Walmsley MJ, Feldmann M. Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 co-stimulatory pathway: requirement for both B7-1 and B7-2. Eur J Immunol 1996;26:2320–2328.
  • Tada Y, Nagasawa K, Ho A, et al. CD28-deficient mice are highly resistant to collagen-induced arthritis. J Immunol 1999;162:203–208.
  • Tellander AC, Pettersson U, Runström A, et al. Interference with CD28, CD80, CD86 or CD152 in collagen-induced arthritis. Limited role of IFN-gamma in anti-B7-mediated suppression of disease. J Autoimmun 2001;17:39–50.
  • Kliwinski C, Kukral D, Postelnek J, et al. Prophylactic administration of abatacept prevents disease and bone destruction in a rat model of collagen-induced arthritis. J Autoimmun 2005;25:165–171.
  • Ko HJ, Cho M La, et al. CTLA4-Ig modifies dendritic cells from mice with collagen-induced arthritis to increase the CD4 + CD25 + Foxp3 + regulatory T cell population. J Autoimmun 2010;34:111–120.
  • Platt AM, Gibson VB, Patakas A, et al. Abatacept limits breach of self-tolerance in a murine model of arthritis via effects on the generation of T follicular helper cells. J Immunol 2010;185:1558–1567.
  • Jansen DT, el Bannoudi H, Arens R, et al. Abatacept decreases disease activity in a absence of CD4 + T cells in a collagen-induced arthritis model. Arthritis Res Ther 2015;17:220–231.
  • Van Vollenhoven RF. Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol 2009;5:531–541.
  • Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Devel Ther 2014;8:87–100.
  • Hegen M, Keith JC, Collins M, Nickerson-Nutter CL. Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann Rheum Dis 2008;67:1505–1515.
  • Emery P, Fleischmann R, Filipowicz-Sosnowska A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIb randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum 2006;54:1390–1400.
  • Cohen SB, Emery P, Greenwald MW, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 2006;54:2793–2806.
  • Lee YH, Bae S-C, Song GG. The efficacy and safety of rituximab for the treatment of active rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. Rheumatol Int 2011;31:1493–1499.
  • Buch MH, Smolen JS, Betteridge N, et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann Rheum Dis 2011;70:909–920.
  • McNamee K, Williams R, Seed M. Animal models of rheumatoid arthritis: how informative are they? Eur J Pharmacol 2015;759:278–286.
  • Ben-zvi I, Kivity S, Langevitz P, et al. Hydroxychloroquine: from Malaria to Autoimmunity. Clin Reveiews Allergy Immunol 2012;42:145–153.
  • Taherian E, Rao A, Malemud CJ, Askari AD. The Biological and Clinical Activity of Anti-Malarial Drugs In Autoimmune Disorders. Curr Rheumatol Rev 2013;9:45–62.
  • Thoss K, Henzgen S, Petrow PK, et al. Immunomodulation of rat antigen-induced arthritis by leflunomide alone and in combination with cyclosporin A. Inflamm Res 1996;45:103–107.
  • Wang X, Wang T, Li J, et al. Leflunomide induces immunosuppression in collagen-induced arthritis rats by upregulating CD4 + CD25 + regulatory T cells. Can J Physiol Pharmacol 2010;88:45–53.
  • Herrmann ML, Schleyerbach R, Kirschbaum BJ. Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 2000;47:273–289.
  • Smedegard G, Bjork J. Sulphasalazine: mechanism of action in rheumatoid arthritis. Br J Rheumatol 1995;34:7–15.
  • Milici AJ, Kudlacz EM, Audoly L, et al. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther 2008;10:R14.
  • Oh K, Seo MW, Kim IG, et al. CP-690550 Treatment Ameliorates Established Disease and Provides Long-Term Therapeutic Effects in an SKG Arthritis Model. Immune Netw 2013;13:257–263.
  • Tanaka Y, Maeshima Y, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis 2012;71:i70–i74.
  • Wollenhaupt J, Silverfield J, Lee Prof. EB, et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J Rheumatol 2014;41:837–852.
  • Dowty ME, Jesson MI, Ghosh S, et al. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. J Pharmacol Exp Ther 2014;348:165–73.
  • Boyle DL, Soma K, Hodge J, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis 2014;1311–1316.
  • Fridman JS, Scherle Pa, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol 2010;184:5298–5307.
  • Van Rompaey L, Galien R, van der Aar EM, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol 2013;191:3568–3577.
  • Mahajan S, Hogan JK, Shlyakhter D, et al. VX-509 (Decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune diseases. J Pharmacol Exp Ther 2015;353:405–414.
  • Farmer L, Ledeboer MW, Hoock T, et al. Discovery of VX-509 (Decernotinib): a potent and selective janus kinase (jak) 3 inhibitor for the treatment of autoimmune diseases. J Med Chem 2015;58:7195–7216.
  • Fleischmann RM, Damjanov NS, Kivitz AJ, et al. A randomized, double-blind, placebo-controlled, twelve-week, dose-ranging study of decernotinib, an oral selective JAK-3 inhibitor, as monotherapy in patients with active rheumatoid arthritis. Arthritis Rheumatol 2015;67:334–343.
  • William AD, Lee AC, Poulsen A, et al. Discovery of the macrocycle (9E)-15-(2-(pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexacosa-1(24),2,4,9,14(26),15,17,20,22-nonaene (SB1578), a potent inhibitor of janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) for the treatment of rheumatoid arthritis. J Med Chem 2011;55:2623–2640.
  • Madan B, Goh KC, Hart S, et al. SB1578, a novel inhibitor of JAK2, FLT3, and c-Fms for the treatment of rheumatoid arthritis. J Immunol 2012;189:4123–4134.
  • Coffey G, Betz A, Deguzman F, et al. The novel kinase inhibitor PRT062070 (Cerdulatinib) demonstrates efficacy in models of autoimmunity and B-cell cancers. J Pharmacol Exp Ther 2014;351:538–548.
  • Pine PR, Chang B, Schoettler N, et al. Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin Immunol 2007;124:244–257.
  • Scott DL. Role of spleen tyrosine kinase inhibitors in the management of rheumatoid arthritis. Drugs 2011;71:1121–1132.
  • Scott IC, Scott DL. Spleen tyrosine kinase inhibitors for rheumatoid arthritis: where are we now? Drugs 2014;74:415–422.
  • Weinblatt ME, Genovese MC, Ho M, et al. Effects of fostamatinib, an oral spleen tyrosine kinase inhibitor, in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheumatol 2014;66:3255–3264.
  • Zhang Z, Cao C, Sun SXQ. Selective spleen tyrosine kinase inhibition delays autoimmune arthritis in mice. Mol Med Rep 2015;12:2902–2906.
  • Liu C, Lin J, Wrobleski ST, et al. Discovery of 4-(5-(cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a clinical p38α MAP kinase inhibitor for the treatment of inflammatory diseases. J Med Chem 2015;53:6629–6639.
  • Norman P. BMS-582949: crystalline form of a p38alpha inhibitor? WO2008079857. Expert Opin Ther Pat 2009;19:1165–1168.
  • Montalban AG, Boman E, Chang C-D, et al. KR-003048, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. Eur J Pharmacol 2010;632:93–102.
  • Hill RJ, Dabbagh K, Phippard D, et al. Pamapimod, a novel p38 mitogen-activated protein kinase inhibitor: preclinical analysis of efficacy and selectivity. J Pharmacol Exp Ther 2008;327:610–619.
  • Alten RE, Zerbini C, Jeka S, et al. Efficacy and safety of pamapimod in patients with active rheumatoid arthritis receiving stable methotrexate therapy. Ann Rheum Dis 2010;69:364–367.
  • Goldstein DM, Soth M, Gabriel T, et al. Discovery of 6-(2,4-difluorophenoxy)-2-[3-hydroxy-1-(2-hydroxyethyl)propylamino]-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one (pamapimod) and 6-(2,4-difluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (R1487) as orally bioavailable and highly selective inhibitors of p38α mitogen-activated protein kinase. J Med Chem 2011;54:2255–2265.
  • Chang BY, Huang M, Francesco M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 2011;13:R115.
  • Shinohara M, Chang BY, Buggy JJ, et al. The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss. Bone 2014;60:8–15.
  • Akinleye A, Chen Y, Mukhi N, et al. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol 2013;6:59–68.
  • Evans EK, Tester R, Aslanian S, et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J Pharmacol Exp Ther 2013;346:219–228.
  • Liu L, Di Paolo J, et al. Antiarthritis effect of a novel Bruton’s tyrosine kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism- based pharmacokinetic/pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy. J Pharmacol Exp Ther 2011;338:154–163.
  • Liu L, Halladay JS, Shin Y, et al. Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton’s tyrosine kinase inhibitor. Drug Metab Dispos 2011;39:1840–1849.
  • Xu D, Kim Y, Postelnek J, et al. RN486, a selective Bruton’s tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J Pharmacol Exp Ther 2012;341:90–103.
  • Burmester GR, Weinblatt ME, McInnes IB, et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis 2013;72:1445–1452.
  • Burmester GR, Feist E, Sleeman Ma, et al. Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-α, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis 2011;70:1542–1549.
  • Takeuchi T, Tanaka Y, Close D, et al. Efficacy and safety of mavrilimumab in Japanese subjects with rheumatoid arthritis: findings from a Phase IIa study. Mod Rheumatol 2014;25:21–30.
  • Franco M, Di Gerardi M, et al. Mavrilimumab: an evidence based review of its potential in the treatment of rheumatoid arthritis. Core Evid 2014;9:41–48.
  • Cook AD, Braine EL, Campbell IK, et al. Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 2001;3:293–298.
  • Behrens F, Tak PP, Ostergaard M, et al. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann Rheum Dis 2015;74:1058–1064.
  • Genovese MC, Durez P, Richards HB, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol 2014;41:414–421.
  • Kellner H. Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther Adv Musculoskelet Dis 2013;5:141–152.
  • Genovese MC, Van den Bosch F, Roberson SA, et al. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum 2010;62:929–939.
  • Genovese MC, Greenwald M, Cho C-S, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol (Hoboken, NJ) 2014;66:1693–1704.
  • Hsu Y, Chang M. The therapeutic potential of anti-interleukin-20 monoclonal antibody. Cell Transplant 2014;23:631–639.
  • Šenolt L, Leszczynski P, Dokoupilová E, et al. Efficacy and safety of anti-interleukin-20 monoclonal antibody in patients with rheumatoid arthritis: a randomized phase IIa trial. Arthritis Rheumatol 2015;67:1438–1448.
  • Taylor PC, Quattrocchi E, Mallett S, et al. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis 2011;70:2119–2125.
  • Kurrasch R, Brown JC, Chu M, et al. Subcutaneously administered ofatumumab in rheumatoid arthritis: a phase I/II study of safety, tolerability, pharmacokinetics, and pharmacodynamics. J Rheumatol 2013;40:1089–1096.
  • Brühl H, Cihak J, Talke Y, et al. B-cell inhibition by cross-linking CD79b is superior to B-cell depletion with anti-CD20 antibodies in treating murine collagen-induced arthritis. Eur J Immunol 2015;45:705–715.
  • Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther 2015;17:135–151.
  • Huizinga TWJ, Fleischmann RM, Jasson M, et al. Sarilumab, a fully human monoclonal antibody against IL-6Rα in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial. Ann Rheum Dis 2013;73:1626–1634.
  • Smolen JS, Weinblatt ME, Sheng S, et al. Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Ann Rheum Dis 2014;73:1616–1625.
  • Zhuang Y, de Vries DE, Xu Z, et al. Evaluation of disease-mediated therapeutic protein-drug interactions between an anti-lnterleukin-6 monoclonal antibody (Sirukumab) and cytochrome P450 activities in a phase I study in patients with rheumatoid arthritis using a cocktail approach. J Clin Pharmacol 2015;74:1–9.
  • Thiolat a, Semerano L, Pers YM, et al. Interleukin-6 receptor blockade enhances CD39 + regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol 2014;66:273–283.
  • Hong S, Choi JH, Lee SY, et al. A novel small-molecule inhibitor targeting the IL-6 receptor β subunit, glycoprotein 130. J Immunol 2015;195:237–245.
  • McCann FE, Palfreeman AC, Andrews M, et al. Apremilast, a novel PDE4 inhibitor, inhibits spontaneous production of tumour necrosis factor-alpha from human rheumatoid synovial cells and ameliorates experimental arthritis. Arthritis Res Ther 2010;12:R107.
  • Byun J-K, Moon S-J, Jhun J-Y, et al. Rebamipide attenuates autoimmune arthritis severity in SKG mice via regulation of B cell and antibody production. Clin Exp Immunol 2014;178:9–19.
  • Moon SJ, Park JS, Woo YJ, et al. Rebamipide suppresses collagen-induced arthritis through reciprocal regulation of Th17/Treg cell differentiation and heme oxygenase 1 induction. Arthritis Rheumatol 2014;66:874–885.
  • Xuzhu G, Komai-Koma M, Leung BP, et al. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann Rheum Dis 2012;71:129–135.
  • Poulsen MM, Fjeldborg K, Ornstrup MJ, et al. Resveratrol and inflammation: challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta 2015;1852:1124–1136.
  • Bardwell PD, Gu J, McCarthy D, et al. The Bcl-2 family antagonist ABT-737 significantly inhibits multiple animal models of autoimmunity. J Immunol 2009;182:7482–7489.
  • Lawlor KE, Smith SD, van Nieuwenhuijze a, et al. Evaluation of the Bcl-2 family antagonist ABT-737 in collagen-induced arthritis. J Leukoc Biol 2011;90:819–829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.