30
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Alterations in Immune Parameters Associated with Low Level Methylmercury Exposure in Mice

, , , &
Pages 299-314 | Published online: 27 Sep 2008

References

  • Clarkson T. Mercury: Major Issues in Environmental Health. Environmental Health Perspecitives 1992; 100: 31–38
  • ATSDR. Toxicological Profile for Mercury (Update). Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services, Atlanta, GA 1994
  • Engleson G., Herner T. Alkyl mercury poisoning. Acta Paediat Scand 1952; 41: 289–294
  • Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 1995; 25: 1–24
  • Inskip M. J., Piotrowski J. K. Review of the health effects of methylmercury. J Appl Toxicol 1985; 5: 113–33
  • Tollefson L., Cordle F. Methylmercury in fish: a review of residue levels, fish consumption and regulatory action in the United States. Environ Health Perspect 1986; 68: 203–8
  • Yasutake A., Hirayama K. Sex and strain differences of susceptibility to methylmercury toxicity in mice. Toxicology 1988; 51: 47–55
  • Miura K., Clarkson T. Reduced methymercury accumulation in a methylmercury-resistant rat pheochromocytoma PC12 cell line. Toxicology and Applied Pharmocology 1993; 118: 39–45
  • Woods J. S., Davis H. A., Baer R. P. Enhancement of gamma-glutamylcysteine synthetase mRNA in rat kidney by methyl mercury. Arch Biochem Biophys 1992; 296: 350–3
  • Woods J. S., Ellis M. E. Up-regulation of glutathione synthesis in rat kidney by methyl mercury. Relationship to mercury-induced oxidative stress. Biochem Pharmacol 1995; 50: 1719–24
  • Li S., Thompson S. A., Kavanagh T. J., Woods J. S. Localization by in situ hybridization of gamma-glutamylcysteine synthetase mRNA expression in rat kidney following acute methylmercury treatment. Toxicol Appl Pharmacol 1996; 141: 59–67
  • Kanner S. B., Kavanagh T. J., Grossmann A., Hu S. L., Bolen J. B., Rabinovitch P. S., Ledbetter J. A. Sulfhydryl oxidation down-regulates T-cell signaling and inhibits tyrosine phosphorylation of phospholipase C gamma 1. Proc Natl Acad Sci USA 1992; 89: 300–4
  • Messina J. P., Lawrence D. A. Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. J Immunol 1989; 143: 1974–81
  • Kavanagh T. J., Grossmann A., Jinneman J. C., Kanner S. B., White C. C., Eaton D. L., Ledbetter J. A., Rabinovitch P. S. The effect of 1-chloro-2,4-dinitrobenzene exposure on antigen receptor (CD3)-stimulated transmembrane signal transduction in purified subsets of human peripheral blood lymphocytes. Toxicol Appl Pharmacol 1993; 119: 91–9
  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal Biochem 1969; 27: 502–521
  • Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 1980; 106: 207–12
  • Baker M. A., Cerniglia G. J., Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 1990; 190: 360–365
  • Tsubaki T. Organic mercury intoxication in the Agano River area studied by Niigata University Research Group. Clin Neurol 1968; 8: 511–520
  • Miller V., Csonka E. Mercury retention in two strains of mice. Toxicology and Applied Pharmacology 1968; 13: 207–211
  • Doherty R., Gates A., Sewell C., Freer C. Methylmercury sexual dimorphism in the mouse. Experientia 1977; 34: 871–2
  • Kostyniak P. Differences in elimination rates of methylmercury between two genetic variant strains of mice. Toxicology letters 1980; 6: 405–410
  • Doi R., Kobayashi T. Organ distribution and biological half-time of methylmercury in four strains of mice. Japanese Journal of Experimental Medicine 1982; 52: 307–314
  • Doi R., Tagawa M., Tanaka H., Nakaya K. Hereditary analysis of the strain difference of methylmercury distributionin mice. Toxicology and Applied Pharmacology 1983; 69: 400–406
  • Doi R. Strain difference in excretion of methylmercury in mice. Bulletins in Environmental Contamination and Toxicology 1986; 36: 500–505
  • Hirayama K., Yasutake A. Sex and age differences in mercury distribution and excretion in methylmercury-administered mice. Journal of Toxicology and Environmental Health 1986; 18: 49–60
  • Hirayama K., Yasutake A., Inoue M. Effect of sex hormones on the fate of methylmercury and on glutathione metabolism in mice. Biochemical Pharmacology 1987; 36: 1919–1924
  • Tanaka T., Naganuma A., Kobayashi K., Imura N. An explanation for strain and sex differences in renal uptake of methylmercury in mice. Toxicology 1991; 69: 317–29
  • NRC. Infectious Diseases of Mice and Rats. Committee on Infectious Diseases of Mice and Rats: National Academy Press. 1991
  • Ilback N. G. Effects of methyl mercury exposure on spleen and blood natural killer (NK) cell activity in the mouse. Toxicology 1991; 67: 117–24
  • Ortega H. G., Lopez M., Salvaggio J. E., Reimers R., Hsiao-Lin C., Bollinger J. E., George W. Lymphocyte proliferative response and tissue distribution of methylmercury sulfide and chloride in exposed rats. Journal of Toxicology and Environmental Health 1997; 50: 605–616
  • Thuvander A., Sundberg J., Oskarsson A. Immunomodulating effects after perinatal exposure to methylmercury in mice. Toxicology 1996; 114: 163–175
  • Shenker B., Rooney C., Vitale L., Shapiro I. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of T-cell activation. Immunopharmacology and Immunotoxicology 1992; 14: 539–553
  • Shenker B., Berthold P., Decker S., Mayro J., Rooney C., Vitale L., Shapiro I. Immunotoxic effects of mercuric compounds on human Imphocytes and monocytes. II. alterations in cell viability. Immunopharmacology and Immunotoxicology 1992; 14: 555–577
  • Shenker B., Berthold P., Rooney C., Vitale L., DeBolt K., Shapiro I. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. III. Alterations in B-cell function and viability. Immunopharmacology and Immunotoxicology 1993; 15: 87–112
  • Shenker B., Mayro J., Rooney C., Vitale L., Shapiro I. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. IV. Alterations in cellular glutathione content. Immunopharmacology and Immunotoxicology 1993; 15: 273–290
  • Luster M. I., Portier C., Pait D. G., White K. L., Jr., Gennings C. Risk assessment in immunotoxicology. I. Sensitivity and. Fundam Appl Toxicol 1992; 18: 200–10
  • Franklin R. A., Li Y. M., Arkins S., Kelley K. W. Glutathione augments in vitro proliferative responses of lymphocytes to concanavalin A to a greater degree in old than in young rats. J Nutr 1990; 120: 1710–7
  • Gmunder H., Roth S., Eck H. P., Gallas H., Mihm S., Droge W. Interleukin-2 mRNA expression, lymphokine production and DNA synthesis in glutathione-depleted T cells. Cell Immunol 1990; 130: 520–8
  • Kavanagh T. J., Grossmann A., Jaecks E. P., Jinneman J. C., Eaton D. L., Martin G. M., Rabinovitch P. S. Proliferative capacity of human peripheral blood lymphocytes sorted on the basis of glutathione content. J Cell Physiol 1990; 145: 472–80
  • Suthanthiran M., Anderson M. E., Sharma V. K., Meister A. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA 1990; 87: 3343–7
  • Hamilos D. L., Mascali J. J., Wedner H. J. The role of glutathione in lymphocyte activation-II. Effects of buthionine sulfoximine and 2-cyclohexene-1-one on early and late activation events. Int J Immunopharmacol 1991; 13: 75–90
  • Hunt N. H., Cook E. P., Fragonas J. C. Interference with oxidative processes inhibits proliferation of human peripheral blood lymphocytes and murine B-lymphocytes. Int J Immunopharmacol 1991; 13: 1019–26
  • Smyth M. J. Glutathione modulates activation-dependent proliferation of human peripheral blood lymphocyte populations without regulating their activated function. J Immunol 1991; 146: 1921–7
  • Robinson M. K., Rodrick M. L., Jacobs D. O., Rounds J. D., Collins K. H., Saporoschetz I. B., Mannick J. A., Wilmore D. W. Glutathione depletion in rats impairs T-cell and macrophage immune function. Arch Surg 1993; 128: 29–34
  • Kinscherf R., Fischbach T., Mihm S., Roth S., Hohenhaus-Sievert E., Weiss C., Edler L., Bartsch P., Droge W. Effect of glutathione depletion and oral N-acetyl-cysteine treatment on CD4+ and CD8+ cells. Faseb J 1994; 8: 448–51
  • Sandstrom P. A., Mannie M. D., Buttke T. M. Inhibition of activation-induced death in T cell hybridomas by thiol antioxidants: oxidative stress as a mediator of apoptosis. J Leukoc Biol 1994; 55: 221–6
  • Cook J. A., Iype S. N., Mitchell J. B. Differential specificity of monochlorobimane for isozymes of human and rodent glutathione s-transferases. Cancer Res 1991; 51: 1606–1612
  • Ublacker G. A., Johnson J. A., Siegel F. L., Mulcahey R. T. Influence of glutathione S-transferases on cellular glutathione determination by flow cytometry using monochlorobimane. Cancer Res 1991; 51: 1783–1788

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.