1,115
Views
61
CrossRef citations to date
0
Altmetric
INVITED REVIEW

Experimental Model for Bone Regeneration in Oral and Cranio-Maxillo-Facial Surgery

, DDS MS PhD, , &
Pages 32-49 | Received 06 Feb 2013, Accepted 17 Jun 2013, Published online: 19 Aug 2013

REFERENCES

  • Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21(6):567–576.
  • Jung UW, Choi JY, Kim CS, Evaluation of mandibular posterior single implants with two different surfaces: a 5-year comparative study. J Periodontol. 2008;79(10):1857–1863.
  • Pjetursson BE, Bragger U, Lang NP, Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants Res. 2007;18 (Suppl 3):97–113.
  • Torabinejad M, Anderson P, Bader J, Outcomes of root canal treatment and restoration, implant-supported single crowns, fixed partial dentures, and extraction without replacement: a systematic review. J Prosthet Dent. 2007;98(4):285–311.
  • Wennerberg A, Albrektsson T. Current challenges in successful rehabilitation with oral implants. J Oral Rehabil. 2011;38(4):286–294.
  • Albrektsson T, Sennerby L, Wennerberg A. State of the art of oral implants. Periodontol 2000 2008;47:15–26.
  • Aerssens J, Boonen S, Lowet G, Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998;139(2):663–670.
  • An YH, Friedman RJ. Animal models of orthopedic implant infection. J Invest Surg. 1998;11(2):139–146.
  • Pearce AI, Richards RG, Milz S, Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.
  • Schliephake H, Knebel JW, Aufderheide M, Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep. Int J Oral Maxillofac Surg. 2001;30(6):531–537.
  • Donos N, Sculean A, Glavind L, Wound healing of degree III furcation involvements following guided tissue regeneration and/or emdogain: a histologic study. J Clin Periodontol. 2003;30(12):1061–1068.
  • Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol. 2008;35(Suppl. 2):106–116.
  • Schliephake H, Zghoul N, Jager V, Bone formation in trabecular bone cell seeded scaffolds used for reconstruction of the rat mandible. Int J Oral Maxillofac Surg. 2009;38(2):166–172.
  • Lee JA, Ku Y, Rhyu IC, Effects of fibrin-binding oligopeptide on osteopromotion in rabbit calvarial defects. J Periodontal Implant Sci. 2010;40(5):211–219.
  • Nolff MC, Kokemueller H, Hauschild G, Comparison of computed tomography and microradiography for graft evaluation after reconstruction of critical size bone defects using beta-tricalcium phosphate. J Craniomaxillofac Surg. 2010;38(1):38–46.
  • Retzepi M, Lewis MP, Donos N. Effect of diabetes and metabolic control on de novo bone formation following guided bone regeneration. Clin Oral Implants Res. 2010;21(1):71–79.
  • Shirasu N, Ueno T, Hirata Y, Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate. Acta Histochem. 2010;112(3):270–277.
  • Zhang JC, Lu HY, Lv GY, The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int J Oral Maxillofac Surg. 2010;39(5):469–477.
  • Linãres A, Mardas N, Dard M, Effect of immediate or delayed loading following immediate placement of implants with a modified surface. Clin Oral Implants Res. 2011;22(1):38–46.
  • Oryan A, Meimandi Parizi A, Shafiei-Sarvestani Z, Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank 2012;13(4):639–651.
  • Sager M, Ferrari D, Wieland M, Immunohistochemical characterization of wound healing at two different bone graft substitutes. Int J Oral Maxillofac Surg. 2012;41(5):657–666.
  • Zambon R, Mardas N, Horvath A, The effect of loading in regenerated bone in dehiscence defects following a combined approach of bone grafting and GBR. Clin Oral Implants Res. 2012;23(5):591–601.
  • Dard M. Animal models for experimental surgical research in implant dentistry. In: Implant Dentistry Research Guide: Basic, Translational and Experimental Clinical Research. Ballo A, ed. Hauppauge, NY: Nova Science; 2012:167–190.
  • Liebschner MA. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 2004;25(9):1697–1714.
  • Mosekilde L, Danielsen CC, Knudsen UB. The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone 1993;14(1):1–6.
  • Castaneda S, Largo R, Calvo E, Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006;35(1):34–41.
  • Buser D, Hoffmann B, Bernard JP, Evaluation of filling materials in membrane-protected bone defects: a comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res. 1998;9(3):137–150.
  • Buser D, Nydegger T, Hirt HP, Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants. 1998;13(5):611–619.
  • Bail HJ, Kolbeck S, Krummrey G, Ultrasound can predict regenerate stiffness in distraction osteogenesis. Clin Orthop Relat Res. 2002;(404):362–367.
  • Fenner M, Vairaktaris E, Fischer K, Influence of residual alveolar bone height on osseointegration of implants in the maxilla: a pilot study. Clin Oral Implants Res. 2009;20(6):555–559.
  • Fenner M, Vairaktaris E, Stockmann P, Influence of residual alveolar bone height on implant stability in the maxilla: an experimental animal study. Clin Oral Implants Res. 2009;20(8):751–755.
  • Germanier Y, Tosatti S, Broggini N, Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in miniature pigs. Clin Oral Implants Res. 2006;17(3):251–257.
  • Gottlow J, Dard M, Kjellson F, Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res. 2012;14(4):538–545.
  • Stadlinger B, Lode AT, Eckelt U, Surface-conditioned dental implants: an animal study on bone formation. J Clin Periodontol. 2009;36(10):882–891.
  • Schliephake H, Hefti T, Schlottig F, Mechanical anchorage and peri-implant bone formation of surface-modified zirconia in minipigs. J Clin Periodontol. 2010;37(9):818–828.
  • Elian N, Bloom M, Dard M, Effect of interimplant distance (2 and 3 mm) on the height of interimplant bone crest: a histomorphometric evaluation. J Periodontol. 2011;82(12):1749–1756.
  • Dard M. Methods and interpretation of preclinical performance studies for dental implants. In: Biocompatibility and Performance of Medical Devices. Boutrand J, ed. Cambridge, UK: Woodhead; 2012:chap. 13.
  • Stadlinger B, Ferguson SJ, Eckelt U, Biomechanical evaluation of a titanium implant surface conditioned by a hydroxide ion solution. Br J Oral Maxillofac Surg. 2012;50(1):74–79.
  • Swindle M. Swine as Models in Biomedical Research. Ames, IA: Iowa State University Press; 1992.
  • Brown DR, Terris JM. Swine in physiological and pathophysiological research. In: Advances in Swine in Biomedical Research. Tumbleson ME, Schook LB, eds. New York: Plenum Press; 1996:5–6.
  • Bollen PJ, Hansen AK, Rasmussen HJ. The Laboratory Swine. Boca Raton, FL: CRC Press; 2000.
  • Kvetina J, Svoboda Z, Nobilis M, Experimental Goettingen minipig and beagle dog as two species used in bioequivalence studies for clinical pharmacology (5-aminosalicylic acid and atenolol as model drugs). Gen Physiol Biophys. 1999;18:80–85.
  • McAnulty P, Dayan A, Ganderup N, The Minipig in Biomedical Research. Boca Raton, FL: CRC Press; 2011.
  • Almond GW. Research applications using pigs. Vet Clin North Am Food Anim Pract. 1996;12(3):707–716.
  • Swindle MM, Smith AC, Goodrich JA. Chronic cannulation and fistulization procedures in swine: a review and recommendations. J Invest Surg. 1998;11(1):7–20.
  • Larsen MO, Rolin B. Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 2004;45(3):303–313.
  • Bloor CM, White FC, Roth DM. The pig as a model of myocardial ischemia and gradual coronary occlusion. In: Swine as Models in Biomedical Research. Swindle MM, ed. Ames, IA: Iowa State University Press; 1992:163–175
  • Bocan TM. Animal models of atherosclerosis and interpretation of drug intervention studies. Curr Pharm Des. 1998;4(1):37–52.
  • Kobayashi K, Kobayashi N, Okitsu T, Development of a porcine model of type 1 diabetes by total pancreatectomy and establishment of a glucose tolerance evaluation method. Artif Organs. 2004;28(11):1035–1042.
  • Stump KC, Swindle MM, Saudek CD, Pancreatectomized swine as a model of diabetes mellitus. Lab Anim Sci. 1988;38(4):439–443.
  • Mosekilde L, Weisbrode SE, Safron JA, Evaluation of the skeletal effects of combined mild dietary calcium restriction and ovariectomy in Sinclair S-1 minipigs: a pilot study. J Bone Miner Res. 1993;8(11):1311–1321.
  • Bertram TA, Krakowka S, Morgan DR. Gastritis associated with infection by Helicobacter pylori: comparative pathology in humans and swine. Rev Infect Dis. 1991;13(Suppl 8):S714–S722.
  • Dent DM, Hickman R, Uys CJ, The natural history of liver alloone and autotransplantation in the pig. Br J Surg. 1971;58(6):407–413.
  • Kerrigan CL, Zelt RG, Thomson JG, The pig as an experimental animal in plastic surgery research for the study of skin flaps, myocutaneous flaps and fasciocutaneous flaps. Lab Anim Sci. 1986;36(4):408–412.
  • Wang S, Liu Y, Fang D, The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis. 2007;13(6):530–537.
  • Swindle MM, Smith A, Laber-Laird K, Swine in biomedical research: management and models. ILAR J. 1994;36(1):1–5.
  • Bollen P, Ellegaard L. The Gottingen minipig in pharmacology and toxicology. Pharmacol Toxicol. 1997;80(Suppl 2):3–4.
  • Reinwald S, Burr D. Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res. 2008;23(9):1353–1368.
  • Martiniakova M, Grosskopf B, Omelka R, Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci. 2006;51(6):1235–1239.
  • Honig JH, Merten HA. Das Göttinger Miniaturschwein (GMS) als Versuchstier in der humanmedizinischen osteologischen Grundlagenforschung. Z Zahnärztl Implantol. 1993;2:237–241.
  • Martinez-Gonzalez JM, Cano-Sanchez J, Campo-Trapero J, Evaluation of minipigs as an animal model for alveolar distraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(1):11–16.
  • Ma JL, Pan JL, Tan BS, Determination of critical size defect of minipig mandible. J Tissue Eng Regen Med. 2009;3(8):615–622.
  • Kragstrup J, Agerbaek M. Stereologic estimators of cortical bone remodeling including a kinetic model. Bone 1989;10(6):433–437.
  • Bouchard G, McLaughlin RM, Ellersieck MR, Retrospective evaluation of production characteristics in Sinclair miniature swine–44 years later. Lab Anim Sci. 1995;45(4):408–414.
  • Kohn F, Sharifi AR, Simianer H. Modeling the growth of the Goettingen minipig. J Anim Sci. 2007;85(1):84–92.
  • Franconi F, Seghieri G, Canu S, Are the available experimental models of type 2 diabetes appropriate for a gender perspective? Pharmacol Res. 2008;57(1):6–18.
  • Johansen T, Hansen HS, Richelsen B, The obese Gottingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp Med. 2001;51(2):150–155.
  • Larsen MO, Rolin B, Wilken M, High-fat high-energy feeding impairs fasting glucose and increases fasting insulin levels in the Gottingen minipig: results from a pilot study. Ann N Y Acad Sci. 2002;967:414–423.
  • Koopmans SJ, Mroz Z, Dekker R, Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: effects of metformin at isoenergetic feeding in a type 2-like diabetic pig model. Metabolism 2006;55(7):960–971.
  • von Wilmowsky C, Stockmann P, Metzler P, Establishment of a streptozotocin-induced diabetic domestic pig model and a systematic evaluation of pathological changes in the hard and soft tissue over a 12-month period. Clin Oral Implants Res. 2010;21(7):709–717.
  • Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;(205):299–308.
  • Lindholm TC, Lindholm TS, Marttinen A, Bovine bone morphogenetic protein (bBMP/NCP)-induced repair of skull trephine defects in pigs. Clin Orthop Relat Res. 1994;(301):263–270.
  • Reedy BK, Pan F, Kim WS, Properties of coralline hydroxyapatite and expanded polytetrafluoroethylene membrane in the immature craniofacial skeleton. Plast Reconstr Surg. 1999;103(1):20–26.
  • Schlegel KA, Donath K, Rupprecht S, De novo bone formation using bovine collagen and platelet-rich plasma. Biomaterials 2004;25(23):5387–5393.
  • Thorwarth M, Rupprecht S, Falk S, Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (prp): an immunohistochemical analysis. Biomaterials 2005;26(15):2575–2584.
  • Thorwarth M, Schultze-Mosgau S, Wehrhan F, Enhanced bone regeneration with a synthetic cell-binding peptide: in vivo results. Biochem Biophys Res Commun. 2005;329(2):789–795.
  • Lynnerup N, Astrup JG, Sejrsen B. Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med. 2005;1:13.
  • Henkel KO, Ma L, Lenz JH, Closure of vertical alveolar bone defects with guided horizontal distraction osteogenesis: an experimental study in pigs and first clinical results. J Craniomaxillofac Surg. 2001;29(5):249–253.
  • Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990;1(1):60–68.
  • Wiltfang J, Merten HA, Peters JH. Comparative study of guided bone regeneration using absorbable and permanent barrier membranes: a histologic report. Int J Oral Maxillofac Implants. 1998;13(3):416–421.
  • Verheggen R, Merten HA. Correction of skull defects using hydroxyapatite cement (HAC): evidence derived from animal experiments and clinical experience. Acta Neurochir (Wien). 2001;143(9):919–926.
  • Kirschner RE, Karmacharya J, Ong G, Repair of the immature craniofacial skeleton with a calcium phosphate cement: quantitative assessment of craniofacial growth. Ann Plast Surg. 2002;49(1):33–38; discussion 38.
  • Losee JE, Karmacharya J, Gannon FH, Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement: interaction with bioresorbable mesh. J Craniofac Surg. 2003;14(1):117–124.
  • Chang SC, Wei FC, Chuang H, Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration. Plast Reconstr Surg. 2003;112(7):1841–1850.
  • Chang SC, Lin TM, Chung HY, Large-scale bicortical skull bone regeneration using ex vivo replication-defective adenoviral-mediated bone morphogenetic protein-2 gene-transferred bone marrow stromal cells and composite biomaterials. Neurosurgery 2009;65(Suppl 6):75–81; discussion 81–73.
  • Fuerst G, Gruber R, Tangl S, Effects of fibrin sealant protein concentrate with and without platelet-released growth factors on bony healing of cortical mandibular defects: an experimental study in minipigs. Clin Oral Implants Res. 2004;15(3):301–307.
  • Fuerst G, Reinhard G, Tangl S, Effect of platelet-released growth factors and collagen type I on osseous regeneration of mandibular defects: a pilot study in minipigs. J Clin Periodontol. 2004;31(9):784–790.
  • Jensen SS, Yeo A, Dard M, Evaluation of a novel biphasic calcium phosphate in standardized bone defects: a histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 2007;18(6):752–760.
  • Pieri F, Lucarelli E, Corinaldesi G, Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg. 2009;67(2):265–272.
  • Pogrel MA, Regezi JA, Fong B, Effects of liquid nitrogen cryotherapy and bone grafting on artificial bone defects in minipigs: a preliminary study. Int J Oral Maxillofac Surg. 2002;31(3):296–302.
  • Mai R, Reinstorf A, Pilling E, Histologic study of incorporation and resorption of a bone cement-collagen composite: an in vivo study in the minipig. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(3): e9–14.
  • Henkel KO, Gerber T, Dorfling P, Repair of bone defects by applying biomatrices with and without autologous osteoblasts. J Craniomaxillofac Surg. 2005;33(1):45–49.
  • Ruehe B, Niehues S, Heberer S, Miniature pigs as an animal model for implant research: bone regeneration in critical-size defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):699–706.
  • Zheng Y, Liu Y, Zhang CM, Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res. 2009;88(3):249–254.
  • Abukawa H, Zhang W, Young CS, Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg. 2009;67(2):335–347.
  • Schliephake H, Langner M. Reconstruction of the mandible by prefabricated autogenous bone grafts: an experimental study in minipigs. Int J Oral Maxillofac Surg. 1997;26(4):244–252.
  • Terheyden H, Jepsen S, Rueger DR. Mandibular reconstruction in miniature pigs with prefabricated vascularized bone grafts using recombinant human osteogenic protein-1: a preliminary study. Int J Oral Maxillofac Surg. 1999;28(6):461–463.
  • Groger A, Klaring S, Merten HA, Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: preliminary study. Scand J Plast Reconstr Surg Hand Surg. 2003;37(3):129–133.
  • Wang H, Springer IN, Schildberg H, Carboxymethylcellulose-stabilized collagenous rhOP-1 device: a novel carrier biomaterial for the repair of mandibular continuity defects. J Biomed Mater Res A. 2004;68(2):219–226.
  • Becker J, Neukam FW, Schliephake H. Restoration of the lateral sinus wall using a collagen type I membrane for guided tissue regeneration. Int J Oral Maxillofac Surg. 1992;21(4):243–246.
  • Chang SC, Chuang HL, Chen YR, Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther. 2003;10(24):2013–2019.
  • Schliephake H, Neukam FW. Bone-replacement with porous hydroxyapatite blocks and titanium screw implants: an experimental study. J Oral Maxillofac Surg. 1991;49(2):151–156.
  • Schliephake H, Neukam FW, Hutmacher D, Enhancement of bone ingrowth into a porous hydroxylapatite-matrix using a resorbable polylactic membrane: an experimental pilot-study. J Oral Maxillofac Surg. 1994;52(1):57–63.
  • Schliephake H, Aleyt J. Mandibular onlay grafting using prefabricated bone grafts with primary implant placement: an experimental study in minipigs. Int J Oral Maxillofac Implants. 1998;13(3):384–393.
  • Piecuch JF, Ponichtera A, Nikoukari H. Long-term evaluation of porous hydroxyapatite blocks for alveolar ridge augmentation. Int J Oral Maxillofac Surg. 1990;19(3):147–150.
  • Kessler PA, Merten HA, Neukam FW, The effects of magnitude and frequency of distraction forces on tissue regeneration in distraction osteogenesis of the mandible. Plast Reconstr Surg. 2002;109(1):171–180.
  • Glowacki J, Shusterman EM, Troulis M, Distraction osteogenesis of the porcine mandible: histomorphometric evaluation of bone. Plast Reconstr Surg. 2004;113(2):566–573.
  • Zimmermann CE, Thurmuller P, Troulis MJ, Histology of the porcine mandibular distraction wound. Int J Oral Maxillofac Surg. 2005;34(4):411–419.
  • Lawler ME, Tayebaty FT, Williams WB, Histomorphometric analysis of the porcine mandibular distraction wound. J Oral Maxillofac Surg. 2010;68(7):1543–1554.
  • Ciochon RL, Nisbett RA, Corruccini RS. Dietary consistency and craniofacial development related to masticatory function in minipigs. J Craniofac Genet Dev Biol. 1997;17(2):96–102.
  • Kuboki T, Shinoda M, Orsini MG, Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc. J Dent Res. 1997;76(11):1760–1769.
  • Rohner D, Meng CS, Hutmacher DW, Bone response to unloaded titanium implants in the fibula, iliac crest, and scapula: an animal study in the Yorkshire pig. Int J Oral Maxillofac Surg. 2003;32(4):383–389.
  • Rohner D, Tay A, Chung SM, Interface of unloaded titanium implants in the iliac crest, fibula, and scapula: a histomorphometric and biomechanical study in the pig. Int J Oral Maxillofac Implants. 2004;19(1):52–58.
  • Atkinson PJ, Powell K, Woodhead C. Cortical structure of the pig mandible after the insertion of metallic implants into alveolar bone. Arch Oral Biol. 1977;22(6):383–391.
  • Hale TM, Boretsky BB, Scheidt MJ, Evaluation of titanium dental implant osseointegration in posterior edentulous areas of micro swine. J Oral Implantol. 1991;17(2):118–124.
  • Buser D, Nydegger T, Oxland T, Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res. 1999;45(2):75–83.
  • Buser D, Broggini N, Wieland M, Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83(7):529–533.
  • Stadlinger B, Pilling E, Huhle M, Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study. Int J Oral Maxillofac Surg. 2008;37(1):54–59.
  • Odman J, Grondahl K, Lekholm U, The effect of osseointegrated implants on the dento-alveolar development: a clinical and radiographic study in growing pigs. Eur J Orthod. 1991;13(4):279–286.
  • Sennerby L, Odman J, Lekholm U, Tissue reactions towards titanium implants inserted in growing jaws: a histological study in the pig. Clin Oral Implants Res. 1993;4(2):65–75.
  • Thilander B, Odman J, Grondahl K, Aspects on osseointegrated implants inserted in growing jaws: a biometric and radiographic study in the young pig. Eur J Orthod. 1992;14(2):99–109.
  • Rimondini L, Bruschi GB, Scipioni A, Tissue healing in implants immediately placed into postextraction sockets: a pilot study in a mini-pig model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(3):e43–e50.
  • Basquill PJ, Steflik DE, Brennan WA, Evaluation of the effects of diagnostic radiation on titanium dental implant osseointegration in the micropig. J Periodontol. 1994;65(9):872–880.
  • Ko CC, Douglas WH, DeLong R, Effects of implant healing time on crestal bone loss of a controlled-load dental implant. J Dent Res. 2003;82(8):585–591.
  • Meyer U, Wiesmann HP, Fillies T, Early tissue reaction at the interface of immediately loaded dental implants. Int J Oral Maxillofac Implants. 2003;18(4):489–499.
  • Neugebauer J, Traini T, Thams U, Peri-implant bone organization under immediate loading state. Circularly polarized light analyses: a minipig study. J Periodontol. 2006;77(2):152–160.
  • Nkenke E, Lehner B, Weinzierl K, Bone contact, growth, and density around immediately loaded implants in the mandible of mini pigs. Clin Oral Implants Res. 2003;14(3):312–321.
  • Fuerst G, Gruber R, Tangl S, Enhanced bone-to-implant contact by platelet-released growth factors in mandibular cortical bone: a histomorphometric study in minipigs. Int J Oral Maxillofac Implants. 2003;18(5):685–690.
  • Zechner W, Tangl S, Tepper G, Influence of platelet-rich plasma on osseous healing of dental implants: a histologic and histomorphometric study in minipigs. Int J Oral Maxillofac Implants. 2003;18(1):15–22.
  • Dostalova T, Himmlova L, Jelinek M, Osseointegration of loaded dental implant with KrF laser hydroxylapatite films on Ti6Al4V alloy by minipigs. J Biomed Opt. 2001;6(2):239–243.
  • Perrin D, Szmukler-Moncler S, Echikou C, Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res. 2002;13(5):465–469.
  • Zechner W, Tangl S, Furst G, Osseous healing characteristics of three different implant types. Clin Oral Implants Res. 2003;14(2):150–157.
  • Meyer U, Wiesmann HP, Runte C, Evaluation of accuracy of insertion of dental implants and prosthetic treatment by computer-aided navigation in minipigs. Br J Oral Maxillofac Surg. 2003;41(2):102–108.
  • Buser D, Schenk RK, Steinemann S, Influence of surface characteristics on bone integration of titanium implants: a histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25(7):889–902.
  • Schlegel KA, Kloss FR, Kessler P, Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants. 2003;18(4):505–511.
  • Clokie CM, Bell RC. Recombinant human transforming growth factor beta-1 and its effects on osseointegration. J Craniofac Surg. 2003;14(3):268–277.
  • Buchter A, Kleinheinz J, Wiesmann HP, Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin Oral Implants Res. 2005;16(1):1–8.
  • Craig RG, Kamer AR, Kallur SP, Effects of periodontal cell grafts and enamel matrix proteins on the implant-connective tissue interface: a pilot study in the minipig. J Oral Implantol. 2006;32(5):228–236.
  • Hammerle CH, Karring T. Guided bone regeneration at oral implant sites. Periodontol 2000. 1998;17:151–175.
  • Hickey JS, O'Neal RB, Scheidt MJ, Microbiologic characterization of ligature-induced peri-implantitis in the microswine model. J Periodontol. 1991;62(9):548–553.
  • Singh G, O'Neal RB, Brennan WA, Surgical treatment of induced peri-implantitis in the micro pig: clinical and histological analysis. J Periodontol. 1993;64(10):984–989.
  • Furst G, Gruber R, Tangl S, Sinus grafting with autogenous platelet-rich plasma and bovine hydroxyapatite: a histomorphometric study in minipigs. Clin Oral Implants Res. 2003;14(4):500–508.
  • Terheyden H, Jepsen S, Moller B, Sinus floor augmentation with simultaneous placement of dental implants using a combination of deproteinized bone xenografts and recombinant human osteogenic protein-1: a histometric study in miniature pigs. Clin Oral Implants Res. 1999;10(6):510–521.
  • Liu Y, Springer IN, Zimmermann CE, Missing osteogenic effect of expanded autogenous osteoblast-like cells in a minipig model of sinus augmentation with simultaneous dental implant installation. Clin Oral Implants Res. 2008;19(5):497–504.
  • Gruber RM, Ludwig A, Merten HA, Sinus floor augmentation with recombinant human growth and differentiation factor-5 (rhGDF-5): a pilot study in the Goettingen miniature pig comparing autogenous bone and rhGDF-5. Clin Oral Implants Res. 2009;20(2):175–182.
  • Roldan JC, Jepsen S, Schmidt C, Sinus floor augmentation with simultaneous placement of dental implants in the presence of platelet-rich plasma or recombinant human bone morphogenetic protein-7. Clin Oral Implants Res. 2004;15(6):716–723.
  • Roldan JC, Knueppel H, Schmidt C, Single-stage sinus augmentation with cancellous iliac bone and anorganic bovine bone in the presence of platelet-rich plasma in the miniature pig. Clin Oral Implants Res. 2008;19(4):373–378.
  • Pieri F, Lucarelli E, Corinaldesi G, Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol. 2008;35(6):539–546.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.