33
Views
64
CrossRef citations to date
0
Altmetric
Original Article

Induction of Endochondral Bone Formation by Recombinant Human Transforming Growth Factor-β2 in the Baboon (Papio ursinus)

, , &
Pages 269-285 | Received 09 Oct 1999, Accepted 12 Nov 1999, Published online: 11 Jul 2009

References

  • Baldwin C. T., Reginato A. M., Smith C., Jimenez S. A., Prockop D. J. Structure of cDNA clones coding for human type II procollagen. The alpha 1 (II) chain is more similar to the alpha 1 (I) chain than two other alpha chains of fibrillar collagen. Biochem. J. 1989; 262: 521–528
  • Cunningham N. S., Jenkins N. A., Gilbert D. J., Copeland N. G., Reddi A. H., Lee S.-J. Growth/differentiation factor-10: A new member of the transforming growth factor-β superfamily related to bone morphogenetic protein-3. Growth Factors 1995; 12: 99
  • Duneas D., Crooks J., Ripamonti U. Transforming growth factor-β1: Induction of bone morphogenetic protein gene expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein-1 (BMP-7). Growth Factors 1998; 15: 259–277
  • Hammmonds R. G., Schwall R., Dudley A., Berkemeier L., Lai C., Lee J., Cunningham N., Reddi A. H., Wood W. I., Mason A. J. Bone inducing activity of mature BMP-2b produced from a hybrid BMP-2a/2b precursor. Mol. Endocrinol. 1991; 5: 149–155
  • Helder M. N., Özkaynak E., Sampath T. K., Luyten F. P., Latin V., Oppermann H., Vukicevic S. Expression pattern of osteogenic protein-1 (bone morphogenetic pro-tein-7) in human and mouse development. J. Histochem. Cytochem. 1995; 43: 1035–1044
  • Hostikka S. L., Tryggvason K. The complete primary structure of the alpha 2 chain of human type IV collagen and comparison with the alpha 1 (IV) chain. J. Biol. Chem. 1988; 263: 19488–19493
  • Hotten G. C., Matsumoto T., Kimura M., Bechtold R. F., Kron R., Ohara T., Tanaka H., Satoh Y., Okazaki M., Shirai T., Pan H., Kawai S., Pohl J. S., Kudo A. Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors 1996; 13: 65–74
  • Kinto N., Iwamoto M., Enomoto-Iwamoto E., Noji S., Ohuchi H., Yoshioka H., Kataoka H., Wada Y., Yuhao G., Takahashi H. E., Yoshiki S., Yamaguchi A. Fibroblasts expressing Sonic hedgehog induce osteoblast differentiation and ectopic bone formation. FEBS Letters 1997; 404: 319–323
  • Kuboki Y., Saito T., Murata M., Takita H., Mizuno M., Inoue M., Nagai N., Poole A. R. Two distinctive BMP-carriers induce zonal chondrogenesis and membranous ossification, respectively: geometrical factors of matrices for cell-differentiation. Conn. Tissue Res. 1995; 32: 219–226
  • Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Miyazono K. Smad6 inhibits signalling by the TGF-β superfamily. Nature 1997; 389: 622–626
  • Lowry O. H., Rosebrough N. J., Farr A. L. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Nakao A., Afrakhte M., Morèn A., Nakayama T., Christian J. L., Heuchel R., Itoh S., Kawabata M., Heldin N.-E., Heldin C.-H., ten Dijke P. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 1997; 389: 631–635
  • Özkaynak E., Rueger D. C., Drier E. A., Corbett C., Ridge R. J., Sampath T. K., Oppermann H. OP-1 cDNA encodes an osteogenic protein in the TGF-β family. EMBO (Eur. Mol. Biol. Organ.) J. 1990; 9: 2085–2093
  • Parfitt A. M. Stereologie basis of bone histomorphometry: theory of quantitative microscopy and reconstruction of the third dimension. Bone Histomorphometry: Techniques and Interpretation, R. R. Recker. CRC Press, Boca Raton 1983; 53–87
  • Parfitt A. M., Drezner M. K., Glorieux F. H., Kanis J. A., Malluehe H., Meunier P. J., Ott S. M., Recker R. R. Bone histomorphometry: Standardization of nomenclature, symbols, and units. J. Bone Min. Res. 1987; 2: 595–610
  • Reddi A. H. Bone matrix in the solid state: Geometric influence on differentiation of fibroblasts. Adv. Biol. Med. Phys. 1974; 15: 1–18
  • Reddi A. H. Bone and cartilage differentiation. Curr. Opin. Genet. Dev. 1994; 4: 737–744
  • Reddi A. H. Bone morphogenetic proteins: An unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev. 1997; 8: 11–20
  • Reddi A. H. Role of morphogenetic proteins in skeletal-tissue engineering and regeneration. Nature Biotechnology 1998; 16: 247–252
  • Ring C. J., Cho K. W.Y. Specificity in transforming growth factor-β signalling pathways-insights from model systems. Ant. J. Hum. Genet. 1999; 64: 691–697
  • Ripamonti U. Bone induction in nonhuman primates. An experimental study on the baboon (Papio ursinus). Clin. Orthop. 1991a; 269: 284–294
  • Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J. Bone Joint Surg. 1991b; 73A: 692–703
  • Ripamonti U. Calvarial regeneration in primates with autolyzed antigen-extracted allogeneic bone. Clin. Orthop. 1992a; 282: 293–303
  • Ripamonti U. Calvarial reconstruction in baboons with porous hydroxyapatite. J. Craniofac. Surg. 1992b; 3: 149–159
  • Ripamonti U. Delivery systems for bone morphogenetic proteins. A summary of experimental studies in primate models. Ann. Chirg. Gynaecol. 1993; 82: 13–25
  • Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 1996; 17: 31–35
  • Ripamonti U., Duncas N. Tissue engineering by osteoinductive biomaterials. Mat. Res. Soc. Bull. 1996; 21: 36–39
  • Ripamonti U., Duneas N. Tissue morphogenesis and regeneration by bonemorphogeneticproteins. Plast. Reconstr. Surg. 1998; 101: 227–239
  • Ripamonti U., Reddi A. H. Bone morphogenetic proteins: applications in plastic and reconstructive surgery. Adv. Plast. Reconstr. Surg. 1995; 11: 47–73
  • Ripamonti U., Vukicevic S. Bone morphogenetic proteins: from developmental biology to molecular therapeutics. S. Afr. J. Sci. 1995; 91: 277–279
  • Ripamonti U., Magan A., van den Heever B., Moehl T., Reddi A. H. Xenogeneic osteogenin, a bone morphogenetic protein, and demineralized bone matrices, including human, induce bone differentiation in athymic rats and baboons. Matrix 1991; 11: 404–411
  • Ripamonti U., Ma S., Cunningham N., Yeates L., Reddi A. H. Initiation of bone regeneration in adult baboons by osteogenin, a bone morphogenetic protein. Matrix 1992a; 12: 369–380
  • Ripamonti U., Ma S., van den Heever B., Reddi A. H. Osteogenin, a bone morphogenetic protein, adsorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates. Plast. Reconstr. Surg. 1992b; 90: 382–393
  • Ripamonti U., Ma S., Reddi A. H. Induction of bone-in composites of osteogenin and porous hydroxyapatite in baboons. Plast. Reconstr. Surg. 1992c; 89: 731–739
  • Ripamonti U., Ma S., Reddi A. H. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992d; 12: 202–212
  • Ripamonti U., van den Heever B., Van Wyk J. Expression of the osteogenic phenotype in porous hydroxy-apatite implanted extraskeletally in baboons. Matrix 1993a; 13: 491–502
  • Ripamonti U., Ma S., Cunningham N. S., Yeates L., Reddi A. H. Reconstruction of the bone-bone marrow organ by osteogenin, a bone morphogenetic protein, and demineralized bone matrix in calvarial defects of adult primates. Plast. Reconstr. Surg. 1993b; 91: 27–36
  • Ripamonti U., Bosch C., van den Heever B., Duneas N., Melsen B., Ebner R. Limited chondro-osteogenesis by recombinant human transforming growth factor-β in calvarial defects of adult baboons (Papio ursinus). J. Bone Miner. Res. 1996a; 11: 938–945
  • Ripamonti U., van den Heever B., Sampath T. K., Tucker M. M., Rueger D. C., Reddi A. H. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth Factors 1996b; 13: 273–289
  • Ripamonti U., Duneas N., van den Heever B., Bosch C., Crooks J. Recombinant transforming growth factor-bT1 induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation. J. Bone Miner. Res. 1997; 12: 1584–1595
  • Ripamonti U., Crooks J., Kirkbride A. N. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: geometric induction of bone formation. S. Afr. J. Sci. 1999; 95: 335–343
  • Roberts A. B., Sporn M. B., Assoian R. K., Smith J. M., Roche N. S., Wakefield L. M., Heine U. I., Liotta L. A., Falanga V., Kehrl J. H., Fauci A. S. Transforming growth factor type β Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 1986; 83: 4167–4171
  • Sampath T. K., Reddi A. H. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc. Natl. Acad. Sci. USA 1981; 78: 7599–7603
  • Sampath T. K., Reddi A. H. Importance of geometry of the extracellular matrix in endochondral bone differentiation. J. Cell Biol. 1984; 98: 2192–2197
  • Sampath T. K., Muthukumaran N., Reddi A. H. Isolation of osteogenin, an extracellular matrix-associated bone-inductive protein, by heparin affinity chromatography. Proc. Natl. Acad. Sci. USA 1987; 84: 7109–7113
  • Sampath T. K., Rashka K. E., Doctor J. S., Tucker R. F., Hoffmann F. M. Drosophila TGF-β superfamily proteins induce endochondral bone formation in mammals. Proc. Natl. Acad. Sci. USA 1993; 90: 6004–6008
  • Shah M., Foreman D. M., Ferguson M. W.J. Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring. J. Cell Science 1995; 108: 985–1002
  • Shinozaki M., Kawara S., Hayashi N., Kakinuma T., Igarashi A., Takehara K. Induction of subcutaneous tissue fibrosis in newborn mice by transforming growth factor β - Simultaneous application with basic fibroblast growth factor causes persistent fibrosis. Biochem. Biophvs. Res. Commun. 1997; 237: 292–296
  • Statistical Analysis System. SAS/STATS User's Guide, Version 6., 4th edn. Sas Institute Inc., Cary, N.C. 1989; Vol. 2: 891–996
  • Takashi N., Aikawa T., Iwamoto-Enomoto M., Iwamoto M., Higuchi Y., Pacifici M., Kinto N., Yamaguchi A., Noji S., Kurisu K., Matsuya T. Induction of osteogenic differentiation by hedgehog proteins. Biochem. Biophys. Res. Commun. 1997; 237: 465–469
  • Vukicevic S., Kopp J. B., Luyten F. P., Sampath T. K. Induction of nephrogenic mesenchyme by osteogenic protein-1 (bone morphogenetic protein 7). Proc. Natl. Acad. Sci. USA 1996; 93: 9021–9026
  • Vukicevic S., Basic V., Rogic D., Basic N., Shih M. S., Shepard A., Jin D., Dattatreyamurty B., Jones W., Dorai H., Ryan S., Griffiths D., Maliakal J., Jelic M., Pastorcic M., Stavljenic A., Sampath T. K. Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renalo failure in rat. J. Clin. Invest. 1998; 102: 202–214
  • Whitman M. Feedback from inhibitory SMADs. Nature 1997; 389: 549–551
  • Wozney J. M., Rosen V., Celeste A. J., Mitsock L. M., Whitters M. J., Kriz R. W., Hewick R. M., Wang E. A. Novel regulators of bone formation: Molecular clones and activities. Science (Wash. DC) 1988; 242: 1528–1534

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.