11
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Lipid-Mediated Regulation of Extrinsic Membrane Protein Activities

&
Pages 337-346 | Published online: 28 Sep 2008

References

  • Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3rd ed. Garland Publishing, Inc., New York 1994
  • Keranen L.M., Newton A.C. Ca2+ differentially regulates conventional protein kinase C's membrane interaction and activation. J. Biol. Chem. 1997; 272: 25959–25967
  • Mosior M., Epand R.M. Characterization of the calcium-binding site that regulates association of protein kinase C with phospholipid bilayers. J. Biol. Chem. 1994; 269: 13798–13805
  • Newton A.C., Keranen L.M. Phosphatidyl-L-serine is necessary for protein kinase C's high-affinity interaction with diacylglycerol-containing membranes. Biochemistry 1994; 33: 6651–6658
  • Orr J.W., Keranen L.M., Newton A.C. Reversible exposure of the pseudosubstrate domain of protein kinase C by phosphatidylserine and diacylglycerol. J. Biol. Chem. 1992; 267: 15263–15266
  • Orr J.W., Newton A.C. Interaction of protein kinase C with phosphatidylserine 2. Specificity and regulation. Biochemistry 1992; 31: 4667–4673
  • Orr J.W., Newton A.C. Interaction of protein kinase C with phosphatidylserine1. Cooperativity in lipid binding. Biochemistry 1992; 31: 4661–4667
  • Yang L., Glaser M. Formation of membrane domains during the activation of protein kinase C. Biochemistry 1996; 35: 13966–13974
  • Sekimizu K., Bramhill D., Kornberg A. ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E coli chromosome. Cell 1987; 50: 259–265
  • Sekimizu K., Bramhill D., Kornberg A. Sequential early stages in the in vitro initiation of replication at the origin of the Escherichia coli chromosome. J. Biol. Chem. 1988; 263: 7124–7130
  • Yung B.Y., Crooke E., Kornberg A. Fate of the DnaA initiator protein in replication at the origin of the Escherichia coli chromosome in vitro. J. Biol. Chem. 1990; 265: 1282–1285
  • Sekimizu K., Kornberg A. Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J. Biol. Chem. 1998; 265: 7131–7135
  • Yung B.Y., Kornberg A. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli. Proc. Natl. Acad. Sci. USA 1998; 85: 7202–7205
  • Crooke E., Castuma C.E., Kornberg A. The chromosome origin of Escherichia coli stabilizes DnaA protein during rejuvenation by phospholipids. J. Biol. Chem. 1992; 267: 16779–16782
  • Castuma C.E., Crooke E., Kornberg A. Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in Escherichia coli. J. Biol. Chem. 1993; 268: 24665–24668
  • Garner J, Crooke E. Membrane regulation of the chromosomal replication activity of E coli DnaA requires a discrete site on the protein. EMBO J. 1996; 15: 3477–3485
  • Garner J., Durrer P., Kitchen J., Brunner J, Crooke E. Membrane-mediated release of nucleotide from an initiator of chromosomal replication, E. coli DnaA, occurs with insertion of a distinct region of the protein into the lipid bilayer. J. Biol. Chem. 1998; 273: 5167–5173
  • Xia W., Dowhan W. In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 783–787
  • Hartl F.U., Lecher S., Schiebel E., Hendrick J.P., Wickner W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 1990; 63: 269–279
  • Lill R., Cunningham K., Brundage L.A., Ito K., Oliver D., Wickner W. SecA protein hydrolyzes ATP and is an essential component to the protein translocation ATPase of Escherichia coli. EMBO J. 1989; 8: 961–966
  • de Vrije T., de Swart R.L., Dowhan W., Tommassen J., de Krujiff B. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 1988; 334: 173–175
  • Lill R., Dowhan W., Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, Sec Y, and the leader and mature domains of precursor proteins. Cell 1990; 60: 271–280
  • Hendrick J.P., Wichner W. SecA protein needs both acidic phospholipids and Sec Y/E protein for functional high-affinity binding to the Escherichia coli plasma membrane J. Biol. Chem. 1991; 266: 24596–24600
  • Ulbrandt N. D., London E., Oliver D.B. Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem. 1992; 267: 15184–15192
  • Ingles J., Freedman N.J., Koch W.J., Lefkowitz R.J. Structure and mechanism of the G protein-coupled receptor kinases. J. Biol. Chem. 1993; 268: 23735–23738
  • DebBurman S.K., Ptasienski J., Boetticher E., Lomasney J.W., BenoviC J.L., Hosey M.M. Lipid-mediated regulation of G protein-coupled receptor kinases 2 and 3. J. Biol. Chem. 1995; 270: 5742–5747
  • Onorato J. J., Gillis M.E., Liu Y., BenoviC J.L., Ruoho A.E. The beta-adrenergic receptor kinase (GRK2) is regulated by phospholipids. J. Biol. Chem. 1995; 270: 21346–21353
  • DebBurman S.K., Ptasienski J., BenoviC J.L., Hosey M.M. G protein-coupled receptor kinase GRK2 is a phospholipid-dependent enzyme that can be conditionally activated by G protein Py subunits. J. Biol. Chem. 1996; 271: 22552–22562
  • Stoffel R.H., Randall R.R., Premont R.T., Lefkowitz R.J., Inglese J. Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. J. Biol Chem. 1994; 269: 27791–27794
  • Premont R.T., Macrae A.D., Stoffel R.H., Chung N., Pitcher J.A., Ambrose C., Inglese J., MacDonald M.E., Lefkowitz R.J. Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. J. Biol. Chem. 1996; 271: 6403–6410
  • Kunapuli P., Gurevich V.V., BenoviC J.L. Phospholipid-stimulated au-tophosphorylation activates the G protein-coupled receptor kinase GRK5. J. Biol. Chem. 1994; 269: 10209–10212
  • Rothman J.E., Orci L. Molecular dissection of the secretory pathway. Nature 1992; 355: 409–415
  • Donaldson J.G., Radhakrishna H., Peters P.J. The ARF GTPases: Defining roles in membrane traffic and organelle structure. Cold Spr. Harb. Symp. Quan. Biol. 1995; 60: 229–234
  • Moss J., Vaughan M. Structure and function of ARF proteins: Activators of cholera toxin and critical components of intracellular transport processes. J. Biol. Chem. 1995; 270: 12327–12330
  • Antonny B., Beraud-Dufour S., Chardin P., Chabre M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 1997; 36: 4675–4684
  • Paris S., Beraud-Dufour S., Robineau S., Bigay J., Antonny B., Chabre M., Chardin P. Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J. Biol. Chem. 1997; 272: 22221–22226
  • Terui T., Kahn R.A., Randazzo P.A. Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor 1. Evidence for specific interaction with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 1994; 269: 28130–28135
  • Randazzo P.A. Functional interaction of ADP-ribosylation factor 1 with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 1997; 272: 7688–7692
  • Antonny B., Huber I., Paris S., Chabre M., Cassel D. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-de-rived diacylglycerols. J. Biol. Chem. 1997; 272: 30848–30851
  • Chen Y.G., Siddhanta A., Austin CD., Hammond S.M., Sung T.C., Frohman M.A., Morris A.J., Shields D. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. J. Cell. Biol. 1997; 138: 495–504
  • Yamauchi E., Titani K., Taniguchi H. Specific binding of acidic phospholipids to microtubule-associated protein MAP1B regulates its interaction with tubulin. J. Biol. Chem. 1997; 272: 22948–22953
  • Molony L., Burridge K. Molecular shape and self-association of vinculin and metavinculin. J. Cell. Biochem. 1985; 29: 31–36
  • Johnson R.P., Craig S.W. An intramolecular association between the head and tail domains of vinculin modulates talin binding. J. Biol. Chem. 1994; 269: 12611–12619
  • Johnson R.P., Craig S.W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 1995; 373: 261–264
  • Johnson R.P., Craig S.W. The carboxy-terminal tail domain of vinculin contains a cryptic binding site for acidic phospholipids. Biochem. Biophys. Res. Commun. 1995; 210: 159–164
  • Weekes J., Barry ST., Critchley D.R. Acidic phospholipids inhibit the intramolecular association between the N- and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem. J. 1996; 314: 827–832
  • Hirai H., Natori S., Sekimizu K. Reversal by phosphatidylglycerol and cardiolipin of inhibition of transcription and replication by histones in vitro. Arch. Biochem. Biophys. 1992; 298: 458–463
  • Koiv A., Palvimo J., Kinnunen P.K.J. Evidence for ternary complex formation by histone HI, DNA and liposomes. Biochemistry 1995; 34: 8018–8027
  • Tronchere H., Record M., Terce F., Chap H. Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. Biochem. Biophys. Acta 1994; 1212: 137–151
  • Arnold R.S., Cornell R.B. Lipid regulation of CTP:phosphocholine cytidylyltransferase: ElectrostatiC., hydrophobiC., and synergistic interactions of anionic phospholipids and diacylglycerol. Biochemistry 1996; 35: 9917–9924
  • Johnson J.E., Cornell R.B. Membrane-bindiing amphipathic α-helical peptide derived from CTP:phosphocholine cytidylyltransferase. Biochemistry 1994; 33: 4327–4335
  • Johnson J.E., Aebersold R., Cornell R.B. An amphipathic α-helix is the principle membrane-embedded region of CTP:phosphocholine cytidylyltransferase. Identification of the 3-(trifluouromethyl)-3-(m-[125-I]iodophenyl) diazirine photolabeled domain. 1997; 1324: 273–284
  • Cross F.R., Garber E.A., Pellman D., Hanafusa H. A short sequence in the p60src N-terminus is required for p60src myristoylation and membrane association and for cell transformation. Mol. Cell. Biol. 1984; 4: 1834–1842
  • Kamps M.P., Buss J.E., Sefton B.M. Mutation of NH2-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 4625–4628
  • Sigal C.T., Zhou W., Buser C.A., McLaughlin S., Resh M.D. Amino-terminal basic residues of src mediate membrane binding through electrostatic inter-acton with acidic phospholipids. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 12253–12257
  • Hartwig J.H., Thelen M., Rosen A., Janmey P.A., Nairn A.C., Aderem A. Marcks is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 1992; 356: 618–622
  • Vergemes G., Ramsden J.J. Binding of Marcks (myristoylated ala-nine-rich C kinase substrate)-related protein (MRP) to vesicular phospholipid membranes. Biochem J. 1998; 330: 5–11
  • Wang J.K., Walaas S.I., Sihra T.S., Aderem A., Greengard P. Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 2253–2256
  • Thelen M., Rosen A., Nairn A.C., Aderem A. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 1991; 351: 320–322
  • Taniguchi H., Manenti S. Interaction of myristoylated alanine-rich protein kinase C substrate (Marcks) with membrane phospholipids. J. Biol. Chem. 1993; 268: 9960–9963
  • Kim J., Shishodo T., Jiang X., Aderem A., McLaughlin S. Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J. Biol. Chem. 1994; 269: 28214–28219
  • McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 1995; 20: 272–276

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.