113
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Quantitative analysis of somatosensory cortex development in eutherians, with a comparison with metatherians and monotremes

Pages 137-152 | Received 12 Nov 2014, Accepted 23 Dec 2014, Published online: 17 Apr 2015

References

  • Ashwell KWS. 1986. Alterations to the structure of the rat visual system following prenatal exposure to a cytotoxic agent [dissertation]. Sydney, NSW: The University of Sydney. 137 pp
  • Ashwell KWS, Paxinos G. 2007. Atlas of the developing rat nervous system. 3rd ed. San Diego: Elsevier
  • Ashwell KWS. 2008. Encephalization of Australian and New Guinean marsupials. Brain Behav Evol 71:181–199
  • Ashwell KW, Hardman CD. 2012. Distinct development of the cerebral cortex in the platypus and echidna. Brain Behav Evol 79:57–72
  • Ashwell KW, Hardman CD, Giere P. 2012. Distinct development of peripheral trigeminal pathways in the platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus). Brain Behav Evol 79:113–127
  • Ashwell KWS. 2015. Quantitative analysis of somatosensory cortex development in metatherians and monotremes, with comparison to the laboratory rat. Somatosens Mot Res [Epub ahead of print]. doi: 10.3109/08990220.2014.978849
  • Boulder Committee. 1970. Embryonic vertebrate central nervous system. Revised terminology. Anat Rec 166:257–261
  • Bystron I, Blakemore C, Rakic P. 2008. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122
  • Carney RSE, Bystron I, López-Bendito G, Molnár Z. 2007. Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human. Brain Struct Funct 212:37–54
  • Cheung AFP, Kondo S, Abdel-Mannan O, Chodroff RA, Sirey TM, Bluy LE, Webber N, DeProto J, Karlen SJ, Krubitzer L, et al. 2010. The subventricular zone is the developmental milestone of a 6 layered neocortex: Comparisons in metatherian and eutherian mammals. Cereb Cortex 20:1071–1081
  • Currat M, Excoffier L, Maddison W, Otto SP, Ray N, Whitlock MC, Yeaman S. 2006. Comment on “Ongoing adaptive evolution of APSM, a brain size determinant in Homo sapiens” and “Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans”. Science 313:172a
  • Darlington RB, Dunlop SA, Finlay BL. 1999. Neural development in metatherian and eutherian mammals: Variation and constraint. J Comp Neurol 411:359–368
  • Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT. 2004. Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum Mol Gen 13:1139–1145
  • Evans PD, Vallender EJ, Lahn BT. 2006. Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ. Gene 375:75–79
  • Haug H. 1987. Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142
  • Herculano-Houzel S. 2011. Not all brains are made the same: New views on brain scaling in evolution. Brain Behav Evol 78:22–36
  • Herculano-Houzel S. 2012. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated costs. Proc Natl Acad Sci USA 109:10661–10668
  • Herculano-Houzel S. 2014. Brains matter, bodies maybe not: The case for examining neuron numbers irrespective of body size. Ann NY Acad Sci 1225:191–199
  • Herculano-Houzel S, Manger PR, Kaas JH. 2014. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:77
  • Hill JP, Hill WCO. 1955. The growth-stages of the pouch-young of the native cat (Dasyurus viverrinus) together with observations on the anatomy of the new-born young. Trans Zool Soc Lond 28:349–352
  • Hofman MA. 1983. Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58:495–512
  • Hofman MA. 1985. Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav Evol 27:28–40
  • Jerison H. 1973. Evolution of the brain and intelligence. New York: Academic
  • Jones EG. 2009. The origins of cortical interneurons: Mouse versus monkey and human. Cereb Cortex 19:1953–1956
  • Kostovic I, Rakic P. 1990. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470
  • Krause WJ, Saunders NR. 1994. Brain growth and neocortical development in the opossum. Ann Anat 176:395–407
  • Kriegstein A, Noctor S, Martínez-Cerdeño V. 2006. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890
  • Kruska D, Röhrs M. 1974. Comparative-quantitative investigations on brains of feral pigs from the Galapagos islands and of European domestic pig. Z Anat Entwickl Gesch 144:61–73
  • Leamey CA, Flett DL, Ho SM, Marotte LR. 2007. Development of structural and functional connectivity in the thalamocortical somatosensory pathway in the wallaby. Eur J Neurosci 25:3058–3070
  • Macrini TE, Rowe T, Archer M. 2006. Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly. Morphology 267:1000–1015
  • Marotte LR, Leamey CA, Waite PME. 1997. Timecourse of development of the wallaby trigeminal pathway: III. Thalamocortical and corticothalamic projections. J Comp Neurol 387:194–214
  • Martínez-Cerdeño V, Noctor SC, Kriegstein AR. 2006. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16:i152–i161
  • Martínez-Cerdeño V, Cunningham CL, Camacho J, Antczak JL, Prakash AN, Cziep MN, Walker AI, Noctor SC. 2012. Comparative analysis of the subventricular zone in rat, ferret and macaque: Evidence for an outer subventricular zone in rodents. PLoS One 7:e30178
  • Meyer J. 1981. A quantitative comparison of the parts of the brains of two Australian marsupials and some eutherian mammals. Brain Behav Evol 18:60–71
  • Molnár Z, Knott GW, Blakemore C, Saunders NR. 1998. Development of thalamocortical projections in the South American gray short-tailed opossum (Monodelphis domestica). J Comp Neurol 398:491–514
  • Montiel JF, Wang WZ, Oeschger FM, Hoerder-Suabedissen A, Tung WL, Garcia-Moreno F, Holm IE, Villalón A, Molnár Z. 2011. Hypothesis on the dual origin of the mammalian subplate. Front Neuroanat 5:25
  • Nelson J, Knight RM, Kingham C. 2003. Perinatal sensory and motor development in marsupials with special reference to the northern quoll, Dasyurus hallucatus. In: Jones M, Dickman C, Archer M, editors. Predators with pouches. The biology of carnivorous marsupials. Collingwood: CSIRO. pp 205–217
  • Nicol SC. 2013. Behaviour and ecology of the monotremes. In: Ashwell KW, editor. Neurobiology of monotremes. Brain evolution in our distant mammalian cousins. Collingwood: CSIRO. pp 17–30
  • O'Rahilly R, Müller F. 2006. The embryonic brain. An atlas of developmental stages. 3rd ed. Hoboken, NJ: Wiley-Liss
  • Paxinos G, Watson CRR, Carrive P, Kirkcaldie M, Ashwell K. 2009. Chemoarchitectonic atlas of the rat brain. 2nd ed. San Diego: Elsevier
  • Ponting C, Jackson AP. 2005. Evolution of primary microcephaly genes and the enlargement of primate brains. Curr Opin Gen Dev 15:241–248
  • Prothero JW, Sundsten JW. 1984. Folding of the cerebral cortex in mammals. A scaling model. Brain Behav Evol 24:152–167
  • Reynolds ML, Cavanagh ME, Dziegielewska KM, Hinds LA, Saunders NR, Tyndale-Biscoe CH. 1985. Postnatal development of the telencephalon of the tammar wallaby (Macropus eugenii). Anat Embryol 173:81–94
  • Saunders NR, Adam E, Reader M, Møllgard K. 1989. Monodelphis domestica (grey short-tailed opossum): An accessible model for studies of early neocortical development. Anat Embryol 180:227–236
  • Schmidt MJ, Amort KH, Failing K, Klingler M, Kramer M, Ondreka N. 2014. Comparison of the endocranial- and brain volumes in brachycephalic dogs, mesaticephalic dogs and Cavalier King Charles spaniels in relation to their body weight. Acta Vet Scand 56:30
  • Sheng X-M, Marotte LR, Mark RF. 1991. Development of the laminar distribution of thalamocortical axons and corticothalamic cell bodies in the visual cortex of the wallaby. J Comp Neurol 307:17–38
  • Song A, Ashwell KW, Tracey DJ. 2000. Development of the rat phrenic nucleus and its connections with brainstem respiratory nuclei. Anat Embryol 202:159–177
  • Stephan H, Pirlot P, Schneider R. 1974. Volumetric analysis of pteropid brains. Acta Anat 87:161–192
  • Tang BL. 2006. Molecular genetic determinants of human brain size. Biochem Biophys Res Comm 345:911–916
  • Vasistha NA, García-Moreno F, Arora S, Cheung AF, Arnold SJ, Robertson EJ, Molnár Z. 2014. Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex epub ahead of print
  • Von Bonin G. 1937. Brain-weight and body-weight of mammals. J Gen Psychol 16:379–389
  • Wang WZ, Oeschger FM, Montiel JF, García Moreno F, Hoerder-Suabedissen A, Krubitzer L, Ek CJ, Saunders NR, Reim K, Villalón A, et al. 2011. Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals. Cereb Cortex 21:2187–2203
  • Wang Y-Q, Su B. 2004. Molecular evolution of microcephalin, a gene determining human brain size. Hum Mol Gen 13:1131–1137
  • Woods RP, Freimer NB, De Young JA, Fears SC, Sicotte NL, Service SK, Valentino DJ, Toga AW, Mazziotta JC. 2006. Normal variants of Microcephalin and ASPM do not account for brain size variability. Hum Mol Gen 15:2025–2029
  • Xu X, Lee J, Stern DF. 2004. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J Biol Chem 279:34091–34094
  • Zecevic N. 1993. Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32:131–149
  • Zecevic N, Chen Y, Filipovic R. 2005. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.