12
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Distribution of Cortical Neurons Projecting to Dorsal Column Nuclear Complex and Spinal Cord in the Hedgehog Tenrec, Echinops telfairi

&
Pages 185-197 | Accepted 04 Mar 1992, Published online: 10 Jul 2009

References

  • Abbie A. A. Cortical lamination in the polyprotodont marsupial Perameles nasuta. J. Comp. Neurol. 1942; 76: 509–536
  • Armand J. The origin, course and terminations of corticospinal fibers in various mammals. Prog. Bres. 1982; 57: 329–360
  • Bentivoglio M. The anatomical organization of corticospinal connections. Neurology and Neurobiology, Vol. 4, Non-Invasive Stimulation of Brain and Spinal Cord: Fundamentals and Clinical Applications, P. M. Rossini, C. D. Marsden. Alan R. Liss, New York 1988; 1–22
  • Biedenbach M. A., de Vito J. L. Origin of the pyramidal tract determined with horseradish peroxidase. Brain Res. 1980; 193: 1–17
  • Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde. J. A. Barth, Leipzig 1909
  • Carlson M. Evolution of the brain in Cetacea—is bigger better?. Behav. Brain Sci. 1988; 11: 91–92
  • Cheema S., Rustioni A., Whitsel B. L. Sensorimotor cortical projections to the primate cuneate nucleus. J. Comp. Neurol. 1985; 240: 196–211
  • Dum R. P., Strick P. L. The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci. 1991; 11: 667–690
  • Dunn R. C. J., Tolbert D. L. The corticotrigeminal projection in the cat: A study of the organization of cortical projections to the spinal trigeminal nucelus. Brain Res. 1982; 240: 13–26
  • Eisenberg J. F. The Mammalian Radiations. University of Chicago Press, Chicago 1981
  • Ferrer I. Developmental aspects of the neocortex of the bat. Neurosci. Res. 1989; 6: 573–581
  • Foster R. E., Donoghue J. P., Ebner F. F. Laminar organization of efferent cells in the parietal cortex of the Virginia opossum. Exp. Brain Res. 1981; 43: 330–336
  • Gallyas F. Silver staining of myelin by means of physical development. Neurol. Res. 1979; 1: 203–209
  • Glezer I., Jacobs M. S., Morgane P. J. Implications of the “initial brain” concept for brain evolution in Cetacea. Behav. Brain Sci. 1988; 11: 75–116
  • Godfrey G. K., Oliver W. L. R. The reproduction and development of the pigmy hedgehog tenrec, Echinops telfairi. Dodo J. Jersey Wildlife Preserv. Trust 1978; 15: 38–51
  • Gribnau A. A. M., Dederen P. J. W. C. Collateralization of the cervical corticospinal tract in the rat. Neurosci. Lett. 1989; 105: 47–52
  • Grob P., Büttner-Ennever J., Lang W., Akert K., Fäh A. A comparison of the retrograde tracer properties of [125I]wheat germ agglutinin (WGA) with HRP after injection into the corpus callosum. Brain Res. 1982; 236: 193–198
  • Groos W. P., Ewing L. K., Carter C. M., Coulter J. D. Organization of corticospinal neurons in the cat. Brain Res. 1978; 143: 393–419
  • Haug H. Brain sizes, surfaces, and neuronal sizes in the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am. J. Anat. 1987; 180: 126–142
  • Heffner R., Masterton B. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol. 1975; 12: 161–200
  • Holst M. C., HO R. H., Martin G. F. The origins of supraspinal projections to lumbosacral and cervical levels of the spinal cord in the gray short-tailed Brazilian opossum, Monodelphis domestica. Brain Behav. Evol. 1991; 38: 273–289
  • Itoh K., Konishi A., Nomura S., Mizuno N., Nakamura Y., Sugimoto T. Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: Cobalt-glucose oxidase method. Brain Res. 1979; 175: 341–346
  • Johnson J. I. Comparative development of somatic sensory cortex. Cerebral Cortex, Vol. 8B, Comparative Structure and Evolution of Cerebral Cortex, Part II, E. G. Jones, A. Peters. Plenum, New York 1990; 335–450
  • Kaas J. H. The segregation of function in the nervous system: Why do sensory systems have so many subdivisions?. Contributions to Sensory Physiology, W. D. Neff. Academic Press, New York 1982; Vol. 7: 201–240
  • Kaas J. H. The organization and evolution of neocortex. Higher Brain Functions: Recent Explorations of Brains' Emergent Properties, S. P. Wise. Wiley, New York 1987; 347–371
  • Kaas J. H. The evolution of complex sensory systems in mammals. J. Exp. Biol. 1989; 146: 165–176
  • Kapp B. S., Schwaber J. S., Driscoll P. A. The organization of insular cortex projections to the amygdaloid central nucleus and autonomic regulatory nuclei of the dorsal medulla. Brain Res. 1985; 360: 355–360
  • Künzle H. Meso-diencephalic regions projecting to the spinal cord and dorsal column nuclear complex in the hedgehog-tenrec, Echinops telfairi. Anat. Embryol. 1992; 185: 57–68
  • Le Gros Clark W. E. The brain of insectivores. Proc. Zool. Soc. Lond. 1932; 1932: 975–1013
  • Leong S. K. Localizing the corticospinal neurons in neonatal, developing and mature albino rat. Brain Res. 1983; 265: 1–9
  • Li X. G., Florence S. L., Kaas J. H. Areal distributions of cortical neurons projecting to different levels of the caudal brain stem and spinal cord in rats. Somatosens. Mot. Res. 1990; 7: 315–337
  • Matesz C. Peripheral and central distribution of fibers of the mesencephalic trigeminal root in the rat. Neurosci. Lett. 1981; 27: 13–18
  • Mesulam M. -M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J. Histochem. Cytochem. 1978; 26: 106–117
  • Michaloudi H., Dinopoulos A., Karamanlidis A. N., Papadopoulos G. C., Antonopoulos J. Cortical and brain stem projections to the spinal cord of the hedgehog (Erinaceus europaeus): A horseradish peroxidase study. Anat. Embryol. 1988; 178: 259–270
  • Miller M. W. The origin of corticospinal projection neurons in rat. Exp. Brain Res. 1987; 67: 339–351
  • Neafsey E. J., Hurley-Gins K. M., Arvanitis D. The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus. Brain Res. 1986; 377: 261–270
  • Nudo R. J., Masterton R. B. Descending pathways to the spinal cords: III: Sites of origin of the corticospinal tract. J. Comp. Neurol. 1990; 296: 559–584
  • Piccinini M., Kleinschmidt T., Gorr T., Weber R. E., Künzle H., Braunitzer G. Primary structure and oxygen-binding properties of the hemoglobin from the lesser hedgehog tenrec (Echinops telfairi Zalambdodonta): Evidence for phylogenetic isolation. Biol. Chem. Hoppe-Seyler 1991; 372: 975–989
  • Rapisarda C., Simonelli G., Monti S. Cells of origin and topographic organization of corticospinal neurons in the guinea pig by the retrograde HRP method. Brain Res. 1985; 334: 85–96
  • Rehkämper G. Vergleichende Architektonik des Neocortex der Insectivora. PhD dissertation, Christian-Albrechts-Universität, Kiel. 1980
  • Rehkämper G. Vergleichende Architektonik des Neocortex der Insectivora. Z. Zool. System. Evolutforsch. 1981; 19: 233–263
  • Rowe M. Organization of the cerebral cortex in monotremes and marsupials. Cerebral Cortex, Vol. 8B, Comparative Structure and Evolution of Cerebral Cortex, Part II, E. G. Jones, A. Peters. Plenum, New York 1990; 263–334
  • Sakai S. T. Corticospinal projections from area 4 and area 6 in the raccoon. Exp. Brain Res. 1990; 79: 240–249
  • Satomi H., Takahashi K., Aoki M., Kosaka I. Anatomical evidence for the re-crossing of lateral corticospinal fibers via the posterior gray commissure in the cat spinal cord. Neurosci. Lett. 1988; 88: 157–160
  • Schreyer D. J., Jones E. G. Topographic sequence of outgrowth of corticospinal axons in the rat: A study using retrograde axonal labeling with fast blue. Dev. Brain Res. 1988; 38: 89–101
  • Shimada S., Shiosaka S., Takami K., Yamano M., Tohyama M. Somatostatinergic neurons in the insular cortex project to the spinal cord: Combined retrograde axonal transport and immunohistochemical study. Brain Res. 1985; 326: 197–200
  • Shipley M. T. Insular cortex projection to the nucleus of the solitary tact and brainstem visceromotor regions in the mouse. Brain Res. Bull. 1982; 8: 138–148
  • Stephan H. Allocortex. Handbuch der Mikr. Anatomie des Menschen, W. Bargmann. Springer-Verlag, Berlin 1975; Vol. 4: 998, 9. Teil
  • Stephan H., Baron G., Frahm H. D. Insectivora. Comparative Brain Research, Vol. 1, Mammals. Springer-Verlag, Berlin 1991
  • Tashiro T., Matsuyama T., Higo S. Distribution of cells of origin of the corticotrigeminal projections to the nucleus caudalis of the spinal trigeminal complex in the cat: A horseradish peroxidase (HRP) study. Exp. Neurol. 1983; 80: 178–185
  • Toyoshima K., Sakai H. Exact cortical extent of the origin of the cortico-spinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas: A study with horseradish peroxidase in the monkey. J. Hirnforsch. 1982; 23: 257–270
  • Ulinski P. S. Thalamic projections to the somatosensory cortex of the echidna, Tachyglossus aculeatus. J. Comp. Neurol. 1984; 229: 153–170
  • Valverde F., de Carlos J. A., Lopes-Mascaraque L., Donate-Oliver F. Neocortical layers I and II of the hedgehog (Erinaceus europaeus): II. Thalamo-cortical connections. Anat. Embryol. 1986; 175: 167–179
  • Walsh T. M., Ebner F. F. The cytoarchitecture of somatic sensory motor cortex in the opossum (Didelphis marsupialis vir giniana): A Golgi study. J. Anat. 1970; 107: 1–18
  • Wise S. P., Murray E. A., Coulter J. D. Somatotopic organization of corticospinal and corticotrigeminal neurons in the rat. Neuroscience 1979; 4: 65–78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.