339
Views
17
CrossRef citations to date
0
Altmetric
Review

The P2X1 ion channel in platelet function

&
Pages 153-166 | Received 30 Dec 2009, Accepted 06 Jan 2010, Published online: 04 Mar 2010

References

  • Mills DC, Robb IA, Roberts GC. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol 1968; 195: 715–729
  • Burnstock G. Purinergic nerves. Pharmacol Rev 1972; 24: 509–581
  • Burnstock G, Cocks T, Kasakov L, Wong HK. Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur J Pharmacol 1978; 49: 145–149
  • Abbracchio MP, Burnstock G. Purinoceptors: Are there families of P2X and P2Y purinoceptors?. Pharmacol Ther 1994; 64: 445–475
  • Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF. The platelet ATP and ADP receptors. Curr Pharm Des. 2006; 12: 859–875
  • Gachet C. P2 receptors, platelet function and pharmacological implications. Thromb Haemost 2008; 99: 466–472
  • Cattaneo M. Platelet P2 receptors: Old and new targets for antithrombotic drugs. Expert Rev Cardiovasc Ther 2007; 5: 45–55
  • Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP. Nucleotide receptor signaling in platelets. J Thromb Haemost 2006; 4: 2317–2326
  • North RA. Molecular physiology of P2X receptors. Physiol Rev 2002; 82: 1013–1067
  • Brake AJ, Wagenbach MJ, Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 1994; 371: 519–523
  • Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, et al. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 1994; 371: 516–519
  • MacKenzie AB, Mahaut-Smith MP, Sage SO. Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem 1996; 271: 2879–2881
  • Vial C, Hechler B, Leon C, Cazenave JP, Gachet C. Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb Haemost 1997; 78: 1500–1504
  • Fung CY, Marcus AJ, Broekman MJ, Mahaut-Smith MP. P2X(1) receptor inhibition and soluble CD39 administration as novel approaches to widen the cardiovascular therapeutic window. Trends Cardiovasc Med 2009; 19: 1–5
  • Longhurst PA, Schwegel T, Folander K, Swanson R. The human P2x1 receptor: Molecular cloning, tissue distribution, and localization to chromosome 17. Biochim Biophys Acta 1996; 1308: 185–188
  • Sun B, Li J, Okahara K, Kambayashi J. P2X1 purinoceptor in human platelets. Molecular cloning and functional characterization after heterologous expression. J Biol Chem 1998; 273: 11544–11547
  • Wang L, Ostberg O, Wihlborg AK, Brogren H, Jern S, Erlinge D. Quantification of ADP and ATP receptor expression in human platelets. J Thromb Haemost 2003; 1: 330–336
  • Kawate T, Michel JC, Birdsong WT, Gouaux E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 2009; 460: 592–598
  • Torres GE, Egan TM, Voigt MM. Identification of a domain involved in ATP-gated ionotropic receptor subunit assembly. J Biol Chem 1999; 274: 22359–22365
  • Clyne JD, LaPointe LD, Hume RI. The role of histidine residues in modulation of the rat P2X(2) purinoceptor by zinc and pH. J Physiol 2002; 539(Pt 2)347–359
  • Clyne JD, Wang LF, Hume RI. Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor. J Neurosci 2002; 22: 3873–3880
  • Ennion SJ, Evans RJ. Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Mol Pharmacol 2002; 61: 303–311
  • Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, North RA. Subunit arrangement in P2X receptors. J Neurosci 2003; 23: 8903–8910
  • Egan TM, Khakh BS. Contribution of calcium ions to P2X channel responses. J Neurosci 2004; 24: 3413–3420
  • Migita K, Haines WR, Voigt MM, Egan TM. Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor. J Biol Chem 2001; 276: 30934–30941
  • Samways DS, Egan TM. Acidic amino acids impart enhanced Ca2+ permeability and flux in two members of the ATP-gated P2X receptor family. J Gen Physiol. 2007; 129: 245–256
  • Samways DS, Migita K, Li Z, Egan TM. On the role of the first transmembrane domain in cation permeability and flux of the ATP-gated P2X2 receptor. J Biol Chem 2008; 283: 5110–5117
  • Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G, Surprenant A, et al. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 1996; 497(Pt 2)413–422
  • Egan TM, Cox JA, Voigt MM. Molecular structure of P2X receptors. Curr Top Med Chem 2004; 4: 821–829
  • Surprenant A, Buell G, North RA. P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci 1995; 18: 224–229
  • Rassendren F, Buell G, Newbolt A, North RA, Surprenant A. Identification of amino acid residues contributing to the pore of a P2X receptor. Embo J 1997; 16: 3446–3454
  • Egan TM, Haines WR, Voigt MM. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J Neurosci 1998; 18: 2350–2359
  • Haines WR, Voigt MM, Migita K, Torres GE, Egan TM. On the contribution of the first transmembrane domain to whole-cell current through an ATP-gated ionotropic P2X receptor. J Neurosci 2001; 21: 5885–5892
  • Jiang LH, Rassendren F, Spelta V, Surprenant A, North RA. Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor. J Biol Chem 2001; 276: 14902–14908
  • Oury C, Toth-Zsamboki E, Van Geet C, Thys C, Wei L, Nilius B, et al. A natural dominant negative P2X1 receptor due to deletion of a single amino acid residue. J Biol Chem 2000; 275: 22611–22614
  • Robertson SJ, Ennion SJ, Evans RJ, Edwards FA. Synaptic P2X receptors. Curr Opin Neurobiol 2001; 11: 378–386
  • Kim M, Jiang LH, Wilson HL, North RA, Surprenant A. Proteomic and functional evidence for a P2X7 receptor signalling complex. Embo J 2001; 20: 6347–6358
  • Toth-Zsamboki E, Oury C, Watanabe H, Nilius B, Vermylen J, Hoylaerts MF. The intracellular tyrosine residues of the ATP-gated P2X(1) ion channel are essential for its function. FEBS Lett 2002; 524: 15–19
  • Vial C, Tobin AB, Evans RJ. G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 2004; 382(Pt 1)101–110
  • Ennion SJ, Evans RJ. P2X(1) receptor subunit contribution to gating revealed by a dominant negative PKC mutant. Biochem Biophys Res Commun 2002; 291: 611–616
  • Vial C, Rigby R, Evans RJ. Contribution of P2X1 receptor intracellular basic residues to channel properties. Biochem Biophys Res Commun 2006; 350: 244–248
  • Ase AR, Raouf R, Belanger D, Hamel E, Seguela P. Potentiation of P2X1 ATP-gated currents by 5-hydroxytryptamine 2A receptors involves diacylglycerol-dependent kinases and intracellular calcium. J Pharmacol Exp Ther 2005; 315: 144–154
  • Bernier LP, Ase AR, Tong X, Hamel E, Blais D, Zhao Q, et al. Direct modulation of P2X1 receptor-channels by the lipid phosphatidylinositol 4,5-bisphosphate. Mol Pharmacol 2008; 74: 785–792
  • Roberts JA, Evans RJ. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors. J Neurosci 2007; 27: 4072–4082
  • Digby HR, Roberts JA, Sutcliffe MJ, Evans RJ. Contribution of conserved glycine residues to ATP action at human P2X1 receptors: Mutagenesis indicates that the glycine at position 250 is important for channel function. J Neurochem 2005; 95: 1746–1754
  • Sim JA, Broomhead HE, North RA. Ectodomain lysines and suramin block of P2X1 receptors. J Biol Chem 2008; 283: 29841–29846
  • Greco NJ, Tonon G, Chen W, Luo X, Dalal R, Jamieson GA. Novel structurally altered P(2X1) receptor is preferentially activated by adenosine diphosphate in platelets and megakaryocytic cells. Blood 2001; 98: 100–107
  • Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF. Does the P(2X1del) variant lacking 17 amino acids in its extracellular domain represent a relevant functional ion channel in platelets?. Blood 2002; 99: 2275–2277
  • Vial C, Pitt SJ, Roberts J, Rolf MG, Mahaut-Smith MP, Evans RJ. Lack of evidence for functional ADP-activated human P2X1 receptors supports a role for ATP during hemostasis and thrombosis. Blood 2003; 102: 3646–3651
  • Mahaut-Smith MP, Sage SO, Rink TJ. Receptor-activated single channels in intact human platelets. J Biol Chem 1990; 265: 10479–10483
  • Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ. ADP is not an agonist at P2X(1) receptors: Evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 2000; 131: 108–114
  • Takano S, Kimura J, Matsuoka I, Ono T. No requirement of P2X1 purinoceptors for platelet aggregation. Eur J Pharmacol 1999; 372: 305–309
  • Savi P, Bornia J, Salel V, Delfaud M, Herbert JM. Characterization of P2x1 purinoreceptors on rat platelets: Effect of clopidogrel. Br J Haematol 1997; 98: 880–886
  • Daniel JL, Dangelmaier C, Jin J, Ashby B, Smith JB, Kunapuli SP. Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 1998; 273: 2024–2029
  • Rolf MG, Brearley CA, Mahaut-Smith MP. Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb Haemost 2001; 85: 303–308
  • Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermylen J, Hoylaerts MF. The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost 2001; 86: 1264–1271
  • Toth-Zsamboki E, Oury C, Cornelissen H, De Vos R, Vermylen J, Hoylaerts MF. P2X1-mediated ERK2 activation amplifies the collagen-induced platelet secretion by enhancing myosin light chain kinase activation. J Biol Chem 2003; 278: 46661–46667
  • Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS, 2nd, et al. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 1999; 5: 1010–1017
  • Kishore BK, Isaac J, Fausther M, Tripp SR, Shi H, Gill PS, et al. Expression of NTPDase1 and NTPDase2 in murine kidney: Relevance to regulation of P2 receptor signaling. Am J Physiol Renal Physiol 2005; 288: F1032–1043
  • Robson SC, Wu Y, Sun X, Knosalla C, Dwyer K, Enjyoji K. Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin Thromb Hemost 2005; 31: 217–233
  • Marcus AJ, Broekman MJ, Drosopoulos JH, Olson KE, Islam N, Pinsky DJ, et al. Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection. Semin Thromb Hemost 2005; 31: 234–246
  • Cauwenberghs S, Feijge MA, Hageman G, Hoylaerts M, Akkerman JW, Curvers J, et al. Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: Importance for platelet activity during thrombus formation. Transfusion 2006; 46: 1018–1028
  • Coade SB, Pearson JD. Metabolism of adenine nucleotides in human blood. Circ Res 1989; 65: 531–537
  • Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, et al. A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 2003; 198: 661–667
  • Fung CY, Brearley CA, Farndale RW, Mahaut-Smith MP. A major role for P2X1 receptors in the early collagen-evoked intracellular Ca2+ responses of human platelets. Thromb Haemost 2005; 94: 37–40
  • Erhardt JA, Toomey JR, Douglas SA, Johns DG. P2X1 stimulation promotes thrombin receptor-mediated platelet aggregation. J Thromb Haemost. 2006; 4: 882–890
  • Fung CY, Cendana C, Farndale RW, Mahaut-Smith MP. Primary and secondary agonists can use P2X(1) receptors as a major pathway to increase intracellular Ca(2+) in the human platelet. J Thromb Haemost 2007; 5: 910–917
  • Sage SO, Yamoah EH, Heemskerk JW. The roles of P(2X1)and P(2T AC)receptors in ADP-evoked calcium signalling in human platelets. Cell Calcium 2000; 28: 119–126
  • Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ. A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 2002; 135: 363–372
  • Tolhurst G, Vial C, Leon C, Gachet C, Evans RJ, Mahaut-Smith MP. Interplay between P2Y(1), P2Y(12), and P2X(1) receptors in the activation of megakaryocyte cation influx currents by ADP: Evidence that the primary megakaryocyte represents a fully functional model of platelet P2 receptor signaling. Blood 2005; 106: 1644–1651
  • Erhardt JA, Pillarisetti K, Toomey JR. Potentiation of platelet activation through the stimulation of P2X1 receptors. J Thromb Haemost 2003; 1: 2626–2635
  • Kawa K. Thrombopoietin enhances rapid current responses mediated by P2X1 receptors on megakaryocytic cells in culture. Jpn J Physiol 2003; 53: 287–299
  • Oury C, Sticker E, Cornelissen H, De Vos R, Vermylen J, Hoylaerts MF. ATP augments von Willebrand factor-dependent shear-induced platelet aggregation through Ca2+-calmodulin and myosin light chain kinase activation. J Biol Chem 2004; 279: 26266–26273
  • Grenegard M, Vretenbrant Oberg K, Nylander M, Desilets S, Lindstrom EG, Larsson A, et al. The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine. J Biol Chem 2008; 283: 18493–18504
  • Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF. P2X(1)-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood 2002; 100: 2499–2505
  • Oury C, Daenens K, Hu H, Toth-Zsamboki E, Bryckaert M, Hoylaerts MF. ERK2 activation in arteriolar and venular murine thrombosis: Platelet receptor GPIb vs. P2X. J Thromb Haemost 2006; 4: 443–452
  • Vial C, Fung CY, Goodall AH, Mahaut-Smith MP, Evans RJ. Differential sensitivity of human platelet P2X1 and P2Y1 receptors to disruption of lipid rafts. Biochem Biophys Res Commun 2006; 343: 415–419
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572
  • Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 2000; 275: 17221–17224
  • Locke D, Chen H, Liu Y, Liu C, Kahn ML. Lipid rafts orchestrate signaling by the platelet receptor glycoprotein VI. J Biol Chem 2002; 277: 18801–18809
  • Lee FA, van Lier M, Relou IA, Foley L, Akkerman JW, Heijnen HF, et al. Lipid rafts facilitate the interaction of PECAM-1 with the glycoprotein VI-FcR gamma-chain complex in human platelets. J Biol Chem 2006; 281: 39330–39338
  • Arthur JF, Gardiner EE, Matzaris M, Taylor SG, Wijeyewickrema L, Ozaki Y, et al. Glycoprotein VI is associated with GPIb-IX-V on the membrane of resting and activated platelets. Thromb Haemost 2005; 93: 716–723
  • Heijnen HF, Van Lier M, Waaijenborg S, Ohno-Iwashita Y, Waheed AA, Inomata M, et al. Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J Thromb Haemost 2003; 1: 1161–1173
  • Shrimpton CN, Borthakur G, Larrucea S, Cruz MA, Dong JF, Lopez JA. Localization of the adhesion receptor glycoprotein Ib-IX-V complex to lipid rafts is required for platelet adhesion and activation. J Exp Med 2002; 196: 1057–1066
  • Vial C, Evans RJ. Disruption of lipid rafts inhibits P2X1 receptor-mediated currents and arterial vasoconstriction. J Biol Chem 2005; 280: 30705–30711
  • Somani AK, Bignon JS, Mills GB, Siminovitch KA, Branch DR. Src kinase activity is regulated by the SHP-1 protein-tyrosine phosphatase. J Biol Chem 1997; 272: 21113–21119
  • Mazharian A, Roger S, Maurice P, Berrou E, Popoff MR, Hoylaerts MF, et al. Differential Involvement of ERK2 and p38 in platelet adhesion to collagen. J Biol Chem 2005; 280: 26002–26010
  • Saklatvala J, Rawlinson L, Waller RJ, Sarsfield S, Lee JC, Morton LF, et al. Role for p38 mitogen-activated protein kinase in platelet aggregation caused by collagen or a thromboxane analogue. J Biol Chem 1996; 271: 6586–6589
  • Armstrong JN, Brust TB, Lewis RG, MacVicar BA. Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 2002; 22: 5938–5945
  • Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, et al. P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 2001; 21: 7135–7142
  • Papp L, Vizi ES, Sperlagh B. P2X7 receptor mediated phosphorylation of p38MAP kinase in the hippocampus. Biochem Biophys Res Commun 2007; 355: 568–574
  • da Cruz CM, Ventura AL, Schachter J, Costa-Junior HM, da Silva Souza HA, Gomes FR, et al. Activation of ERK1/2 by extracellular nucleotides in macrophages is mediated by multiple P2 receptors independently of P2X7-associated pore or channel formation. Br J Pharmacol 2006; 147: 324–334
  • Donnelly-Roberts DL, Namovic MT, Faltynek CR, Jarvis MF. Mitogen-activated protein kinase and caspase signaling pathways are required for P2X7 receptor (P2X7R)-induced pore formation in human THP-1 cells. J Pharmacol Exp Ther 2004; 308: 1053–1061
  • Rettinger J, Schmalzing G. Activation and desensitization of the recombinant P2X1 receptor at nanomolar ATP concentrations. J Gen Physiol 2003; 121: 451–461
  • Lambrecht G. Agonists and antagonists acting at P2X receptors: Selectivity profiles and functional implications. Naunyn Schmiedebergs Arch Pharmacol 2000; 362: 340–350
  • MacKenzie AB, Surprenant A, North RA. Functional and molecular diversity of purinergic ion channel receptors. Ann N Y Acad Sci 1999; 868: 716–729
  • Burgstahler R, Grafe P. Diadenosine pentaphosphate is more potent than ATP at P2X receptors in isolated rat vagus nerve. Neuroreport 2001; 12: 679–682
  • Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A. Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol 1995; 48: 178–183
  • Erb L, Lustig KD, Sullivan DM, Turner JT, Weisman GA. Functional expression and photoaffinity labeling of a cloned P2U purinergic receptor. Proc Natl Acad Sci USA 1993; 90: 10449–10453
  • Schachter JB, Li Q, Boyer JL, Nicholas RA, Harden TK. Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br J Pharmacol 1996; 118: 167–173
  • Communi D, Robaye B, Boeynaems JM. Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 1999; 128: 1199–1206
  • Vigne P, Hechler B, Gachet C, Breittmayer JP, Frelin C. Benzoyl ATP is an antagonist of rat and human P2Y1 receptors and of platelet aggregation. Biochem Biophys Res Commun 1999; 256: 94–97
  • Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, et al. Pharmacological characterization of recombinant human and rat P2X receptor subtypes. European Journal of Pharmacology 1999; 376: 127–138
  • Leon D, Marin-Garcia P, Sanchez-Nogueiro J, de la OF, Garcia-Carmona F, Miras-Portugal MT. P2X agonist BzATP interferes with amplex-red-coupled fluorescence assays. Anal Biochem 2007; 367: 140–142
  • Miras-Portugal MT, Castro E, Mateo J, Pintor J. The diadenosine polyphosphate receptors: P2D purinoceptors. Ciba Found Symp 1996; 198: 35–47, 8–52
  • Cusack NJ. P-2 receptor–subclassification and structure-activity-relationships. Drug Develop Res 1993; 28: 244–252
  • Cusack NJ, Hourani SM. Some pharmacological and biochemical interactions of the enantiomers of adenylyl 5′-(beta, gamma-methylene)-diphosphonate with the guinea-pig urinary bladder. Br J Pharmacol 1984; 82: 155–159
  • Simon J, Webb TE, King BF, Burnstock G, Barnard EA. Characterisation of a recombinant P2Y purinoceptor. Eur J Pharmacol 1995; 291: 281–289
  • Poulsen SA, Quinn RJ. Adenosine receptors: New opportunities for future drugs. Bioorg Med Chem 1998; 6: 619–641
  • Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50: 413–492
  • Haines WR, Torres GE, Voigt MM, Egan TM. Properties of the novel ATP-gated ionotropic receptor composed of the P2X(1) and P2X(5) isoforms. Mol Pharmacol 1999; 56: 720–727
  • Trezise DJ, Michel AD, Grahames CB, Khakh BS, Surprenant A, Humphrey PP. The selective P2X purinoceptor agonist, beta,gamma-methylene-L-adenosine 5′-triphosphate, discriminates between smooth muscle and neuronal P2X purinoceptors. Naunyn Schmiedebergs Arch Pharmacol 1995; 351: 603–609
  • von Kugelgen I, Krumme B, Schaible U, Schollmeyer PJ, Rump LC. Vasoconstrictor responses to the P2x-purinoceptor agonist beta, gamma-methylene-L-ATP in human cutaneous and renal blood vessels. Br J Pharmacol 1995; 116: 1932–1936
  • Lambrecht G. Design and pharmacology of selective P2-purinoceptor antagonists. J Auton Pharmacol 1996; 16: 341–344
  • Lambrecht G, Damer S, Niebel B, Czeche S, Nickel P, Rettinger J, et al. Novel ligands for P2 receptor subtypes in innervated tissues. Prog Brain Res 1999; 120: 107–117
  • Virginio C, North RA, Surprenant A. Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones. J Physiol 1998; 510(Pt 1)27–35
  • Lewis CJ, Surprenant A, Evans RJ. 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP)–a nanomolar affinity antagonist at rat mesenteric artery P2X receptor ion channels. Br J Pharmacol 1998; 124: 1463–1466
  • King BF, Liu M, Pintor J, Gualix J, Miras-Portugal MT, Burnstock G. Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors. Br J Pharmacol 1999; 128: 981–988
  • Jacobson KA, Kim YC, Wildman SS, Mohanram A, Harden TK, Boyer JL, et al. A pyridoxine cyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X1 receptors. J Med Chem 1998; 41: 2201–2206
  • Lambrecht G, Friebe T, Grimm U, Windscheif U, Bungardt E, Hildebrandt C, et al. PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol 1992; 217: 217–219
  • Lambrecht G, Rettinger J, Baumert HG, Czeche S, Damer S, Ganso M, et al. The novel pyridoxal-5′-phosphate derivative PPNDS potently antagonizes activation of P2X(1) receptors. Eur J Pharmacol 2000; 387: R19–21
  • Kim YC, Brown SG, Harden TK, Boyer JL, Dubyak G, King BF, et al. Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors. J Med Chem 2001; 44: 340–349
  • Wood CR, Hennessey TM. PPNDS is an agonist, not an antagonist, for the ATP receptor of Paramecium. J Exp Biol 2003; 206(Pt 3)627–636
  • Rettinger J, Schmalzing G, Damer S, Muller G, Nickel P, Lambrecht G. The suramin analogue NF279 is a novel and potent antagonist selective for the P2X(1) receptor. Neuropharmacology 2000; 39: 2044–2053
  • Klapperstuck M, Buttner C, Nickel P, Schmalzing G, Lambrecht G, Markwardt F. Antagonism by the suramin analogue NF279 on human P2X(1) and P2X(7) receptors. Eur J Pharmacol 2000; 387: 245–252
  • Kassack MU, Braun K, Ganso M, Ullmann H, Nickel P, Boing B, et al. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur J Med Chem 2004; 39: 345–357
  • Hulsmann M, Nickel P, Kassack M, Schmalzing G, Lambrecht G, Markwardt F. NF449, a novel picomolar potency antagonist at human P2X1 receptors. Eur J Pharmacol 2003; 470: 1–7
  • Rettinger J, Braun K, Hochmann H, Kassack MU, Ullmann H, Nickel P, et al. Profiling at recombinant homomeric and heteromeric rat P2X receptors identifies the suramin analogue NF449 as a highly potent P2X1 receptor antagonist. Neuropharmacology 2005; 48: 461–468
  • Horner S, Menke K, Hildebrandt C, Kassack MU, Nickel P, Ullmann H, et al. The novel suramin analogue NF864 selectively blocks P2X1 receptors in human platelets with potency in the low nanomolar range. Naunyn Schmiedebergs Arch Pharmacol 2005; 372: 1–13
  • Hechler B, Magnenat S, Zighetti ML, Kassack MU, Ullmann H, Cazenave JP, et al. Inhibition of platelet functions and thrombosis through selective or nonselective inhibition of the platelet P2 receptors with increasing doses of NF449 [4,4′,4″,4″′-(carbonylbis(imino-5,1,3-benzenetriylbis-(carbonylimino)))t etrakis-benzene-1,3-disulfonic acid octasodium salt]. J Pharmacol Exp Ther 2005; 314: 232–243
  • North RA, Surprenant A. Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 2000; 40: 563–580
  • Stoop R, Surprenant A, North RA. Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 1997; 78: 1837–1840
  • Nakazawa K, Liu M, Inoue K, Ohno Y. Potent inhibition by trivalent cations of ATP-gated channels. Eur J Pharmacol 1997; 325: 237–243
  • Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, et al. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 2000; 403: 86–89
  • Oury C, Kuijpers MJ, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, et al. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 2003; 101: 3969–3976

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.