153
Views
9
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Radioresistant Sf9 insect cells display efficient antioxidant defence against high dose γ-radiation

, , , &
Pages 732-741 | Received 11 Nov 2014, Accepted 14 May 2015, Published online: 08 Jul 2015

References

  • Ahmad S, Pardini RS. 1990. Mechanisms for regulating oxygen toxicity in phytofagous insects. Free Radic Biol Med 8:401–413.
  • Andreyev AY, Kushnareva YE, Starkov AA. 2005. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214.
  • Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399.
  • Asada K. 1984. Chloroplasts: Formation of active oxygen and its scavenging. Meth Enzymol 105:422–429.
  • Baker MA, Taylor YC, Brown JM. 1988. Radiosensitization, thiol oxidation, and inhibition of DNA repair by SR 4077. Radiat Res 113: 346–355.
  • Bowler C, Van Montagu M, Inze D. 1992. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116.
  • Bravard A, Luccioni C, Moustacchi E, Rigaud O. 1999. Contribution of antioxidant enzymes to the adaptive response to ionizing radiation of human lymphoblasts. Int J Radiat Biol 75:639–645.
  • Bump EA, Brown JM. 1990. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther 47:117–136.
  • Caputo F, Vegliante R, Ghibelli L. 2012. Redox modulation of the DNA damage response. Biochem Pharmacol 84:1292–1306.
  • Chandna S, Dwarkanath BS, Seth RK, Khaitan D, Adhikari JS, Jain V. 2004. Radiation responses of Sf9, a highly radioresistant lepidopteran insect cell line. Int J Radiat Biol 80:301–315.
  • Chandna S. 2010. RE: Multiple factors conferring high radioresistance in insect Sf9 cells. (Mutagenesis 2009;24:259–269). Mutagenesis 25:431–432.
  • Chandna S, Suman S, Chandna M, Pandey A, Singh V, Kumar A, Dwarakanath BS, Seth RK. 2013. Radioresistant Sf9 insect cells undergo an atypical form of Bax-dependent apoptosis at very high doses of γ-radiation. Int J Radiat Biol 89:1017–1027.
  • Chen WC, McBride WH, Iwamoto KS, Barber CL, Wang CC, Oh YT, Liao YP, Hong JH, de Vellis J, Shau H. 2002. Induction of radioprotective peroxiredoxin-I by ionizing irradiation. J Neurosci Res 70:794–798.
  • Cheng IC, Lee HJ, Wang TC. 2009. Multiple factors conferring high radioresistance in insect Sf9 cells. Mutagenesis 24:259–269.
  • Claiborne A. 1985. Catalase activity. In: Greenwald RA, editor. CRC handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press. pp. 283–284.
  • Duffy S, So A, Murphy TH. 1998. Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J Neurochem 71:69–77.
  • Epperly MW, Epperly LD, Niu Y, Wang H, Zhang X, Franicola D, Greenberger JS. 2007. Overexpression of the MnSOD transgene product protects cryopreserved bone marrow hematopoietic progenitor cells from ionizing radiation. Radiat Res 168:560–566.
  • Epperly MW, Gretton JE, Sikora CA, Jefferson M, Bernarding M, Nie S, Greenberger JS. 2003. Mitochondrial localization of superoxide dismutase is required for decreasing radiation-induced cellular damage. Radiat Res 160:568–578.
  • Epperly MW, Melendez JA, Zhang X, Nie S, Pearce L, Peterson J, Franicola D, Dixon T, Greenberger BA, Komanduri P, Wang H, Greenberger JS. 2009. Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo. Radiat Res 171:588–595.
  • Epperly MW, Sikora CA, DeFilippi SJ, Gretton JA, Zhan Q, Kufe DW, Greenberger JS. 2002. Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res 157:568–577.
  • Fridovich I. 1975. Superoxide dismutases. Annu Rev Biochem 44: 147–159.
  • Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:201–212.
  • Hall EJ, Giaccia AJ. 2006. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams and Wilkins.
  • Han D, Hanawa N, Saberi B, Kaplowitz N. 2006. Hydrogen peroxide and redox modulation sensitize primary mouse hepatocytes to TNF-induced apoptosis. Free Radic Biol Med 41:627–639.
  • Hardmeier R, Hoeger H, Fang-Kircher S, Khoschsorur A, Lubec G. 1997. Transcription and activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and radiation-sensitive mice. Proc Natl Acad Sci USA 94:7572–7576.
  • Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ, Ischiropoulos H. 2012. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic Biol Med 52:1–6.
  • Koval TM, Suppes DL. 1992. Heat resistance and thermotolerance in a radiation-resistant cell line. Int J Radiat Biol 61:425–431.
  • Koval TM. 1983a. Intrinsic resistance to the lethal effects of x-irradiation in insect and arachnid cells. Proc Natl Acad Sci USA 80:4752–4755.
  • Koval TM. 1983b. Radiosensitivity of cultured insect cells I. Lepidoptera. Radiat Res 96:118–126.
  • Koval TM. 1984. Multiphasic survival response of a radioresistant lepidopteran insect cell line. Radiat Res 98:642–648.
  • Koval TM. 1991. Gamma-ray- and UV-sensitive strains of a radioresistant cell line: Isolation and cross-sensitivity to other agents. Radiat Res 127:58–63.
  • Koval TM. 1994. Intrinsic stress resistance of cultured lepidopteran cells. In: Maramorosch K, McIntosh AH, editors. Insect cell biotechnology. Boca Raton, FL CRC Press. pp 157–185.
  • Kumar JS, Suman S, Singh V, Chandna S. 2012. Radioresistant Sf9 insect cells display moderate resistance against cumene hydroperoxide. Mol Cell Biochem 367:141–151.
  • Kumarswamy R, Seth RK, Dwarakanath BS, Chandna S. 2009. Mitochondrial regulation of insect cell apoptosis: Evidence for permeability transition pore-independent cytochrome-c release in the Lepidopteran Sf9 cells. Int J Biochem Cell Biol 41:1430–1440.
  • Lee JH, Choi IY, Kil IS, Kim SY, Yang ES, Park JW. 2001. Protective role of superoxide dismutases against ionizing radiation in yeast. Biochim Biophys Acta 1526:191–198.
  • Marklund SL, Westman NG, Roos G, Carlsson J. 1984. Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines. Radiat Res 100:115–123.
  • Matés JM. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153: 83–104.
  • Meister A. 1994. Glutathione, ascorbate, and cellular protection. Cancer Res 54(7 Suppl.):1969s–1975s.
  • Misra HP, Fridovich I. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175.
  • Neal R, Matthews RH, Lutz P, Ercal N. 2003. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation. Free Radic Biol Med 34:689–695.
  • Orta T, Eady JJ, Peacock JH, Steel GG. 1995. Glutathione manipulation and the radiosensitivity of human tumour and fibroblast cell lines. Int J Radiat Biol 68:413–419.
  • Peng TX, Moya A, Ayala FJ. 1986. Irradiation-resistance conferred by superoxide dismutase: Possible adaptive role of a natural polymorphism in Drosophila melanogaster. Proc Natl Acad Sci USA 83:684–687.
  • Petkau A, Chelack WS. 1984. Radioprotection by superoxide dismutase of macrophage progenitor cells from mouse bone marrow. Biochem Biophys Res Commun 119:1089–1095.
  • Riklis E, Emerit I, Setlow RB. 1996. New approaches to biochemical radioprotection: Antioxidants and DNA repair enhancement. Adv Space Res 18:51–54.
  • Rose RC. 1990. Ascorbic acid metabolism in protection against free radicals: A radiation model. Biochem Biophys Res Commun 169:430–436.
  • Sachdev B, Zarin M, Zubeda K, Malhotra P, Seth RK, Bhatnagar RK. 2014. Effect of gamma radiation on Phenoloxidase pathway, Antioxidant defense mechanism in Helicoverpa armigera (Lepidoptera: Noctuidae): Inherited sterility and its implication in pest suppression. Int J Radiat Biol 90:7–19.
  • Sankhalkar S, Sharma PK. 2002. Protection against photooxidative damage provided by enzymatic and non-enzymatic antioxidant system in sorghum seedlings. Indian J Exp Biol 40:1260–1268.
  • Snedecor GW, Cochran WG. 1989. Statistical methods, 8th ed. Iowa: The Iowa State University Press.
  • Seth RK, Lovell KV, Reynolds SE. 2003.Effects of gamma irradiation on proliferation and survival of Sf9 cells: Radio-resistance in a Lepidopteran insect cell-line. J Nuclear Agric Biol 32:179–191.
  • Seth RK, Sehgal SS. 1993. Partial sterilizing radiation dose-effect on the F1 progeny of Spodoptera litura (Fabr.): Growth, bioenergetics and reproductive competence. In: Proc., Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques, Vienna, 19–23 October 1992. Vienna: International Atomic Energy Agency. pp. 427–440.
  • Seth RK, Sharma VP. 2001. Inherited sterility by substerilizing radiation in Spodoptera litura (Lepidoptera: Noctuidae): Bioefficacy and potential for pest suppression. Florida Entomologist 84:183–193.
  • Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175.
  • Shacter E, Williams JA, Lim M, Levine RL. 1994. Differential susceptibility of plasma proteins to oxidative modification: Examination by Western blot immunoassay. Free Radic Biol Med 17:429–437.
  • Simone G, Tamba M, Quintiliani M. 1983. Role of glutathione in affecting the radiosensitivity of molecular and cellular systems. Radiat Environ Biophys 22:215–223.
  • Steven RG, Creissen GP, Mullineaux PM. 1997. Cloning and characterization of a cytosolic glutathione reductase cDNA from Pea (Pisum sativum L.) and its expression in response to stress. Plant Mol Biol 35:641–654.
  • Suman S, Seth RK, Chandna S. 2007. Reduced ROS induction and nitric oxide production may contribute to the radioresistance of Sf9 cells. Free Rad Biol Med43(Suppl. 1):S133–133.
  • Suman S, Seth RK, Chandna S. 2008. Role of nitric oxide synthase in insect cell radioresistance: An in-silico analysis. Bioinformation 3:8–13.
  • Suman S, Seth RK, Chandna S. 2009a. Mitochondrial antioxidant defence in radio-resistant Lepidopteran insect cells. Bioinformation 4:19–23.
  • Suman S, Seth RK, Chandna S. 2011. A calcium-insensitive attenuated nitrosative stress response contributes significantly in the radioresistance of Sf9 insect cells. Int J Biochem Cell Biol 43:1340–1353.
  • Sun J, Chen Y, Li M, Ge Z. 1998. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 24:586–593.
  • Takahashi M, Lee JM, Mon H, Kawaguchi Y, Koga K, Kusakabe T. 2006. Cell cycle arrest induced by radiation in cultured silkworm cells. J Insect Biotechnol Sericol 75:23–30.
  • Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal Biochem 27:502–522.
  • Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P. 2007. Radiation-induced cell signaling: Inside-out and outside-in. Mol Cancer Ther 6:789–801.
  • Vos O, van der Schans GP, Roos-Verheij WS. 1986. Reduction of intracellular glutathione content and radiosensitivity. Int J Radiat Biol Relat Stud Phys Chem Med 50:155–165.
  • Wang Y, Oberley LW, Murhammer DW. 2001. Antioxidant defense systems of two lipidopteran insect cell lines. Free Radic Biol Med 30:1254–1262.
  • Wang Y, Wang L, Zhu Z, Ma W, Lei C. 2012. The molecular characterization of antioxidant enzyme genes in Helicoverpa armigera adults and their involvement in response to ultraviolet-A stress. J Insect Physiol 58:1250–1258.
  • Watters D. 1999. Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol Cell Biol 77:263–271.
  • Weiss JF, Landauer MR. 2003. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 189:1–20.
  • Wojtczak L, Slyshenkov VS. 2003. Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals – the role of glutathione. Biofactors 17:61–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.