684
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines

, , , , &
Pages 964-972 | Received 14 Jan 2015, Accepted 10 Sep 2015, Published online: 17 Nov 2015

References

  • Alonso M, Melani M, Converso D, Jaitovich A, Paz C, Carreras MC, Medina JH, Poderoso JJ. 2004. Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. J Neurochem 89:248–256.
  • Berg H, Günther B, Hilger I, Radeva M, Traitcheva N, Wollweber L. 2010. Bioelectromagnetic field effects on cancer cells and mice tumors. Electromagn Biol Med 294:132–143.
  • Beutler R. 1975. Red cell metabolism. A manual of biochemical methods, 2nd ed. New York: Grune & Stratton.
  • Boveris A, Cadenas E. 1997. Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz Clerch L, Massaro DJ, editors. Oxygen, gene expression and cellular function. New York: Marcel Dekker Inc. pp. 1–25.
  • Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS. 2003. NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 278:2963–2968.
  • Consiglio M, Destefanis M, Morena D, Foglizzo V, Forneris M, Pescarmona G, Silvagno F. 2014. The vitamin D receptor inhibits the respiratory chain, contributing to the metabolic switch that is essential for cancer cell proliferation. PLoS One 9:e115816.
  • Delle Monache S, Angelucci A, Sanità P, Iorio R, Bennato F, Mancini F, Gualtieri G, Colonna RC. 2013. Inhibition of angiogenesis mediated by extremely low-frequency magnetic fields (ELF-MFs). PLoS One 8:e79309.
  • Ferecatu I, Bergeaud M, Rodríguez-Enfedaque A, Le Floch N, Oliver L, Rincheval V, Renaud F, Vallette FM, Mignotte B, Vayssière JL. 2009. Mitochondrial localization of the low level p53 protein in proliferative cells. Biochem Biophys Res Commun 387:772–777.
  • Garrabou G, Soriano A, López S, Guallar JP, Giralt M, Villarroya F, Martínez JA, Casademont J, Cardellach F, Mensa J, Miró O. 2007. Reversible inhibition of mitochondrial protein synthesis during linezolid-related hyperlactatemia. Antimicrob Agents Chemother 51:962–967.
  • Gluck B, Guntzschel V, Berg H. 2001. Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field. Cell Mol Biol 47:OL115–117.
  • Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. 2014. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 19:357–372.
  • Heyne K, Mannebach S, Wuertz E, Knaup KX, Mahyar-Roemer M, Roemer K. 2004. Identification of a putative p53 binding sequence within the human mitochondrial genome. FEBS Lett 578:198–202.
  • Huang CY, Chang CW, Chen CR, Chuang CY, Chiang CS, Shu WY, Fan TC, Hsu IC. 2014a. extremely low-frequency electromagnetic fields cause G1 phase arrest through the activation of the ATM-Chk2-p21 pathway. PLoS One 9:e104732.
  • Huang CY, Chuang CY, Shu WY, Chang CW, Chen CR, Fan TC, Hsu IC. 2014b. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently. PLoS One 9:e113424.
  • Ichas F, Mazat JP. 1998. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366:33–50.
  • International Agency Research on Cancer (IARC). 2002. Monographs of the evaluation of carcinogenic risks to humans. Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. Vol.80. Lyon, France: IARC. pp 331–338.
  • Iorio R, Delle Monache S, Bennato F, Di Bartolomeo C, Scrimaglio R, Cinque B, Colonna RC. 2011. Involvement of mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility. Bioelectromagnetics 32:15–27.
  • Jiménez-García MN, Arellanes-Robledo J, Aparicio-Bautista DI, Rodríguez-Segura MA, Villa-Treviño S, Godina-Nava JJ. 2010. Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver. BMC Cancer 10:159.
  • Jung IS, Kim HJ, Noh R, Kim SC, Kim CW. 2014. Effects of extremely low frequency magnetic fields on NGF induced neuronal differentiation of PC12 cells. Bioelectromagnetics 35:459–469.
  • Kim KY, Rhim T, Choi I, Kim SS. 2001. N-acetylcysteine induces cell cycle arrest in hepatic stellate cells through its reducing activity. J Biol Chem 276:40591–40598.
  • Kulawiec M, Ayyasamy V, Singh KK. 2009. p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog 8:8.
  • Kuruganti PA, Wurster RD, Lucchesi PA. 2002. Mitogen activated protein kinase activation and oxidant signaling in astrocytoma cells. J Neurooncol 56:109–117.
  • Liu J, St Clair DK, Gu X, Zhao Y. 2008. Blocking mitochondrial permeability transition prevents p53 mitochondrial translocation during skin tumor promotion. FEBS Lett 582:1319–1324.
  • Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T. 2002. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9:945–956.
  • Luukkonen J, Liimatainen A, Juutilainen J, Naarala J. 2014. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat Res Fundam Mol Mech Mutagen 760:33–41.
  • Manni V, Lisi A, Pozzi D, Rieti S, Serafino A, Giuliani L, Grimaldi S. 2002. Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keratinocytes. Bioelectromagnetics 23:298–305.
  • Martinez MA, Ubeda A, Cid MA, Trillo MA. 2012. The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling. Cell Physiol Biochem 29:675–686.
  • Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA. 2010. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radic Biol Med 48:579–589.
  • Morgado-Valle C, Verdugo-Diaz L, Garcia DE, Morales-Orozco C, Drucker-Colin R. 1998. The role of voltage-gated Ca2 + channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res 291:217–230.
  • Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, Neureiter D, Sperl W, Kofler B. 2015. Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-Nu mouse model. PLoS One 10:e0129802.
  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology 8:e1000298.
  • Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM. 2005. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J 19:1686–1688.
  • Park J, Kusminski CM, Chua SC, Scherer PE. 2010. Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am J Pathol 177:3133–3144.
  • Mitchell P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148.
  • Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. 2008. Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol 215:129–139.
  • Sadeghipour R, Ahmadian S, Bolouri B, Pazhang Y, Shafiezadeh M. 2012. Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D). Electromagn Biol Med 31:425–435.
  • Saleem A, Hood DA. 2013. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle. J Physiol 591:3625–3636.
  • Samavati L, Monick MM, Sanlioglu S, Buettner GR, Oberley LW, Hunninghake GW. 2002. Mitochondrial K (ATP) channel openers activate the ERK kinase by an oxidant-dependent mechanism. Am J Physiol Cell Physiol 283:C273–281.
  • Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ, Yagi T, Felding-Habermann B. 2013. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 123:1068–1081.
  • Silvagno F, Consiglio M, Foglizzo V, Destefanis M, Pescarmona G. 2013. Mitochondrial translocation of vitamin D receptor is mediated by the permeability transition pore in human keratinocyte cell line. PLoS One 8:e54716.
  • Stronati L, Testa A, Villani P, Marino C, Lovisolo GA, Conti D, Russo F, Fresegna AM, Cordelli E. 2004. Absence of genotoxicity in human blood cells exposed to 50 Hz magnetic fields as assessed by comet assay, chromosome aberration, micronucleus, and sister chromatid exchange analyses. Bioelectromagnetics 25:41–48.
  • Tian F, Nakahara T, Yoshida M, Honda N, Hirose H, Miyakoshi J. 2002. Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun 292:355–361.
  • Tofani S, Barone D, Cintorino M, De Santi MM, Ferrara A, Orlassino R, Ossola P, Peroglio F, Rolfo K, Ronchetto F. 2001. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics 22:419–428.
  • Trillo MA, Martinez MA, Cid MA, Leal J, Ubeda A. 2012. Influence of a 50 Hz magnetic field and of all-transretinol on the proliferation of human cancer cell lines. Int J Oncol 40:1405–1413.
  • Van Den Heuvel R, Leppens H, Nemethova G, Verschaeve L. 2001. Haemopoietic cell proliferation in murine bone marrow cells exposed to extreme low frequency (ELF) electromagnetic fields. Toxicol In Vitro 15:351–355.
  • Verginadis I, Velalopoulou A, Karagounis I, Simos Y, Peschos D, Karkabounas S, Evangelou A. 2012. Beneficial effects of electromagnetic radiation in cancer. In: Bashir SO, editor. Electromagnetic radiation. InTech, DOI: 10.5772/35456. ISBN: 978-953-51-0639-5. Available from: http://www.intechopen.com/books/electromagnetic-radiation/beneficial-effects-of-electromagnetic-radiation-in-cancer
  • Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. 2008. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 158:1189–1196.
  • Wei M, Guizzetti M, Yost M, Costa LG. 2000. Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cells in vitro. Toxicol Appl Pharmacol 162:166–176.
  • Wortzel I, Seger R. 2011. The ERK cascade: Distinct functions within various subcellular organelles. Genes Cancer 2:195–209.
  • Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K. 2003. p53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 63:3729–3734.
  • Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z, Ma HP, Xian CJ, Chen KM. 2011. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49:753–761.
  • Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT. 2003. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.