365
Views
3
CrossRef citations to date
0
Altmetric
Review

Influence of nuclear structure on the formation of radiation-induced lethal lesions

, &
Pages 229-240 | Received 04 Feb 2015, Accepted 13 Jan 2016, Published online: 26 Feb 2016

References

  • Adachi N, Ishino T, Ishii Y, Takeda S, Koyama H. 2001. DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: Implications for DNA double-strand break repair. Proc Natl Acad Sci USA. 98:12109–12113.
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. 2003. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988.
  • Aranda-Anzaldo A, Dent MA, Martinez-Gomez A. 2014. The higher-order structure in the cells nucleus as the structural basis of the post-mitotic state. Prog Biophys Mol Biol. 114:137-145
  • Aten JA, Stap J, Krawczyk PM, Van Oven CH, Hoebe RA, Essers J, Kanaar R. 2004. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science. 303:92–95.
  • Averbeck NB, Ringel O, Herrlitz M, Jakob B, Durante M, Taucher-Scholz G. 2014. DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Cell Cycle. 13:2509–2516.
  • Ay F, Bailey TL, Noble WS. 2014. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 24:999-101
  • Ballarini F. 2010. From DNA radiation damage to cell death: Theoretical approaches. J Nucleic Acids. 2010:350608.
  • Brown JM, Attardi LD. 2005. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer. 5:231–237.
  • Caron H, Van Schaik B, Van Der Mee M, Baas F, Riggins G, Van Sluis P, Hermus MC, Van Asperen R, Boon K, Voute PA, et al. 2001. The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science. 291:1289–1292.
  • Chadwick KH, Leenhouts HP. 1973. A molecular theory of cell survival. Phys Med Biol. 18:78–87.
  • Chapman JR, Taylor MR, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 47:497–510.
  • Charafe-Jauffret E, Ginestier C, Bertucci F, Cabaud O, Wicinski J, Finetti P, Josselin E, Adelaide J, Nguyen TT, Monville F, et al. 2013. ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res. 73:7290–7300.
  • Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, et al. 2009. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69:1302–1313.
  • Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, Myers DR, Choi VW, Compagno M, Malkin DJ, et al. 2011. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 147:107–119.
  • Chiu SM, Friedman LR, Xue LY, Oleinick NL. 1986. Modification of DNA damage in transcriptionally active vs. bulk chromatin. Int J Radiat Oncol Biol Phys. 12:1529–1532.
  • Clark JP, Cooper CS. 2009. ETS gene fusions in prostate cancer. Nat Rev Urol. 6:429–439.
  • Cohen BA, Mitra RD, Hughes JD, Church GM. 2000. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat Genet. 26:183–186.
  • Cook PR, Brazell IA. 1976. Conformational constraints in nuclear DNA. J Cell Sci. 22:287–302.
  • Cornforth MN. 1990. Testing the notion of the one-hit exchange. Radiat Res. 121:21–27.
  • Cornforth MN, Greulich-Bode KM, Loucas BD, Arsuaga J, Vazquez M, Sachs RK, Bruckner M, Molls M, Hahnfeldt P, Hlatky L, et al. 2002. Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol. 159:237–244.
  • Costes SV, Ponomarev A, Chen JL, Nguyen D, Cucinotta FA, Barcellos-Hoff MH. 2007. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS Comput Biol. 3:e155.
  • Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ. 2007. gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One. 2:e1057.
  • Cremer T, Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2:292–301.
  • Cucinotta FA, Nikjoo H, Goodhead DT. 1998. The effects of delta rays on the number of particle-track traversals per cell in laboratory and space exposures. Radiat Res. 150:115–119.
  • De Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, Verstegen MJ, Krijger PH, Festuccia N, Nora EP, Welling M, et al. 2013. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature. 501:227–231.
  • Dekker J, Marti-Renom MA, Mirny LA. 2013. Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data. Nat Rev Genet. 14:390–403.
  • Edwards AA, Moiseenko VV, Nikjoo H. 1996. On the mechanism of the formation of chromosomal aberrations by ionising radiation. Radiat Environ Biophys. 35:25–30.
  • Engreitz JM, Agarwala V, Mirny LA. 2012. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease. PLoS One. 7:e44196.
  • Fowler JF. 2010. 21 years of biologically effective dose. Br J Radiol. 83:554–568.
  • Franken NA, Hovingh S, Ten Cate R, Krawczyk P, Stap J, Hoebe R, Aten J, Barendsen GW. 2012. Relative biological effectiveness of high linear energy transfer alpha-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells. Oncol Rep. 27:769–774.
  • Friedland W, Dingfelder M, Kundrat P, Jacob P. 2011. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res. 711:28–40.
  • Friedland W, Kundrat P. 2013. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation. Mutat Res. 756:213–223.
  • Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, et al. 2009. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 462:58–64.
  • Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M, Ellis J, Bazett-Jones DP. 2012. Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep. 13:992–996.
  • Geard CR. 1985. Charged particle cytogenetics: Effects of LET, fluence, and particle separation on chromosome aberrations. Radiat Res (Suppl. 8):S112–121.
  • Goodhead DT. 2006. Energy deposition stochastics and track structure: What about the target? Radiat Prot Dosimetry. 122:3–15.
  • Goodhead DT, Thacker J, Cox R. 1979. Effectiveness of 0.3 keV carbon ultrasoft X-rays for the inactivation and mutation of cultured mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 36:101–114.
  • Griffin CS, Hill MA, Papworth DG, Townsend KM, Savage JR, Goodhead DT. 1998. Effectiveness of 0.28 keV carbon K ultrasoft X-rays at producing simple and complex chromosome exchanges in human fibroblasts in vitro detected using FISH. Int J Radiat Biol. 73:591–598.
  • Hada M, Wu H, Cucinotta FA. 2011. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: A review. Mutat Res. 711:187–192.
  • Hahn S, Kim D. 2013. Physical origin of the contact frequency in chromosome conformation capture data. Biophys J. 105:1786–1795.
  • Hakim O, Resch W, Yamane A, Klein I, Kieffer-Kwon KR, Jankovic M, Oliveira T, Bothmer A, Voss TC, Ansarah-Sobrinho C, et al. 2012. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature. 484:69–74.
  • Hall EJ, Giaccia AJ. 2012. Radiobiology for the radiologist. Philadelphia: Wolters Kluwer Health.
  • Herr L, Friedrich T, Durante M, Scholz M. 2014. A model of photon cell killing based on the spatio-temporal clustering of DNA damage in higher order chromatin structures. PLoS One. 9:e83923.
  • Hubner MR, Eckersley-Maslin MA, Spector DL. 2013. Chromatin organization and transcriptional regulation. Curr Opin Genet Dev. 23:89–95.
  • Iliakis G. 1991. The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells. Bioessays. 13:641–648.
  • Jackson DA, Dickinson P, Cook PR. 1990. The size of chromatin loops in HeLa cells. EMBO J. 9:567–571.
  • Jackson SP, Bartek J. 2009. The DNA-damage response in human biology and disease. Nature. 461:1071–1078.
  • Jaffray DA. 2012. Image-guided radiotherapy: From current concept to future perspectives. Nat Rev Clin Oncol. 9:688–699.
  • Johnston PJ, MacPhail SH, Banath JP, Olive PL. 1998. Higher-order chromatin structure-dependent repair of DNA double-strand breaks: Factors affecting elution of DNA from nucleoids. Radiat Res. 149:533–542.
  • Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. 2012. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol. 30:90–98.
  • Kavanagh JN, Redmond KM, Schettino G, Prise KM. 2013. DNA double strand break repair: A radiation perspective. Antioxid Redox Signal. 18:2458–2472.
  • Kellerer AM, Rossi HH. 2012. A generalized formulation of dual radiation action. Radiat Res. 178:Av204–213.
  • Khodarev NN, Narayana A, Constantinou A, Vaughan AT. 1997. Topologically constrained domains of supercoiled DNA in eukaryotic cells. DNA Cell Biol. 16:1051–1058.
  • Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. 2013. The next-generation sequencing revolution and its impact on genomics. Cell. 155:27–38.
  • Lea DE. 1955. Actions of radiation on living cells. New York: Cambridge University Press.
  • Lee TI, Young RA. 2013. Transcriptional regulation and its misregulation in disease. Cell. 152:1237–1251.
  • Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326:289–293.
  • Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK, et al. 2009. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 139:1069–1083.
  • Magnander K, Hultborn R, Claesson K, Elmroth K. 2010. Clustered DNA damage in irradiated human diploid fibroblasts: Influence of chromatin organization. Radiat Res. 173:272–282.
  • McVey M, Lee SE. 2008. MMEJ repair of double-strand breaks (director’s cut): Deleted sequences and alternative endings. Trends Genet. 24:529–538.
  • Meaburn KJ, Misteli T, Soutoglou E. 2007. Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol. 17:80–90.
  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP,et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 448:553–560.
  • Mirny LA. 2011. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19:37–51.
  • Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 502:59–64.
  • Natarajan AT, Palitti F, Hill MA, Stevens DL, Ahnstrom G. 2010. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells. Mutat Res. 691:23–26.
  • Nikiforov YE, Koshoffer A, Nikiforova M, Stringer J, Fagin JA. 1999. Chromosomal breakpoint positions suggest a direct role for radiation in inducing illegitimate recombination between the ELE1 and RET genes in radiation-induced thyroid carcinomas. Oncogene. 18:6330–6334.
  • Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE. 2000. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science. 290:138–141.
  • Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, et al. 2012. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 31:1644–1653.
  • Nomiya T. 2013. Discussions on target theory: Past and present. J Radiat Res. 54:1161–1163.
  • O’Neill P, Wardman P. 2009. Radiation chemistry comes before radiation biology. Int J Radiat Biol. 85:9–25.
  • Obe G, Johannes C, Ritter S. 2010. The number and not the molecular structure of DNA double-strand breaks is more important for the formation of chromosomal aberrations: A hypothesis. Mutat Res. 701:3–11.
  • Olive PL. 1998. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res. 150:S42–51.
  • Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P. 2007. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5:e192.
  • Ostashevsky JY, Reichman B, Lange CS. 1999. Higher-order structure of mammalian chromatin deduced from viscoelastometry data. J Biomol Struct Dyn. 17:567–580.
  • Park C, Papiez L, Zhang S, Story M, Timmerman RD. 2008. Universal survival curve and single fraction equivalent dose: Useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 70:847–852.
  • Pfeiffer P, Goedecke W, Kuhfittig-Kulle S, Obe G. 2004. Pathways of DNA double-strand break repair and their impact on the prevention and formation of chromosomal aberrations. Cytogenet Genome Res. 104:7–13.
  • Price BD, D’Andrea AD. 2013. Chromatin remodeling at DNA double-strand breaks. Cell. 152:1344–1354.
  • Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 159:1665–1680.
  • Richardson C, Jasin M. 2000. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 405:697–700.
  • Rickman DS, Soong TD, Moss B, Mosquera JM, Dlabal J, Terry S, MacDonald TY, Tripodi J, Bunting K, Najfeld V, et al. 2012. Oncogene-mediated alterations in chromatin conformation. Proc Natl Acad Sci USA. 109:9083–9088.
  • Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T. 2013. Spatial dynamics of chromosome translocations in living cells. Science. 341:660–664.
  • Sachs RK, Chen AM, Brenner DJ. 1997. Review: Proximity effects in the production of chromosome aberrations by ionizing radiation. Int J Radiat Biol. 71:1–19.
  • Sandhu KS, Li G, Poh HM, Quek YL, Sia YY, Peh SQ, Mulawadi FH, Lim J, Sikic M, Menghi F, et al. 2012. Large-scale functional organization of long-range chromatin interaction networks. Cell Rep. 2:1207–1219.
  • Sankaranarayanan K, Taleei R, Rahmanian S, Nikjoo H. 2013. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells. Mutat Res. 753:114–130.
  • Savage JR. 1993. Interchange and intra-nuclear architecture. Environ Mol Mutagen. 22:234–244.
  • Sax K. 1940. An analysis of X-ray induced chromosomal aberrations in Tradescantia. Genetics. 25:41–68.
  • Schipler A, Iliakis G. 2013. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 41:7589–7605.
  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. 2004. Identification of human brain tumour initiating cells. Nature. 432:396–401.
  • Sutherland BM, Bennett PV, Sidorkina O, Laval J. 2000. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA. 97:103–108.
  • Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K. 2013. Chromatin compaction protects genomic DNA from radiation damage. PLoS One. 8:e75622.
  • Thacker J, Wilkinson RE, Goodhead DT. 1986. The induction of chromosome exchange aberrations by carbon ultrasoft X-rays in V79 hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med. 49:645–656.
  • Thompson LH. 2012. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res. 751:158–246.
  • Vakifahmetoglu H, Olsson M, Zhivotovsky B. 2008. Death through a tragedy: Mitotic catastrophe. Cell Death Differ. 15:1153–1162.
  • Vasireddy RS, Karagiannis TC, El-Osta A. 2010. gamma-radiation-induced gammaH2AX formation occurs preferentially in actively transcribing euchromatic loci. Cell Mol Life Sci. 67:291–294.
  • Wiklund K, Fernandez-Varea JM, Lind BK. 2011. A Monte Carlo program for the analysis of low-energy electron tracks in liquid water. Phys Med Biol. 56:1985–2003.
  • Williams D. 2008. Radiation carcinogenesis: Lessons from Chernobyl. Oncogene. 27(Suppl. 2):S9–18.
  • Woodbine L, Gennery AR, Jeggo PA. 2014. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair (Amst). 16:84–96.
  • Xu Y, Price BD. 2011. Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle. 10:261–267.
  • Yokota H, Van Den Engh G, Hearst JE, Sachs RK, Trask BJ. 1995. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol. 130:1239–1249.
  • Zhang Y, Mccord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC, Becker MS, Alt FW, Dekker J. 2012. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 148:908–921.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.