2,108
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Functional architecture of the CFTR chloride channel

Pages 1-16 | Received 01 Oct 2013, Accepted 18 Nov 2013, Published online: 17 Dec 2013

References

  • Akabas MH. 2000. Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel. J Biol Chem 275(6):3729–3732
  • Akabas MH, Kaufmann C, Cook TA, Archdeacon P. 1994. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269(21):14865–14868
  • Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, et al. 2009. Cystic fibrosis transmembrane conductance regulator: Using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry 48(42):10078–10088
  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, et al. 2009. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922):1718–1722
  • Andersen OS. 2011. Perspectives on: ion selectivity. J Gen Physiol 137(5):393–395
  • Anderson MP, Gregory RJ, Thompson S, Souza DW, Paul S, Mulligan RC, et al. 1991. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253(5016):202–205
  • Armstrong CM. 2007. Life among the axons. Annu Rev Physiol 69:1–18
  • Auerbach A. 2013. The energy and work of a ligand-gated ion channel. J Mol Biol 425(9):1461–1475
  • Baconguis I, Hattori M, Gouaux E. 2013. Unanticipated parallels in architecture and mechanism between ATP-gated P2X receptors and acid sensing ion channels. Curr Opin Struct Biol 23(2):277–284
  • Bai Y, Li M, Hwang T-C. 2010. Dual roles of the sixth transmem-brane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136(3):293–309
  • Bai Y, Li M, Hwang T-C. 2011. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). J Gen Physiol 138(5):495–507
  • Bass RB, Butler SL, Chervirz SA, Gloor SL, Falke JJ. 2007. Use of site-directed cysteine and disufide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors and bacterial chemotaxis. Methods Enzymol 423:25–51
  • Beck EJ, Yang Y, Yaemsiri S, Raghuram V. 2008. Conformational changes in a pore-lining helix coupled to cystic fibrosis trans-membrane conductance regulator channel gating. J Biol Chem 283(8):4957–4966
  • Berger HA, Anderson MP, Gregory RJ, Thompson S, Howard PW, Maurer RA, et al. 1991. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J Clin Invest 88(4):1422–1431
  • Bozoky Z, Krzeminski M, Chong PA, Forman-Kay JD. 2013. Structural changes of CFTR R region upon phosphorylation: A plastic platform for intramolecular and intermolecular interactions. FEBS J 280(18):4407-4416
  • Bridges RJ. 2013. Mechanisms of bicarbonate secretion: lessons from the airways. Cold Spring Harb Perspect Med 2:a015016
  • Careaga CL, Falke JJ. 1992. Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies. Biophys J 62(1):209–219
  • Catterall WA. 2012. Voltage-gated sodium channels at 60: structure, function, and pathophysiology. J Physiol 590(11):2577–2589
  • Chen EY, Bartlett MC, Loo TW, Clarke DM. 2004. The ΔF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 279(38):39620–39627
  • Chen T-Y, Hwang T-C. 2008. CLC-0 and CFTR: chloride channels evolved from transporters. Physiol Rev 88(2):351–387
  • Cheung M, Akabas MH. 1996. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment. Biophys J 70(6):2688–2695
  • Cheung JC, Deber CM. 2008. Misfolding of the cystic fibrosis transmembrane conductance regulator and disease. Biochemistry 47(6):1465–1473
  • Chong PA, Kota P, Dokholyan NV, Forman-Kay JD. 2013. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb PerspectMed 3:a009522
  • Cotten JF, Welsh MJ. 1999. Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge. J Biol Chem 274(9):5429–5435
  • Cui G, Freeman CS, Knotts T, Prince CZ, Kuang C, McCarty NA. 2013. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function. J Biol Chem 288(28):20758–20767
  • Cui G, Song B, Turki HW, McCarty NA. 2012. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers. Pflügers Arch 463(3):405–418
  • Cui G, Zhang Z-R, O’Brien ARW, Song B, McCarty NA. 2008. Mutations at arginine 352 alter the pore architecture of CFTR. J Membr Biol 222(2):91–106
  • Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, et al. 1991. Altered chloride ion channel kinetics associated with the AF508 cystic fibrosis mutation. Nature 354(6354):526–528
  • Dalton J, Kalid O, Schushan M, Ben-Tal N, Villà-Freixa J. 2012. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J Chem Inf Model 52(7):1842–1853
  • Dawson RJP, Locher KP. 2006. Structure of a bacterial multidrug ABC transporter. Nature 443(7108):180–185
  • Dawson RJP, Locher KP. 2007. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581(5):935–938
  • Dawson DC, Smith SS, Mansoura MK. 1999. CFTR: mechanism of anion conduction. Physiol Rev 79(Suppl 1):S47–S75
  • Dean M, Rzhetsky A, Alikmets R. 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156–1166
  • Deeley RG, Westlake C, Cole SPC. 2006. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86(3):849–899
  • DeFelice LJ, Goswami T. 2007. Transporters as channels. Annu Rev Physiol 69:87–112
  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77
  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415(6869):287–294
  • Dutzler R, Campbell EB, MacKinnon R. 2003. Gating the selectivity filter in ClC chloride channels. Science 300(5616):108–112
  • El Hiani Y, Linsdell P. 2010. Changes in accessibility of cyto-plasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 285(42):32126–32140
  • El Hiani Y, Linsdell P. 2012. Tuning of CFTR chloride channel function by location of positive charges within the pore. Biophys J 103(8):1719–1726
  • Fatehi M, Linsdell P. 2008. State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 283(10):6102–6109
  • Fatehi M, Linsdell P. 2009. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines. J Membr Biol 228(3):151–164
  • Fatehi M, St Aubin CN, Linsdell P. 2007. On the origin of asymmetric interactions between permeant anions and the CFTR chloride channel pore. Biophys J 92(4):1241–1253
  • Faure E, Starek G, McGuire H, Berneche S, Blunck R. 2012. A limited 4 Å radial displacement of the S4–S5 linker is sufficient for internal gate closing in Kv channels. J Biol Chem 287(47):40091–40098
  • Fong P. 2011. Thyroid iodide efflux: a team effort? J Physiol 589(24):5929–5939
  • Frizzell RA, Hanrahan JW. 2013. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 3:a009498
  • Gadsby DC. 2009. Ion channels versus ion pumps: the principal difference, in principle. Nature Rev Mol Cell Biol 10(5):344–352
  • Gao X, Bai Y, Hwang T-C. 2013. Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 104(4):786–797
  • Ge N, Muise CN, Gong X, Linsdell P. 2004. Direct comparison of the functional roles played by different membrane spanning regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 279(53):55283–55289
  • Gong X, Burbridge SM, Cowley EA, Linsdell P. 2002. Molecular determinants of Au(CN)2- binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl− channel pore. J Physiol 540(1):39–47
  • Gong X, Linsdell P. 2003. Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. J Physiol 549(2):387–397
  • Gong X, Linsdell P. 2004. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions. Arch Biochem Biophys 426(1):78–82
  • Gouaux E, MacKinnon R. 2005. Principles of selective ion transport in channels and pumps. Science 310(5753):1461–1465
  • Grigoryan G, Moore DT, Degrado WF. 2011. Transmembrane communication: General principles and lessons from the structure and function of the M2 proton channel, K+ channels, and integrin receptors. Annu Rev Biochem 80:211–237
  • Gupta J, Evagelidis A, Hanrahan JW, Linsdell P. 2001. Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region. Biochemistry 40(22):6620–6627
  • Gupta J, Linsdell P. 2003. Extent of the selectivity filter region in the CFTR chloride channel. Mol Membr Biol 20(1):45–52
  • Hanrahan JW, Sampson HM, Thomas DY. 2013. Novel pharmacological strategies to treat cystic fibrosis. Trends Pharmacol Sci 34(2):119–125
  • Hattori M, Gouaux E. 2012. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212
  • Hibbs RE, Gouaux E. 2011. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474(7349):54–60
  • Hilf RJC, Dutzler R. 2008. X-ray structure of a prokaryotic penta-meric ligand-gated ion channel. Nature 452(7185):375–379
  • Hilf RJC, Dutzler R. 2009. A prokaryotic perspective on pentameric ligand-gated ion channel structure. Curr Opin Struct Biol 19(4):418–424
  • Hille B. 2001. Ion channels of excitable membranes. Sunderland, MA: Sinauer Associates
  • Hohl M, Briand C, Grütter MG, Seeger MA. 2012. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nature Struct Mol Biol 19(4):395–402
  • Hunt JF, Wang C, Ford RC. 2013. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 3:a009514
  • Hwang T-C, Kirk KL. 2013. The CFTR ion channel: Gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 3:a009498
  • Hwang T-C, Sheppard DN. 1999. Molecular pharmacology ofthe CFTR Cl− channel. Trends Pharmacol Sci 20(11):448–453
  • Jayaram H, Accardi A, Wu F, Williams C, Miller C. 2008. Ion permeation through a Cl− selective channel designed from a CLC Cl−/H+ exchanger. Proc Natl Acad Sci USA 105(32):11194–11199
  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417(6888):515–522
  • Jih K-Y, Hwang T-C. 2012. Nonequilibrium gating of CFTR on an equilibrium theme. Physiology 27(6):351–361
  • Jin MS, Oldham ML, Zhang Q, Chen J. 2012. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490(7421):566–569
  • Jordan IK, Kota KC, Cui G, Thompson CH, McCarty NA. 2008. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Proc Natl Acad Sci USA 105(48):18865–18870
  • Kirk KL, Wang W. 2011. A unified view of cystic fibrosis trans-membrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. J Biol Chem 286(15):12813–12819
  • Kos V, Ford RC. 2009. The ATP-binding cassette family: a structural perspective. Cell Mol Life Sci 66(19):3111–3126
  • Krasilnikov OV, Sabirov RZ, Okada Y. 2011. ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore. J Physiol Sci 61(4):267–278
  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, et al. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300(5627):1922–1926
  • Kumar J, Mayer ML. 2013. Functional insights from glutamate receptor ion channel structures. Annu Rev Physiol 75:313–337
  • Li M-S, Holstead RG, Wang W, Linsdell P. 2011. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate. Am J Physiol 300(1):C65–C74
  • Li H, Sheppard DN. 2009. Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease. BioDrugs 23(4):203–216
  • Linsdell P. 2001a. Thiocyanate as a probe of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Can J Physiol Pharmacol 79(7):573–579
  • Linsdell P. 2001b. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531(1):51–66
  • Linsdell P. 2005. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280(10):8945–8950
  • Linsdell P. 2006. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91(1):123–129
  • Linsdell P, Evagelidis A, Hanrahan JW. 2000. Moleculardeterminants of anion selectivity in the cystic fibrosis transmembrane conduc-tanceregulatorchloridechannelpore. Biophys J 78(6):2973–2982
  • Linsdell P, Hanrahan JW. 1996. Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl− channels expressed in a mammalian cell line and its regulation by a critical pore residue. J Physiol 496(3):687–693
  • Linsdell P, Hanrahan JW. 1998. Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol 111(4):601–614
  • Linsdell P, Tabcharani JA, Rommens JM, Hou Y-X, Chang X-B, Tsui L-C, et al. 1997. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol 110(4):355–364
  • Linsdell P, Zheng S-X, Hanrahan JW. 1998. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines. J Physiol 512(1):1–16
  • Liu X, Smith SS, Dawson DC. 2003. CFTR: what’s it like inside the pore? J Exp Zool 300(1):69–75
  • Locher KP. 2009. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364(1514):239–245
  • Loo TW, Bartlett MC, Clarke DM. 2008. Processing mutations disrupt interactions between the nucleotide binding and trans-membrane domains of P-glycoprotein and the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 283(42):28190–28197
  • Lubamba B, Dhooghe B, Noel S, Leal T. 2012. Cystic fibrosis: Insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 45(15):1132–1144
  • Lukacs GL, Verkman AS. 2012. CFTR: folding, misfolding and correcting the AF508 conformational defect. Trends Mol Med 18(2):81–91
  • McCarty NA. 2000. Permeation through the CFTR chloride channel. J Exp Biol 203(13):1947–1962
  • McCarty NA, Zhang Z-R. 2001. Identification of a region of strong discrimination in the pore of CFTR. Am J Physiol 281(4):L852–L867
  • McCusker EC, Bagnéris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, et al. 2012. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102
  • McDonough S, Davidson N, Lester HA, McCarty NA. 1994. Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13(3):623–634
  • Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC. 2006. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J 25(20):4728–4739
  • Miller C. 2006. ClC chloride channels viewed through a transporter lens. Nature 440(7083):484–489
  • Miller C. 2010. CFTR: Break a pump, make a channel. Proc Natl Acad Sci USA 107(3):959–960
  • Mio K, Ogura T, Mio M, Shimizu H, Hwang T-C, Sato C, et al. 2008. Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J Biol Chem 283(44):30300–30310
  • Mornon J-P, Lehn P, Callebaut I. 2008. Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65(16):2594–2612
  • Mornon J-P, Lehn P, Callebaut I. 2009. Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci 66(21):3469–3486
  • Muallem D, Vergani P. 2009. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator. Philos Trans R Soc Lond B Biol Sci 364(1514):247–255
  • Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O’Donnell N, Dawson DC, et al. 2012. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a ‘bottleneck’ in the pore. Biochemistry 51(11):2199–2212
  • Okiyoneda T, Lukacs GL. 2012. Fixing cystic fibrosis by correcting CFTR domain assembly. J Cell Biol 199(2):199–204
  • Patrick AE, Thomas PJ. 2012. Development of CFTR structure. Front Pharmacol 3:162
  • Payandeh J, Scheuer T, Zheng N, Catterall WA. 2011. The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358
  • Picollo A, Malvezzi M, Houtman JC, Accardi A. 2009. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nature Struct Mol Biol 16(12):1294–1301
  • Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Erhlich G, Andres-Enguix I, et al. 2011. The pore structure and gating mechanism of K2P channels. EMBO J 30(17):3607–3619
  • Qian F, El Hiani Y, Linsdell P. 2011. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant. Pflügers Arch 462(4):559–571
  • Rees DC, Johnson E, Lewinson O. 2009. ABC transporters: the power to change. Nat Rev Mol Cell Biol 10(3):218–227
  • Rishishwar L, Varghese N, Tyagi E, Harvey SC, Jordan IK, McCarty NA. 2012. Relating the disease mutation spectrum to the evolution of the cystic fibrosis transmembrane conductance regulator (CFTR). PLoS One 7(8):e42336
  • Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC, Riordan JR. 2004. Purification and crystallization of the cystic fibrosis transmembrane conductance regualtor (CFTR). J Biol Chem 279(37):39051–39057
  • Rosenberg MF, O’Ryan LP, Hughes G, Zhao Z, Aleksandrov LA, Riordan JR, et al. 2011. The cystic fibrosis transmembrane conductance regulator (CFTR). Three-dimensional structure and localization of a channel gate. J Biol Chem 286(49):42647–42654
  • Roux B. 2005. Ion conduction and selectivity in K+ channels. Annu Rev Biophys Biomol Struct 34:153–171
  • Rowe SM, Verkman AS. 2013. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb Per-spect Med 3:a009761
  • Sather WA, McCleskey EW. 2003. Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159
  • Sebastian A, Rishishwar L, Wang J, Bernard KF, Conley AB, McCarty NA, et al. 2013. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain. Gene 523(2):137–146
  • Serohijos AWR, Hegedüs T, Aleksandrov AA, He L, Cui L, Dokholyan NV, et al. 2008. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci USA 105(9):3256–3261
  • Sheppard DN, Travis SM, Ishihara H, Welsh MJ. 1996. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 271(25):14995–15001
  • Sheppard DN, Welsh MJ. 1999. Structure and function of the CFTR chloride channel. Physiol Rev 79(Suppl 1):S23–S45
  • Shintre CA, Pike ACW, Li Q, Kim J-I, Barr AJ, Goubin S, et al. 2013. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci USA 110(24):9710–9715
  • Smith SS, Liu X, Zhang Z-R, Sun F, Kriewall TE, McCarty NA, et al. 2001. CFTR: Covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 118(4):407–431
  • Smith SS, Steinle ED, Meyerhoff ME, Dawson DC. 1999. Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns. J Gen Physiol 114(6):799–818
  • St Aubin CN, Linsdell P. 2006. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel. J Gen Physiol 128(5):535–545
  • Tabcharani JA, Chang X-B, Riordan JR, Hanrahan JW. 1991. Phosphorylation-regulated Cl− channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352(6336):628–631
  • Thiagarajah JR, Verkman AS. 2012. CFTR inhibitors for treating diarrheal disease. Clin Pharmacol Ther 92(3):287–290
  • Walden M, Accardi A, Wu F, Xu C, Williams C, Miller C. 2007. Uncoupling and turnover in a Cl−/H+ exchange transporter. J Gen Physiol 129(4):317–329
  • Wang W, El Hiani Y, Linsdell P. 2011. Alignment of transmem-brane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Gen Physiol 138(2):165–178
  • Wang W, El Hiani Y, Rubaiy HN, Linsdell P. 2014. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch; In press, doi: 10.1007/s00424-013-1317-x
  • Wang W, Linsdell P. 2012a. Alternating access to the transmem-brane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J Biol Chem 287(13):10156–10165
  • Wang W, Linsdell P. 2012b. Relative movements of transmem-brane regions at the outer mouth of the cystic fibrosis trans-membrane conductance regulator channel pore during channel gating. J Biol Chem 287(38):32136–32146
  • Wang W, Linsdell P. 2012c. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. Biochim Biophys Acta 1818. 3:851–861
  • Wang Y, Loo TW, Bartlett MC, Clarke DM. 2007. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. J Biol Chem 282(46):33247–33251
  • Ward A, Reyes CL, Yu J, Roth CB, Chang G. 2007. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104(48):19005–19010
  • Zhang L, Aleksandrov LA, Zhao Z, Birtley JR, Riordan JR, Ford RC. 2009. Architecture of the cystic fibrosis transmem-brane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167(3):242–251
  • Zhang Z-R, McDonough SI, McCarty NA. 2000a. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator. Biophys J 79(1):298–313
  • Zhang Z-R, Song B, McCarty NA. 2005. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 280(51):41997–42003
  • Zhang Z-R, Zeltwanger S, McCarty NA. 2000b. Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J Membr Biol 175(1):35–52
  • Zhou J-J, Fatehi M, Linsdell P. 2007. Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmem-brane conductance regulator chloride channel pore. J Membr Biol 216(2–3):129–142
  • Zhou J-J, Fatehi M, Linsdell P. 2008. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Pflugers Arch 457(2):351–360
  • Zhou J-J, Li M-S, Qi J, Linsdell P. 2010. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J Gen Physiol 135(3):229–245

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.