25
Views
12
CrossRef citations to date
0
Altmetric
Original Article

On the Mechanism of Action of Pseudolysin: Kinetic Study of the Enzymatic Condensation of Z-Ala with Phe-NH2

, &
Pages 417-429 | Received 17 May 1999, Published online: 11 Jul 2009

References

  • Alam M. N., Tadasa K., Kayahara H. Kinetic behavior of activation of thermolysin by normal alcohols. Biotechnol. Lett. 1996; 18: 45–50
  • Beckmann J., Mehlich A., Schröder W., Wenzel H. R., Tschesche H. Semisynthesis of Are15 Glu15 Met15 & Nle15-aprotinin involving enzymatic peptide bond resynthesis. J. Protein Chem. 1989; 8: 101–113
  • Graf L., Li C. H. Human somatotropin: covalent reconstitution of two polypeptide contiguous fragments with thrombin. Proc. Natl. Acad. Sei. USA 1981; 78: 6135–6138
  • Inouye K., Watanabe K., Morihara K., Tochino K., Kanaya T., Emura J., Sakakibara S. Enzyme-assisted semisvnthesis of human insulin. J. Am. Chem. Soc. 1979; 101: 751–752
  • Isowa Y., Ohmori M., Sato M., Mori K. The enzymatic synthesis of protected valine-5-angiotensin II amide-1. Bull. Client. Soc. Jpn. 1977; 50: 2766–2772
  • Isowa Y., Ohmori M., Ichikawa T., Mori K., Nonaka Y., Kihara K., Oyama K., Satoh H., Nishimura S. The thermolysin-catalyzed condensation reactions of N-substituted aspartic and glutamic acids with phenylalanine alkyl esters. Tetrahedron Lett 1979; 28: 2611–2612
  • Jakubke H. D., Kuhl P., Könnecke A. Basic principles of protease-catalyzed peptide bond formation. Angew. Chem. Int. Ed. Engl. 1985; 24: 85–93
  • Jakubke H. D. Protease-catalyzed peptide synthesis: Basic principles, new synthesis strategies and medium engineering. J. Chin. Chem. Soc. 1994; 41: 355–370
  • Kullmann W. Proteases as catalysts of enzymic syntheses of opioid peptides. J. Biol. Chem. 1980; 255: 8234–8238
  • Kunugi S., Yoshida M. Kinetics of a thermolysin-catalyzed peptide formation reaction in acetonitrile -water. Bull. Chem. Soc. Jpn. 1996; 69: 805–809
  • Morihara K., Tsuzuki H., Oka T., Inoue H., Ebata M. Pseudomonas aeruginosa elastase: Isolation, crystallisation and preliminary characterization. J. Biol. Chem. 1965; 240: 3295–3304
  • Nakanishi K., Matsuno R. Kinetics of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl esters. Eur. J. Biochem. 1986; 161: 533–540
  • Nakanishi K., Kimura Y., Matsuno R. Kinetics and equilibrium of enzymatic synthesis of peptides in aqueous organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl esters. Eur. J. Biochem. 1986; 161: 541–549
  • Oyama K., Kihara K., Nonaka Y. On the mechanism of the action of thermolysin: Kinetic study of the thermolysin-catalysed condensation reaction of N-benzyloxycarbonyl-L-aspartic acid with L-phenylalanine methyl ester. J.C.S. Perkin 1981; II: 356–360
  • Pantaleone D. P., Dikeman R. N. Enzymatic synthesis of aspartame precursors. Science for the Food Industry of the 21st Century, Biotechnology, Supercritical Fluids, Membranes and other Advanced Technologies for Low Calorie, Healthy Food Alternatives, M. Yalpani. ATL Press. 1993; 173–193
  • Pauchon V., Besson C., Saulnier J., Wallach J. Peptide synthesis catalysed by Pseudomonas aeruginosa elastase. Biotechnol. Appl. Biochem. 1993; 17: 217–221
  • Perrin D. D., Dempsey B. Buffers for use in partially aqueous and non-aqueous solvents and heavy water. Buffers for pH and Metal Ion Control. Chapman and Hall, Science Paperbacks, London 1973; 77–93
  • Petkov D. D. Enzyme peptide synthesis and semisynthesis: kinetic and thermodynamic aspects. J. Theor. Biol 1982; 98: 419–425
  • Poncz L. Substrate inhibition of Pseudomonas aeruginosa elastase by 3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine. Arch. Biochem. Biophys. 1988; 266: 508–515
  • Riechmann L., Kasche V. Reaction mechanism, specificity and pH-dependence of peptide synthesis catalyzed by the metalloproteinase thermolysin. Biochim. Biophys. Acta 1986; 872: 269–276
  • Rival S. Ph.D. Dissertation, Lyon, France 1996
  • Rival S., Besson C., Saulnier J., Wallach J. M. Use of conductimetry for the monitoring of thermodynamically-controlled enzymatic peptide synthesis. Anal. Chim. Acta 1995; 312: 213–216
  • Rival S., Besson C., Saulnier J., Wallach J. Dipeptide derivative synthesis catalyzed by Pseudomonas aeruginosa elastase. J. Peptide Res. 1999; 53: 170–176
  • Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967; 27: 157–162
  • Schwarz A., Wandrcy C., Steinke D., Kula M. R. A two-step enzymatic synthesis of dipeptides. Biotechnol. Bioeng. 1992; 39: 132–140
  • Segel I. L. Rapid equilibrium bireactant and terreactant systems. Enzyme Kinetics. John Wiley & Sons, Wiley Interscience, New York 1975; 273–329
  • Thayer M. M., Flaherty K. M., Mc Kay D. B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-Å resolution. J. Biol. Chem. 1991; 266: 2864–2871
  • Wayne S. I., Fruton J. S. Thermolysin-catalyzed peptide bond synthesis. Proc. Natl. Acad. Sci. USA 1983; 80: 3241–3244
  • Widmer F., Bayne S., Houen G., Mossi B. A., Rigby R. D., Wittaker R. G., Johansen J. T. Use of proteolytic enzymes for synthesis of fragments of mouse epidermal growth factor. Peptides 1984, Proc. 18th Eur. Pept. Symp., U. Ragnarsson. Almqvist and Wiksell, Stockholm 1984; 193–200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.