49
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Phenylalanine Dehydrogenase Catalyzed Reductive Amination of 6-(1′,3′-Dioxolan-2′-YL)-2-Keto-Hexanoic Acid to 6-(1′,3′-Dioxolan-2′-YL)-2S-Aminohexanoic Acid with Nadh Regeneration and Enzyme and Cofactor Retention

&
Pages 373-400 | Received 17 Aug 1999, Accepted 08 Mar 2000, Published online: 11 Jul 2009

References

  • Bückmann A. F. A new synthesis of coenzymatically active water-soluble macro-molecular NAD and NADP derivatives. Biocatalysis 1987; 1: 173–186
  • Bückmann A. F., Schmid R. A different acceptance of adenine-modified NADP by NADP-dependent Glucose dehydrogenase from Bacillus megaterium and strictly NADP-dependent glucose dehydrogenase from Cryptococcus uniguttulatus. Biotechnology and Applied Biochemistry 1991; 14: 104–113
  • Bückmann A. F., Kula M.-R., Wichmann R., Wandrey C. An efficient synthesis of high-molecular-weight NAD(H) derivatives suitable for continuous operation with coenzyme-dependent enzyme systems. J. Appl. Biochem. 1981; 3: 301–315
  • Bückmann A. F., Morr M., Kula M.-R. Preparation of technical grade poly-ethylenglycol (PEG) (MT 20,000)-N6-(2-Aminoethyl)-NADH by a procedure adaptable to large-scale synthesis. Biotech. Appl. Biochem. 1987; 9: 258–268
  • Chang T. M.S. Semipermeable microcapsules. Science 1964; 146: 324–325
  • Chang T. M.S. Stabilization of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by crosslinking with glutaraldehyde. Biochem. Biophys. Res. Comm. 1971; 44: 1531–1536
  • Chang T. M.S. Artificial cells in medicine and biotechnology. Applied Biochemistry and Biotechnology 1984; 10: 5–24
  • Chang T. M.S. Artificial cells containing multienzyme systems. Methods in Enzymology 1985; 112: 195–203
  • Chang T. M.S. Recycling of NAD(P) by multienzyme systems immobilized by microencapsulation in artificial cells. Methods in Enzymology 1987; 136: 67–82
  • Chang T. M.S. Bioencapsulation in biotechnology. Biomat. Art. Cells Immob. Biotech. 1993; 21: 291–297
  • Chang T. M.S., Poznansky M. J. Semipermeable aqueous microcapsules (artificial cells). V. Permeability characteristics. J. Biomed. Mat. Res. 1968; 2: 187–199
  • Chang T. M.S., McIntosh F. C., Mason S. G. Semipermeable aqueous microcapsules. Canadian Journal of Physiology and Pharmacology 1966; 44: 115–128
  • Chenault H. K., Whitesides G. M. Regeneration of nicotinamide cofactors for use in organic synthesis. Applied Biochemistry and Biotechnology 1987; 14: 147–197
  • Chenault H. K., Simon E. S., Whitesides G. M. Cofactor regeneration for enzyme-catalyzed synthesis. Biotechnology and Genetic Engineering Reviews 1988; 6: 221–270
  • Dueck C. L., Neufeld R. J., Chang T. M.S. Hydrodynamics and urea hydrolysis in a microencapsulated urease, fluidized bed reactor. The Canadian Journal of Chemical Engineering 1986; 64: 540–546
  • Faber K. Biotransformations in Organic Chemistry — A Textbook. Springer Verlag, BerlinGermany 1995
  • Grunwald J., Chang T. M.S. Nylon polyethyleneimine microcapsules for immobilizing multienzyme systems with soluble dextran-NAD for the continuous recycling of the microencapsulated dextran-NAD. Biochem. Biophys. Res. Com. 1978; 81: 565–570
  • Gu K. F., Chang T. M.S. Conversion of a-ketoglutarate into L-glutamic acid with urea as ammonium source using multienzyme systems and dextran-NAD immobilized by microencapsulation within artificial cells in a bioreactor. Biotechnology and Bioengineering 1988; 32: 363–368
  • Gu K. F., Chang T. M.S. Conversion of ammonia or urea into essential amino acids, L-leucine, L-valine and L-isoleucine, using artificial cells containing an immobilized multienzyme systems and dextran-NAD. Biotechnology and Applied Biochemistry 1990; 12: 227–236
  • Guagliardi A., Raia C. A., Rella R., Bückmann A. F., D'Auria S., Rossi M., Bartolucci S. Coenzymatic properties of macromolecular derivatives of NAD and NADP with two thermostable dehydrogenases from the archeobacterium Sulfolobus solfataricus. Biotechnology and Applied Biochemistry 1991; 13: 25–35
  • Hanson R. L., Howell J. M., LaPorte T. L., Donovan M.-J., Cazzulino D. L., Zannella V., Montana M. A., Nanduri V. B., Schwarz S. R., Eiring R. F., Durand S. C., Wasylyk J. M., Parker L., Liu M., Okuniewicz F. J., Chen B.-C, Harris J. C., Natalie K. J., Ramig K., Swaminathan S., Rosso V. W., Pack S. K., Lotz B. T., Bernot P. J., Risowicz A., Lust D. A., Tse K. S., Venit J. J., Szarka L. J., Patel R. N. Synthesis of allylysine ethylene acetal using phenylalanine dehydrogenase from Thermoactinomyces intermedius. Enzyme Microbial Technol. 2000; 26: 348–358
  • Kragl U., Vasic-Racki D., Wandrey C. Continuous processes with soluble enzymes. Indian Journal of Chemistry 1993; 32B: 103–117
  • Kragl U., Kruse W., Hummel W., Wandrey C. Enzyme engineering aspects of biocatalysis: cofactor regeneration as example. Biotechnology and Bioengineering 1996; 52: 309–319
  • Kroner K. H., Schütte H., Stach W., Kula M.-R. Scale-up of formate dehydrogenase by partition. J. Chem. Tech. Biotechnol. 1982; 32: 130–137
  • Kula M.-R., Wandrey C. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NADH regeneration. Methods in Enzymology 1987; 136: 9–21
  • Larson P.-O., Mosbach K. The preparation and characterisation of a water-soluble coenzymatically active dextran-NAD. FEBS Letters 1974; 46: 119–122
  • Lee K. B., Boadi D. K., Neufeld R. J. Blood urea clearance with microencapsulated urease. J. Theor. Biol. 1995; 175: 295–303
  • Madan P. L., Chareonboonsit P. Nylon microcapsules. II. Effect of selected variables on theophylline release. Pharmaceutical Research 1989; 6: 714–718
  • McGinity J. W., Cuff G. W. Nylon-encapsulated pharmaceuticals. Methods in Enzymology 1985; 112: 84–101
  • Miyawaki O., Nakamura K., Yano T. Permeability and molecular sieving characteristics of nylon microcapsule membrane. Agric. Bio. Chem. 1980; 44: 2865–2870
  • Morgan P. W., Kwolek S. L. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J. Polymer Sci. 1959; 40: 299–327
  • O'Grady P., Joyce P. Microencapsulation of bovine liver arginase: characterization and in vivo evaluation of its effect on the growth of the L1210 murine leukemia. Enzyme Microb. Technol. 1981; 3: 149–152
  • Patel R. N. Stereoselective biotransformations in synthesis of some pharmaceutical intermediates. Adv. Appl. Microbiol. 1997; 43: 91–140
  • Poncelet D., Poncelet de Smet B., Neufeld R. J. Nylon membrane formation in bio-catalyst microencapsulation: physiochemical modeling. J. Membr. Sci. 1990; 50: 249–267
  • Robl J. A., Sun C.-Q., Stevenson J., Ryono D. E., Simpkins L. M., Cimarusti M. P., Dejneka T., Slusarchyk W. A., Chao S., Stratton L., Misra R. N., Bednarz M. S., Asaad M. M., Cheung H. S., Abboa-Offei B. E., Smith P. L., Mathers P. D., Fox M., Schaeffer T. R., Seymour A., Trippodo N. C. Dual metalloprotease inhibitors: mercaptoacetyl-based fused heterocyclic dipeptide mimetics as inhibitors of angiotensin-converting enzyme and neutral endopeptidase. Journal of Medical Chemistry 1997; 40: 1570–1577
  • Tischer W., Tiemeyer W., Simon H. Stereospecific hydrogenations with immobilized microbial cells or enzymes. Biochimie 1980; 62: 331–339
  • Vasic-Racki D., Jonas M., Wandrey C., Hummel W., Kula M.-R. Continuous (R)-mandelic acid production in an enzyme membrane reactor. Appl. Microbiol. Biotechnol. 1989; 31: 215–222
  • Wahl H. P., Chang T. M.S. Recycling of NAD crosslinked to albumin or hemoglobin immobilized with multienzyme systems in artificial cells. J. Mol. Catalysis 1987; 39: 147–154
  • Wandrey C., Wichmann R. Coenzyme regeneration in membrane reactors. Enzymes and Immobilized Cells in Biotechnology, A. I. Laskin. The Benjamin/Cummings Publishing Company, Menlo Park, CA 1985; 177–208
  • Weuster-Botz D., Paschold H., Striegel B., Gieren H., Kula M.-R., Wandrey C. Continuous computer controlled production of formate dehydrogenase (FDH) and isolation on a pilot scale. Chemical Engineering Technology 1994; 17: 131–137
  • Wichmann R., Wandrey C., Bückmann A. F., Kula M.-R. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotech. Bioeng. 1981; 23: 2789–2802
  • Wong H., Chang T. M.S. A novel two-step procedure for immobilizing living cells in microcapsules for improving xenograft survival. Biomat. Art. Cells Immob. Biotech. 1991; 19: 687–697
  • Wong C.-H., Whitesides G. M. Enzymes in synthetic organic chemistry. Tetrahedron Organic Chemistry Series 1994; 12: 131–194

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.