38
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Engineering a Hyperstable Enzyme by Manipulation of Early Steps in the Unfolding Process

, &
Pages 443-458 | Received 07 Apr 2000, Published online: 11 Jul 2009

References

  • Arnold F. H. “Enzyme engineering reaches the boiling point”. Proc. Natl. Acad. Sci. USA 1998a; 95: 2035–2036
  • Arnold F. H. “Design by directed evolution”. Acc. Chem. Res 1998b; 31: 125–131
  • Chrunyk B. A., Wetzel R. “Breakdown in the relationship between thermal and thermodynamic stability in an interleukin-1 β point mutant modified in a surface loop”. Protein Engng 1993; 6: 733–738
  • Corbett R. J.T., Ahmad F., Roche R. S. “Domain unfolding and the stability of thermolysin in guanidine hydrochloride”. Biochem. Cell Biol 1986; 64: 953–961
  • Dahlquist F. W., Long J. W., Bigbee W. L. “Role of calcium in thermal stability of thermolysin”. Biochemistry 1976; 15: 1103–1111
  • Eijsink V. G.H., Dijkstra B. W., Vriend G., Van der Zee J. R., Veltman OR, Van der Vinne B., Van den Burg B., Kempe S., Venema G. “The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease”. Protein Engng 1992a; 5: 421–426
  • Eijsink V. G.H., Vriend G., Van der Vinne B., Hazes B., Van den Burg B., Venema G. “Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases”. Proteins 1992b; 14: 224–236
  • Eijsink V. G.H., Veltman O. R., Aukema W., Vriend G., Venema G. “Structural determinants of the stability of thermolysin-like proteases”. Nature Struct. Biol 1995; 2: 374–379
  • Facchiano A. M., Colonna G., Ragone R. “Helix stabilizing factors and stabilization of thermophilic proteins: an X-ray based study”. Protein Engng 1998; 11: 753–760
  • Fink A. L. “Protein aggregation: folding aggregates, inclusion bodies and amyloid”. Folding & Design 1998; 3: R9–R23
  • Fontana A. “Structure and stability of thermophilic enzymes; studies on thermolysin”. Biophys. Chem 1988; 29: 181–193
  • Giver L., Gershenson A., Freskgard P.-O., Arnold F. H. “Directed evolution of a thermostable esterase”. Proc. Natl. Acad. Sci. USA 1998; 95: 12809–12813
  • Haney P. J., Badger J. H., Buldak G. L., Reich C. I., Woese C. R., Olsen G. J. “Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species”. Proc. Natl. Acad. Sci. USA 1999; 96: 3578–3583
  • Holmes M. A., Matthews B. W. “Structure of thermolysin refined at 1.6 Å resolution”. J. Mol. Biol 1982; 160: 623–639
  • Hoseki J., Yano T., Koyama Y., Kuramitsu S., Kagamiyama H. “Directed evolution of thermostable kanamysin-resistance gene: a convenient selection marker for Thermus thermophilus”. J. Biochem. (Tokyo) 1999; 126: 951–956
  • Hubbard S. J. “The structural aspects of limited proteolysis of native proteins”. Biochim. Biophys. Acta 1998; 1382: 191–206
  • Kidokoro S., Miki Y, Endo K., Wada A., Nagao H., Miyake T., Aoyama A., Yoneya X, Kai K., Ooe S. “Remarkable activity enhancement of thermolysin mutants”. FEBS Lett 1995; 367: 73–76
  • Lebbink J. H.G., Knapp S., Van der Oost J., Rice D., Ladenstein R., De Vos W. M. “Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase II: construction of a 16-residue ion-pair network at the subunit interface”. J. Mol. Biol 1999; 289: 357–369
  • Malakauskas S. M., Mayo S. L. “Design, structure and stability of a hyperthermophilic protein variant”. Nature Struct. Biol 1998; 5: 470–475
  • Mansfeld J., Vriend G., Dijkstra B. W., Veltman O. R., Van den Burg B., Venema G., Tjlbrich-Hofmann R., Eijsink V. G.H. “Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond”. J. Biol. Chem 1997; 272: 11152–11156
  • Mansfeld J., Vriend G., Van den Burg B., Eijsink V. G.H., Ulbrich-Hofmann R. “Probing the unfolding region in a thermolysin-like protease by site-specific immobilization”. Biochemistry 1999; 38: 8240–8245
  • Matthews B. W. “Structural basis of the action of thermolysin and related zinc peptidases”. Acc. Chem. Res 1988; 21: 333–340
  • Matthews B. W., Weaver L. H., Kester W. R. “The conformation of thermolysin”. J. Biol. Chem 1974; 249: 8030–8044
  • Matthews B. W., Nicholson H., Becktel W. J. “Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding”. Proc. Natl. Acad. Sci. USA 1987; 84: 6663–6667
  • Mitchinson C., Wells J. A. “Protein engineering of disulphide bonds in subtilisin BPN'”. Biochemistry 1989; 28: 4807–4815
  • Roche R. S., Voordouw G. “The structural and functional roles of metal ions in thermolysin”. CRC Crit. Rev. Biochem 1978; 5: 1–23
  • Schwehm J. M., Kristyanne E. S., Biggers C. C., Stites WE. “Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease”. Biochemistry 1998; 37: 6939–6948
  • Spiller B., Gershenson A., Arnold F. H., Stevens R. C. “A structural view on evolutionary divergence”. Proc. Natl. Acad. Sci. USA 1999; 96: 12305–12310
  • Stemmer W. P.C. “Rapid evolution of a protein in vitro by DNA shuffling”. Nature 1994; 370: 389–391
  • Takagi M., Imanaka T., Aiba S. “Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus”. J. Bacteriol 1985; 163: 824–831
  • Ulbrich-Hofmann R., Arnold U., Mansfeld J. “The concept of the unfolding region for approaching the mechanisms of enzyme stabilization”. J. Mol. Catal. B-Enzymat 1999; 7: 125–131
  • Van den Burg B., Dijkstra B. W., Vriend G., Van der Vinne B., Venema G., Eijsink V. G.H. “Protein stabilization by hydrophobic interactions at the surface”. Eur, J. Biochem 1994; 220: 981–985
  • Van den Burg B., Vriend G., Veltman O. R., Venema G., Eijsink V. G.H. “Engineering an enzyme to resist boiling”. Proc. Natl. Acad. Sci. USA 1998; 95: 2056–2060
  • Van den Burg B., De Kreij A., Winkel C., Venema G. “Hydrolysis of industrial substrates by an extremely stable thermolysin-like protease variant obtained by protein engineering”. Biotechnol. Lett 1999a; 21: 537–542
  • Van den Burg B., De Kreij A., Van der Veek P., Mansfeld J., Venema G. “Characterization of a novel stable biocatalyst obtained by protein engineering”. Biotechnol. Appl. Biochem 1999b; 30: 35–40
  • Veltman O. R., Vriend G., Middelhoven P. J., Van den Burg B., Venema G., Eijsink V. G.H. “Analysis of structural determinants of the stability of thermolysin-like proteases by molecular modelling and site-directed mutagenesis”. Protein Engng 1996; 9: 1181–1190
  • Veltman O. R., Vriend G., Hardy F., Mansfeld J., Van den Burg B., Venema G., Eijsink V. G.H. “Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases”. Eur, J. Biochem 1997a; 248: 433–440
  • Veltman O. R., Vriend G., Van den Burg B., Hardy F., Venema G., Eijsink V. G.H. “Engineering thermolysin-like proteases whose stability is largely independent of calcium”. FEBS Lett 1997b; 405: 241–244
  • Veltman O. R., Vriend G., Berendsen H. J.C., Van den Burg B., Venema G., Eijsink V. G.H. “A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases”. Biochemistry 1998; 37: 5312–5319
  • Vita C, Fontana A., Jaenicke R. “Folding of thermolysin fragments”. Eur, J. Biochem. 1989; 183: 513–518
  • Vriend G. “what if, A molecular modelling and drug design program”. J. Mol. Graphics 1990; 8: 52–56
  • Vriend G., Eijsink V. G.H. “Prediction and analysis of structure, stability and unfolding of Bacillus neutral proteases”. J. Comput. Aided Mol. Des. 1993; 7: 367–396
  • Vriend G., Berendsen H. J.C., Van den Burg B., Venema G., Eijsink V. G.H. “Early steps in the unfolding of thermolysin-like proteases”. J. Biol. Chem 1998; 273: 35074–35077
  • Wells J. A. “Additivity of mutational effects in proteins”. Biochemistry 1990; 29: 8509–8517
  • Williams J. C., Zeelen J. P., Neubauer G., Vriend G., Backmann J., Michels P. A.M., Lambeir A.-M, Wierenga R. K. “Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power”. Protein Engng 1999; 12: 243–250
  • Zhao H., Arnold F. H. “Directed evolution converts subtilisin E into a functional equivalent of thermrtase”. Protein Engng 1999; 12: 47–53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.