9
Views
11
CrossRef citations to date
0
Altmetric
Original Article

The Effect of Substrate Hydrophobicity on the Kinetic Behaviour of Immobilized Candida rugosa Lipase

&
Pages 99-110 | Received 08 May 1995, Accepted 29 Sep 1995, Published online: 11 Jul 2009

References

  • Aaslyng D., Gormsen E., Malmos H. Mechanistic studies of proteases and lipases for the detergent industry. J. Chem. Tech. Biotechnol. 1991; 50: 321–330
  • Bailey J. E., Ollis D. F. Biochemical Engineering Fundamentals, 2nd ed. McGraw-Hill Book Co., NY 1986; 208–216
  • Bell G., Todd J. R., Blain J. A., Patterson J. D.E., Shaw C. E.L. Hydrolysis of triglyceride by solid phase lipolytic enzymes of Rhizopus arrhizus in continuous reactor systems. Biotechnol. Bioeng. 1981; 23: 1703–1719
  • Bjorkling F., Godtfredsen S. E., Kirk O. The future impact of industrial lipases. Trends in Biotechnol. 1991; 9: 360–363
  • Brockman H. L., Momsen W. E., Tsujita T. Lipid-lipid complexes: properties and effects of lipase binding. J. Am. Oil Chem. Soc. 1988; 65(6)891–896
  • Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., et al. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 1991; 351: 491–494
  • Dias S. F., Vilas-Boas L., Cabral J. M.S., Fonseca M. M.R. Production of ethyl butyrate of Candida rugosa lipase immobilized in polyurethane. Biocatalysis 1991; 5: 21–34
  • Ekiz H. I., Caglar M. A., Ucar T. A rapid equilibrium approach to the interfacial kinetics of lipid hydrolysis by a Candidal lipase. The Chem. Eng. J. 1988; 38: B7–B11
  • Faber K. Biotransformations in Organic Chemistry. Springer-Verlag, Berlin 1992; 72–76
  • Ferreira-Dias S., Fonseca M. M.R. Enzymatic glycerolysis of olive oil: a reactional system with major analytical problems. Biotechnol. Techn. 1993; 7(7)447–452
  • Ferreira-Dias S., da Fonseca M. M.R. Production of monolgycerides by glycerolysis of olive oil with immobilized lipases: effect of water activity. Bioprocess Eng. 1995; 12(5)327–337
  • Hayes D. G., Kleimann R. 1,3-Specific lipolysis of Lesquerella fendleri oil by immobilized and reverse-micellar encapsulated enzymes. J. Am. Oil Chem. Soc. 1993; 70(11)1121–1127
  • Hilhorst R., Spruijt R., Laane C., Veeger C. Rules for the regulation of enzyme activity in reversed micelles as illustrated by the conversion of apolar steroids by 20β-hydroxysteroid dehydrogenase. Eur. J. Biochem. 1984; 144: 459–466
  • Jensen R. G., Galluzzo D. R., Bush V. J. Selectivity is an important characteristic of lipases (acylglycerol hydrolases). Biocatalysis 1990; 3(4)307–315
  • Kang S. T., Rhee J. S. Characteristics of immobilized lipase-catalyzed hydrolysis of olive oil of high concentration in reverse phase system. Biotechnol. Bioeng. 1989; 33(11)1469–1476
  • Klibanov A. M. Enzymes that work in organic solvents. Chem. Tech. 1986, 6: 354–359
  • Laane C., Boeren S., Vos K. On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends in Biotechnol. 1985; 3(10)251–252
  • Lavayre J., Verrier J., Baratii J. Stereospecific hydrolysis by soluble and immobilized lipases. Biotechnol. Bioeng. 1982; 24: 2175–2187
  • Linfield W. M. Enzymatic fat splitting. Proceedings World Conference on Biotechnology for the Fats and Oils Industry, T. H. Applewhite. Am. Oil Chem. Soc., ChampaignUSA 1988; 131–133
  • Lowry R. R., Tinsley I. J. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976; 53(7)470–472
  • Mukherjee K. D. Lipase-catalyzed reactions for modification of fats and other lipids. Biocatalysis 1990; 3(4)277–293
  • Nagao A., Kito M. Lipase-catalyzed synthesis of fatty acid esters useful in food industry. Biocatalysis 1990; 3(4)295–305
  • Rekker R. F., de Kort H. M. The hydrophobic fragmental constant; an extension to 1000 data point set. Eur. J. Med. Chem. 1979; 14(6)479–488
  • Roig M. G. Sorption processes. Recovery Processes for Biological Materials, J. F. Kennedy, J. M.S. Cabral. John Willey & Sons, Chichester 1993; 369–414
  • Sarda L., Desnuelle P. Action de la lipase pancréatique sur les esters en émulsion. Biochim. Biophys. Acta 1958; 30: 513–521
  • Sonnet P. Lipase selectivities. J. Am. Oil Chem. Soc. 1988; 65(6)900–904
  • Uçar T., Ekiz H. I., Caglar A. A rapid equilibrium approach to the interfacial kinetics of lipid hydrolysis by a candidal lipase. The Chem. Eng. J. 1988; 38: B7–B11
  • Uçar T., Ekiz H. I., Caglar A. Surface effects of solvents in hydrolysis of water-soluble lipids by candidal lipase. Biotechnol. Bioeng. 1989; 33(9)1213–1218
  • Verger R., de Haas G. H. Interfacial enzyme kinetics of lipolysis. Annual Review of Biophysics and Bioengineering, L. J. Mullins, W. A. Hagins, L. Stryer, C. Newton, 1976; vol. 5: 77–117
  • Verger R., Rivière C. Les enzymes lipolitiques: une étude cinétique. Rev. Fr. Corps. Gras 1987; 34(1)7–13
  • Yang D., Rhee J. S. Stability of the lipase immobilized on DEAE-Sephadex for continuous lipid hydrolysis in organic solvent. Biotechnol. Lett. 1991; 13(8)553–558
  • Zaks A., Klibanov A. M. Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci 1985; 82(5)3192–3196

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.