128
Views
51
CrossRef citations to date
0
Altmetric
Original Article

Reductions of 3-oxo Esters by Baker's Yeast: Current Status

, , , &
Pages 95-134 | Received 02 Dec 1997, Published online: 11 Jul 2009

References

  • Bailey J. E. Towards a science of metabolic engineering. Science 1991; 252: 1668–1674
  • Bingfeng P., Jianxing G., Zuyi L., Ward O. P. Reductive biotransformations of 2-substituted-3-carbonyl butanoate by resting cells and an enzymatic system of Geotrichum sp. Enzyme and Microbial Technology 1995; 17: 853–855
  • Boccù E., Ebert C., Gardossi L., Gianferrara T., Linda P. Chemometric optimization of an asymmetric reduction catalyzed by baker's yeast. Biotechnology and Bioengineering 1990; 35: 928–934
  • Bruinenberg P. M., van Dijken J. P., Scheffers W. A. A theoretical analysis of NADPH production and consumption in yeasts. Journal of General Microbiology 1983a; 129: 953–964
  • Bruinenberg P. M., van Dijken J. P., Scheffers W. A. An enzymatic analysis of NADPH production and consumption in Candida utilis. Journal of General Microbiology 1983b; 129: 965–971
  • Bruinenberg P. M., Waslander G. W., van Dijken J. P., Scheffers W. A. A comparative radiorespirometric study of glucose metabolism in yeasts. Yeast 1986; 2: 117–121
  • Chen C. S., Zhou B. N., Girdaukas G., Shieh W. R., Vanmiddlesworth F., Gopalan A. S., Sih C. J. Stereochemical control of yeast reductions. 2. Quantitative treatment of the kinetics of competing enzyme systems for a single substrate. Bioorganic Chemistry 1984; 12: 98–117
  • Christen M., Crout D. Biotransformation in organic synthesis: Application of yeast reduction in the synthesis of 3,5-dihydroxy esters of high optical purity. Journal of the Chemical Society, Chemical Communications 1988; 264–266
  • Cooper R. A. Metabolism of methylglyoxal in microorganisms. Annual Reviews of Microbiology 1984; 38: 49–68
  • Csuk R., Glänzer B. I. Baker's yeast mediated transformations in organic chemistry. Chemical Reviews 1991; 91: 49–97
  • Cui J.-N., Teraoka R., Ema T., Sakai T., Utaka M. Highly regio- and enantio-selective reduction of l-chloro-2,4-alkanediones using baker's yeast: effects of organic solvents as additives. Tetrahedron Letters 1997; 38: 3021–3034
  • D'Arrigo P., Högberg H. E., Pedrocchi-Fantoni G., Servi S. Old and new synthetic capacities of baker's yeast. Biocatalysis 1994; 9: 299–312
  • de Vries S., Marres C. A.M. The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochimica et Biophysica Acta 1987; 895: 205–239
  • Ehrler J., Giovannini F., Lamatsch B., Seebach D. Stereoselectivity of yeast reductions — an improved procedure for the preparation of ethyl (S)-3-hydroxybutanoate and (S)-2-hydroxymethylbutanoate. Chimia 1986; 40: 172–173
  • Faber K. Biotransformations in organic chemistry3rd edition. Springer, Berlin 1997
  • Fantin G., Fogagnolo M., Guerzoni M. E., Lanciotti R., Medici A., Pedrini P., Rossi D. Effect of high hydrostatic pressure and hydrostatic pressure homogenization on the enantioselectivity of microbial reductions. Tetrahedron Asymmetry 1996; 7: 2879–2887
  • Fernandez M. J., Medrano L., Ruiz-Amil M., Losada M. Regulation and function of pyruvate kinase and malate enzyme in yeast. European Journal of Biochemistry 1967; 3: 11–18
  • Fiechter A., Fuhrmann G. F., Käppeli O. Regulation of glucose metabolism in growing yeast cells. Advances in Microbial Physiology 1981; 22: 123–183
  • Fuck E., Stärk G., Radler F. Äpfelsäurestoffwechsel bei Saccharomyees. II. Anreicherung und Eigenschaften eines Malatenzyms. Archiv fur Microbiologic 1973; 89: 223–231
  • Fuganti C., Grasselli P., Seneci P. F., Casati P. Further information on the steric course of the baker's yeast reduction of 4-substituted-3-oxobutanoates. Tetrahedron Letters 1986; 27: 5275–5276
  • Furuichi A., Akita H., Matsukura H., Oishi T., Horikoshi K. Purification and properties of an asymmetric reduction enzyme of 2-methyl-3-oxobutyrate in baker's yeast. Agricultural and Biological Chemistry 1985; 49: 2563–2570
  • Gancedo M. J., Gancedo C. Fructose-1,6-diphosphatase, phosphofrnctokinase and glucose-6-phosphate dehydrogenase from fermenting and nonfermenting yeasts. Archiv für Microbiologic 1971; 76: 132–138
  • Gancedo J. M., Lagunas R. Contribution of the pentose phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: A critical analysis on the use of labelled glucose. Plant Science Letters 1973; 1: 193–200
  • Griffin B. W. Functional and structural relationships among aldose reductase, L-hexonate dehydrogenase (aldehyde reductase), and recently identified homologous proteins. Enzyme and Microbial Technology 1992; 14: 690–695
  • Grifliths M. M., Bernofsky C. Activation of the mitochondrial DNP kinase from yeast. FEBS Letters 1970; 10: 97–100
  • Hallinan K. O., Crout D. H. G., Hunt J. R., Carter A. S., Dalton H., Murell J. C., Holt R. A., Crosby J. Yeast catalysed reduction of σ-keto esters (2): Optimisation of the stereospecific reduction by Zygosaccharamyces rouxii. Biocatalysis and Biotransformation 1995; 12: 179–191
  • Haselbeck R. J., Mc Alister-Henn L. Isolation, nucleotide sequence, and disruption of the Saccharomyces cerevisiae gene encoding mitochondrial NADP(H)-specific isocitrate dehydrogenase. The Journal of Biological Chemistry 1991; 266: 2339–2345
  • Hata H., Shimizu S., Hattori S., Yamada H. Ketopantoyl lactone reductase is a conjugated polyketone reductase. FEMS Microbiology Letters 1989; 58: 87–90
  • Heidlas J., Engel K., Tressl R. Purification and characterization of two oxidoreductases involved in the enantioselective reduction of 3-oxo, 4-oxo and 5-oxo esters in baker's yeast. European Journal of Biochemistry 1988; 172: 633–639
  • Heidlas J., Tressl R. Purification and properties of two oxidoreduetases catalyzing the enantioselective reduction of diacelyl and other diketones from baker's yeast. European Journal of Biochemistry 1990; 188: 165–174
  • Hunt J. R., Carter A. S., Murrell J. C., Dalton H., Hallinan K. O., Crout D. H.G., Holt R. A., Crosby J. Yeast catalysed reduction of β-keto-esters (1): Factors affecting whole-cell catalytic activity and stereoselectivity. Biocatalysis and Biotransformation 1995; 12: 159–178
  • Ishihara K., Nakajima N., Tsuboi S., Utaka M. Asymmetric reduction of l-acetoxy-2-alkanones with bakers' yeast. Purification and characterization of α-acetoxy ketone reductase. Bulletin of the Chemical Society of Japan 1994; 67: 3314–3319
  • Ishihara K., Kondo S., Nakamura K., Nakajima N. Protein sequences of two keto ester reductases: possible identity as hypothetical proteins. Bioscience, Biotechnology and Biochemistry 1996; 60: 1538–1539
  • Jayasinghe L. Y., Kodituwakku D., Smallridge A. J., Trewhella M. A. The use of organic solvent systems in the yeast mediated reduction of ethyl acetoacetate. Bulletin of the Chemical Society of Japan 1994; 67: 2528–2531
  • Kataoka M., Nomura Y., Shimizu S., Yamada H. Enzymes involved in the NADPH regeneration system coupled with asymmetric reduction of carbonyl compounds in microorganisms. Bioscience, Biotechnology and Biochemistry 1992; 56: 820–821
  • Kawai Y., Kondo S., Tsujimoto M., Nakamura K., Ohno A. Stereochemical control in microbial reduction. XXIII. Thermal treatment of bakers” yeast for controlling the stereoselectivity of reductions. Bulletin of the Chemical Society of Japan 1994; 67: 2244–2247
  • Kell D. B., Westerhoff H. V. Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiology Reviews 1986; 39: 305–320
  • Kim S. W., Kim E. Y. Development of a new alginate fiber for the immobilization of yeast. Biotechnology Techniques 1993; 10: 579–584
  • King H. L., Dyar R. E., Wilken D. R. Ketopantoyl lactone and ketopantoic acid reductases. Characterization of the reactions and purification of two forms of ketopantoyl lactone reductase. The Journal of Biological Chemistry 1974; 249: 4689–4695
  • Kometani T., Kitatsuji E., Matsuno R. Baker's yeast mediated bioreduction. A new procedure using ethanol as an energy source. Chemistry Letters 1989; 1465–1466
  • Kometani T., Kitatsuji E., Matsuno R. Bioreduction of ketones mediated by baker's yeast with acetate as ultimate reducing agent. Agricultural and Biological Chemistry 1991a; 55: 867–868
  • Kometani T., Kitatsuji E., Matsuno R. Baker's yeast mediated bioreduction: Practical procedure using EtOH as energy source. Journal of Fermentation and Bioengineering 1991b; 71: 197–199
  • Kometani T., Yoshii H., Kitatsuji E., Nishimura H., Matsuno R. Large-scale preparation of (S)-ethyl 3-hydroxybutanoate with a high enantiomeric excess through baker's yeast-mediated bioreduction. Journal of Fermentation and Bioengineering 1993; 76: 33–37
  • Kometani T., Morita Y., Furui H., Yoshii H., Matsuno R. NAD(P)H regeneration using ethanol as an energy source in baker's yeast-mediated bioreduction. Journal of Fermentation and Bioengineering 1994; 77: 13–16
  • Kometani T., Morita Y., Kiyama Y., Yoshii H., Matsuno R. Relationship between ethanol consumption rate and prochiral ketone reduction rate in baker's yeast. Journal of Fermentation and Bioengineering 1995; 80: 208–210
  • Kometani T., Yoshii H., Matsuno R. Large-scale production of chiral alcohols with baker's yeast. Journal of Molecular Catalysis B: Enzymatic 1996; 1: 45–52
  • Küenzi M. T., Fiechter A. Regulation of carbohydrate composition of Saccharo-myces cerevisiae under growth limitation. Archiv für Microbiologic 1972; 84: 254–265
  • Kuhn A., van Zyl C., van Tonder A., Prior B. A. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Applied and Environmental Microbiology 1995; 61: 1580–1585
  • Kühn L., Castorph H., Schweizer E. Gene linkage and gene-enzyme relations in the fatty-acid-synthetase system of Saccharomyces cerevisiae. European Journal of Biochemistry 1972; 24: 492–497
  • Lagunas R., Gancedo J. M. Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. European Journal of Biochemistry 1973; 37: 90–94
  • Lillie S. H., Pringle J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation. Journal of Bacteriology 1980; 143: 1384–1394
  • Lommi H., Grönqvist A., Pajunen E. Immobilised yeast reactor speeds beer production. Food Technology May, 1990; 128–133
  • Llorente N., Náñcz de Castro I. Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenase. Revista Españnola de Fysiologia 1973; 33: 135–142
  • Manzocchi A., Casati R., Fiecchi A., Santaniello E. Studies on the stereochemical control of fermenting baker's yeast mediated reductions: Some 3- and 4-oxo esters. Journal of the Chemical Society, Perkin Transactions I 1987; 2753–2757
  • Medson C., Smallridge A. J., Trewhella M. A. The stereoselective preparation of β-hydroxy esters using yeast reduction in an organic solvent. Tetrahedron Asymmetry 1997; 8: 1049–1054
  • Meinander N., Hahn-Hägerdal B. Influence of cosubstrate concentration on xylose conversion by recombinant, XYLI-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Applied and Environmental Microbiology 1997; 63: 1959–1964
  • Mewes H. W., Alberman K., Bähr M., Frishman D., Gleissner A., Hani J., Heumann K., Kleine K., Maierl S., Oliver S. G., Pfeiffer F., Zollner A. Overview of the yeast genome. Nature 1997; 387: 7–65, supplement
  • Mian R. A., Fencl Z., Prokop A., Mohagheghi A., Fazeli A. Effect of growth rate on the glucose metabolism of yeast grown in continuous culture. Radiorespirometric studies. Folia Microbiologica 1974; 19: 191–198
  • Mochizuki N., Sugai T., Ohta H. Biochemical reduction of 3-oxoalkanoic esters by a bottom-fermentation yeast, Saccharomyces cerevisiae IFO 0565. Bioscience, Biotechnology and Biochemistry 1994; 58: 1666–1670
  • Mori K. A simple synthesis of (S)-(+)-sulcatol, the pheromone of Gnathotrichus retusus, employing baker's yeast for asymmetric reduction. Tetrahedron 1981; 37: 1341–1342
  • Mori K. Synthesis of optically active pheromones. Tetrahedron 1989; 45: 3233–3298
  • Murata K., Fukuda Y., Simosaka M., Watanabe K., Saikusa T., Kimura A. Metabolism of 2-oxoaldehyde in yeasts. European Journal of Biochemistry 1985; 151: 631–636
  • Nakajima N., Ishihara K., Kondo S., Tsuboi S., Utaka M., Nakamura K. Differences in protein structure and similarities in catalytic function of two L-stereo-selective carbonyl reductases from bakers' yeast. Bioscience, Biotechnology and Biochemistry 1994; 11: 2080–2081
  • Nakamura K., Ushio K., Oka S., Ohno A. Stereochemical control in yeast reduction. Tetrahedron Letters 1984; 25: 3979–3982
  • Nakamura K., Higaki M., Ushio K., Oka S., Ohno A. Stereochemical control of microbial reduction. 2. Reduction of β-keto esters by immobilized bakers' yeast. Tetrahedron Letters 1985; 26: 4213–4216
  • Nakamura K., Inoue K., Ushio K., Oka S., Ohno A. Effect of allyl alcohol on reduction of β-keto esters by bakers' yeast. Chemistry Letters 1987; 679–682
  • Nakamura K., Inoue K., Ushio K., Oka S., Ohno A. Stereochemical control on yeast reduction of β-keto esters. Reduction by immobilized bakers' yeast in hexane. Journal of Organic Chemistry 1988; 53: 2589–2593
  • Nakamura K., Kawai Y., Kitayama T., Miyai T., Ogawa M., Mikata Y., Higaki M., Ohno A. Asymmetric reduction of ketones with microbes. Bulletin of the Institute of Chemical Research, Kyoto University 1989a; 67: 157–168
  • Nakamura K., Kawai Y., Oka S., Ohno A. Stereochemical control in microbial reduction. 8. Stereochemical control in microbial reduction of β-keto esters. Bulletin of the Chemical Society of Japan 1989b; 62: 875–879
  • Nakamura K., Kawai Y., Oka S., Ohno A. A new method for stereochemical control of microbial reduction. Reduction of β-keto esters with bakers' yeast immobilized by magnesium alginate. Tetrahedron Letters 1989c; 30: 2245–2246
  • Nakamura K., Kawai Y., Ohno A. A novel method to synthesize (L)-β-hydroxyl esters by the reduction with bakers' yeast. Tetrahedron Letters 1990a; 31: 267–270
  • Nakamura K., Miyai T., Inoue K., Kawasaki S., Oka S., Ohno A. Stereochemical control in microbial reduction. Part 10. Asymmetric reduction of alkyl 3-methyl-2-oxobutanoate with immobilized bakers' yeast in hexane. Biocatalysis 1990b; 3: 17–24
  • Nakamura K., Kawai Y., Nakajima N., Ohno A. Stereochemical control of microbial reduction. 17. Method for controlling the enantioselectivity of reductions with bakers' yeast. Journal of Organic Chemistry 1991a; 56: 4778–4783
  • Nakamura K., Kawai Y., Miyai T., Honda S., Nakajima N., Ohno A. Stereochemical control in microbial reduction. 18. Mechanism of stereochemical control in diastereoselective reduction with bakers' yeast. Bulletin of the Chemical Society of Japan 1991b; 64: 1467–1470
  • Nakamura K., Kawai Y., Ohno A. Stereochemical control in microbial reduction. 19. Effect of heat treatment on the diastereoselectivity in the reduction with baker's yeast. Tetrahedron Letters 1991c; 32: 2927–2928
  • Nakamura K. Stereochemical Control in Microbial Reduction. Microbial reagents in organic synthesis, S. Servi. Kluwer Academic Publishers, The Netherlands 1992; 389–398
  • Nakamura K., Kondo S., Kawai Y., Ohno A. Stereochemical control in microbial reduction. XXI. Effect of organic solvents on the reduction of α-keto-esters mediated by bakers' yeast. Bulletin of the Chemical Society of Japan 1993; 66: 2738–2743
  • Nakamura K., Kondo S., Ohno A. Effect of cyclodextrin on improvement of cnantioselectivity in the reduction of ketopantolactone with baker's yeast. Bioorganic & Medicinal Chemistry 1994a; 2: 433–437
  • Nakamura K., Kondo S., Kawai Y., Nakajima N., Ohno A. Purification and characterization of α-keto ester reductases from bakers' yeast. Bioscience, Biotechnology and Biochemistry 1994b; 58: 2236–2640
  • Naoshima Y., Akakabe Y., Watanabe F. Biotransformation of acetoacetic esters with immobilized cells of Nicotiana tahacum. Agricultural and Biological Chemistry 1989; 53: 545–547
  • Naoshima Y., Munakata Y., Nishiyama T., Maeda J., Kamezawa M., Haramaki T., Tachibana H. Asymmetric bioreduction of keto esters by immobilized baker's yeast entrapped in calcium alginate beads in both water and organic/water solvent systems. World Journal of Microbiology and Biotechnology 1991; 7: 219–224
  • Niederberger P., Prasad R., Miozzari G., Kacser H. A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochemical Journal 1992; 287: 473–479
  • Norton S., D'Amore T. Physiological effects of yeast cell immobilization: Applications for brewing. Enzyme and Microbial Technology 1994; 16: 365–374
  • Oguni N., Ohkawa Y. Complete stereoselective synthesis of chiral intermediates for thienamycin and related antibiotics. Journal of the Chemical Society, Chemical Communications 1988; 1376–1377
  • Patel R. N., McNamee C. G., Banerjee A., Howell J. M., Robison R. S., Szarka L. J. Stereoselective reduction of β-keto esters by Geotrichum candidum. Enzyme and Microbial Technology 1992; 14: 731–738
  • Pereira R. S. Baker's yeast. Some biochemical aspects and their influence in biotransformations. Applied Biochemistry and Biotechnology 1995; 55: 123–132
  • Peters J., Zelinski T., Kula M. R. Studies on the distribution and regulation of microbial keto ester reductases. Applied Microbiology and Biotechnology 1992; 38: 334–340
  • Präve P., Schlingmann M., Crueger W., Esser K., Thauer R., Wagner F. Übersicht über eine Auswahl der wiehtigsten Substrate und Substrat-Kostern für die technische Fermentation. Jahrbuch Biotechnologie, Hanser Carl. Verlag, München 1990; 3: 523–524
  • Prelog V. Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Applied Chemistry 1964; 9: 119–130
  • Pronk J. T., Steensma H. Y., van Dijken J. P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996; 12: 1607–1633
  • Roels J. A. Energetics and kinetics in biotechnology. Elsevier Biomedical Press B.V., Amsterdam 1983; 46–47
  • Rohner M., Münch T., Sonnleitner B., Fiechter A. Process for the stereoselective biotransformation of acetoacetic acid esters using yeasts. Biocatalysis 1990; 3: 37–50
  • Rydström J., Teixeira da Cruz A., Ernster L. Factors governing the kinetics and steady state of the mitochondrial nicotinamide nucleotide transhydrogenase system. European Journal of Biochemistry 1970; 17: 56–62
  • Salmon J. M. Determination of malic enzyme activity on permeabilized cells of Saccharomyces cerevisiae using a dissolved CO2 probe. Biotechnology Techniques 1987; 1: 7–10
  • Santaniello E., Ferraboschi P., Grisenti P., Manzocchi A. The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. Chemical Reviews 1992; 92: 1071–1140
  • Sato T., Fujisawa T. Stereocontrol in bakers' yeast reduction leading to natural product synthesis. Biocatalysis 1990; 3: 1–15
  • Schuurmans Stekhoven F. M.A.H. Studies on yeast mitochondria. I. Existence of three phosphorylation sites along the respiratory chain of isolated yeast mitochondria. Archives of Biochemistry and Biophysics 1966; 115: 555–568
  • Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 1990; 343: 38–43
  • Seebach D., Züger M. F., Giovannini F., Fiechter A., Sonnleitner B. Preparative microbial reduction of β-oxoesters with Thermoanaerobium brockii. Angewandte Chennie International Edition in English 1984; 23: 151–152
  • Seebach D., Sutter M. A., Weber R. H., Züger M. F. Yeast reduction of ethyl acetoacetate: (S)-(+)-Ethyl 3-hydroxybutanoate. Organic Syntheses 1985; 63: 1–9
  • Servi S. Baker's yeast as a reagent in organic synthesis. Synthesis 1990; 1–25
  • Shieh W. R., Gopalan A. S., Sih C. J. Stereochemical control of yeast reductions. 5. Characterization of the oxidoreductases involved in the reduction of β-keto esters. Journal of the American Chemical Society 1985; 107: 2993–2994
  • Shieh W. R., Sih C. J. Stereochemical control of yeast reductions. 6. Diastereoselectivity of 2-alkyl-3-oxobutanoate oxido-reductases. Tetrahedron Asymmetry 1993; 4: 1259–1269
  • Sih C. J., Zhou B. N., Gopalan A. S., Shieh W. R., Chen C. S., Girdaukas G., VanMiddlesworth F. Enantioselective reductions of β-keto esters by bakers' yeast. Annals of the New York Academy of Science 1984; 434: 186–193
  • Sih C., Chen C. S. Microbial asymmetric catalysis — Enantioselective reduction of ketones. Angewandte Chemie International Edition in English 1984; 23: 570–578
  • Silber P., Chung H., Gargiulo P., Schulz H. Purification and properties of a diacetyl reductase from Escherichia coli. Journal of Bacteriology 1974; 118: 919–927
  • Smidsrød O., Skjåk-Bræk G. Alginate as immobilization matrix for cells. TIBTECH 1990; 8: 71–78
  • Spiliotis V., Papahatsjis D., Ragoussis N. Enhanced optical purity of 3-hydroxyesters obtained by baker's yeast reduction of 3-ketoesters. Tetrahedron Letters 1990; 31: 1615–1616
  • Stephanopoulos G., Vallino J. J. Network rigidity and metabolic engineering in metabolite overproduction. Science 1991; 252: 1675–1681
  • Sugai T., Fujita M., Mori K. The Chemical Society of Japan 1983; 1315–1320, Japanese title
  • Szajáni B., Buzás Z., Dallmann K., Gimesi I., Krisch J., Tóth M. Continuous production of ethanol using yeast cells immobilized in preformed cellulose beads. Applied Microbiology and Biotechnology 1996; 46: 122–125
  • Thomas K. C., Hynes S. H., Ingledew W. M. Effect of nitrogen limitation on synthesis of enzymes in Saccharomyces cerevisiae during fermentation of high concentration of carbohydrates. Biotechnology Letters 1996; 18: 1165–1168
  • Tijhuis L. The biofilm airlift suspension reactor. Ph.D. Thesis, Delft University of Technology. 1994; 81–82
  • Toke D. A., Martin C. E. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomvees cerevisiae. Journal of Biological Chemistry 1996; 31: 18413–18422
  • Ushio K., Inouye K., Nakamura K., Oka S., Ohno A. Stereochemical control in microbial reduction 4. Effect of cultivation conditions on the reduction of bT-keto esters by methylotrophic yeast. Tetrahedron Letters 1986; 27: 2657–2760
  • Ushio K., Ebara K., Yamashita T. Selective inhibition of R-enzymes by simple organic acids in yeast-catalysed reduction of ethyl 3-oxobutanoate. Enzyme and Microbial Technology 1991; 13: 834–839
  • Ushio K., Hada J., Tanaka Y., Ebara K. Allyl bromide, a powerful inhibitor against R-enzyme activities in bakers' yeast reduction of ethyl 3-oxoalkanoates. Enzyme and Microbial Technology 1993; 15: 222–228
  • Van Dijken J. P., Scheffers W. A. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiology Reviews 1986; 32: 199–224
  • Van Dijken J. P., Weusthuis R. A., Pronk J. T. Kinetics of growth and sugar consumption in yeasts. Antonie van Leeuwenhoek 1993; 63: 343–352
  • VanMiddlesworth F., Sih C. J. A model for predicting diastereoselectivity in yeast reductions. Biocatalysis 1987; 1: 117–127
  • Van Urk H., Bruinenberg P. M., Veenhuis M., Scheffers W. A., van Dijken J. P. Respiratory capacities of mitochondria of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 grown under glucose limitation. Antonie van Leeuwenhoek 1989; 56: 211–220
  • Verduyn C., van Dijken J. P., Scheffers W. A. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Applied Microbiology and Biotechnology 1984; 19: 181–185
  • Verduyn C. Energetic aspects of metabolic fluxes in yeasts. Ph.D. Thesis, Delft University of Technology. 1992; 138–139
  • Vicenzi J. T., Zmijewski M. J., Reinhard M. R., Landen B. E., Muth W. L., Marler P. G. Large-scale stereoselective enzymatic ketone reduction with in situ product removal via polymeric adsorbent resins. Enzyme and Microbial Technology 1997; 20: 494–499
  • Viljoen M., Subden R. E., Krizus A., Van Vuuren H. J. Molecular analysis of the malic enzyme gene (mae2) of Schizosacchararomyces pombe. Yeast 1994; 10: 613–624
  • Ward O. P., Young C. S. Reductive Biotransformations of organic compounds by cells or enzymes of yeast. Enzyme and Microbial Technology 1990; 12: 482–493
  • Wipf B., Kupfer E., Bertazzi R., Leuenberger H. G. Production of (S)-ethyl 3-hydroxybutyrate and (R)-ethyl 3-hydroxybutyrate by microbial reduction of ethyl acetoacetate. Helvetica Chimica Acta 1983; 66: 485–488
  • Young C. S., Ward O. P. Studies of the reductive biotransformation of selected carbonyl compounds by whole cells and extracts of baker's yeast, Saccharomyces cerevisiae. Biotechnology and Bioengineering 1991; 38: 1280–1284
  • Zhou B., Gopalan A. S., VanMiddlesworth F., Shieh W. R., Sih C. J. Stereochemical control of yeast reductions. 1. Asymmetric synthesis of L-carnitine. Journal of the American Chemical Society 1983; 105: 5925–5926

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.