Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 16, 2013 - Issue 4
703
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Acute psychological stress increases peripheral blood CD3+CD56+ natural killer T cells in healthy men: possible implications for the development and treatment of allergic and autoimmune disorders

, , , , , , , , , , & show all
Pages 421-428 | Received 21 Jul 2012, Accepted 15 Feb 2013, Published online: 08 Apr 2013

References

  • Ackerman KD, Martino M, Heyman R, Moyna NM, Rabin BS. (1998). Stressor-induced alteration of cytokine production in multiple sclerosis patients and controls. Psychosom Med 60:484–91
  • Anane LH, Edwards KM, Burns VE, Drayson MT, Riddell NE, van Zanten JJ, Wallace GR, et al. (2009). Mobilization of gammadelta T lymphocytes in response to psychological stress, exercise, and beta-agonist infusion. Brain Behav Immun 23:823–9
  • Atanackovic D, Brunner-Weinzierl MC, Kroger H, Serke S, Deter HC. (2002). Acute psychological stress simultaneously alters hormone levels, recruitment of lymphocyte subsets, and production of reactive oxygen species. Immunol Invest 31:73–91
  • Atanackovic D, Schnee B, Schuch G, Faltz C, Schulze J, Weber CS, Schafhausen P, et al. (2006). Acute psychological stress alerts the adaptive immune response: stress-induced mobilization of effector T cells. J Neuroimmunol 176:141–52
  • Atanackovic D, Schulze J, Kroger H, Brunner-Weinzierl MC, Deter HC. (2003). Acute psychological stress induces a prolonged suppression of the production of reactive oxygen species by phagocytes. J Neuroimmunol 142:159–65
  • Bade B, Boettcher HE, Lohrmann J, Hink-Schauer C, Bratke K, Jenne DE, Virchow JC Jr, Luttmann W. (2005). Differential expression of the granzymes A, K and M and perforin in human peripheral blood lymphocytes. Int Immunol 17:1419–28
  • Barnaba V, Franco A, Paroli M, Benvenuto R, De Petrillo G, Burgio VL, Santilio I, et al. (1994). Selective expansion of cytotoxic T lymphocytes with a CD4+CD56+ surface phenotype and a T helper type 1 profile of cytokine secretion in the liver of patients chronically infected with Hepatitis B virus. J Immunol 152:3074–87
  • Baxevanis CN, Gritzapis AD, Tsitsilonis OE, Katsoulas HL, Papamichail M. (2002). HER-2/neu-derived peptide epitopes are also recognized by cytotoxic CD3(+)CD56(+) (natural killer T) lymphocytes. Int J Cancer 98:864–72
  • Benschop RJ, Jacobs R, Sommer B, Schurmeyer TH, Raab JR, Schmidt RE, Schedlowski M. (1996). Modulation of the immunologic response to acute stress in humans by beta-blockade or benzodiazepines. Faseb J 10:517–24
  • Bonneville M, O'Brien RL, Born WK. (2010). Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–78
  • Buske-Kirschbaum A, Geiben A, Hellhammer D. (2001). Psychobiological aspects of atopic dermatitis: an overview. Psychother Psychosom 70:6–16
  • Chuang YH, Wang TC, Jen HY, Yu AL, Chiang BL. (2011). {alpha}-Galactosylceramide-induced airway eosinophilia is mediated through the activation of NKT cells. J Immunol 186:4687–92
  • Cosmi L, Annunziato F, Galli MIG, Maggi RME, Nagata K, Romagnani S. (2000). CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur J Immunol 30:2972–9
  • Costa-Pinto FA, Palermo-Neto J. (2010). Neuroimmune interactions in stress. Neuroimmunomodulation 17:196–9
  • Curtin NM, Boyle NT, Mills KH, Connor TJ. (2009a). Psychological stress suppresses innate IFN-gamma production via glucocorticoid receptor activation: reversal by the anxiolytic chlordiazepoxide. Brain Behav Immun 23:535–47
  • Curtin NM, Mills KH, Connor TJ. (2009b). Psychological stress increases expression of IL-10 and its homolog IL-19 via beta-adrenoceptor activation: reversal by the anxiolytic chlordiazepoxide. Brain Behav Immun 23:371–9
  • Dardalhon V, Schubart AS, Reddy J, Meyers JH, Monney L, Sabatos CA, Ahuja R, et al. (2005). CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions. J Immunol 175:1558–65
  • Eberl G, Lees R, Smiley ST, Taniguchi M, Grusby MJ, MacDonald HR. (1999). Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J Immunol 162:6410–19
  • Freier E, Weber CS, Nowottne U, Horn C, Bartels K, Meyer S, Hildebrandt Y, et al. (2010). Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology 35:663–73
  • Haczku A, Panettieri RA Jr. (2010). Social stress and asthma: the role of corticosteroid insensitivity. J Allergy Clin Immunol 125:550–8
  • Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, et al. (1999). NKT cells are phenotypically and functionally diverse. Eur J Immunol 29:3768–81
  • Hamzaoui A, Cheik Rouhou S, Graïri H, Abid H, Ammar J, Chelbi H, Hamzaoui K. (2006). NKT cells in the induced sputum of severe asthmatics. Mediators Inflamm 2006:71214
  • Hassett AL, Clauw DJ. (2010). The role of stress in rheumatic diseases. Arthritis Res Ther 12:123
  • Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, et al. (2001). Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–61
  • Hoglund CO, Axen J, Kemi C, Jernelov S, Grunewald J, Muller-Suur C, Smith Y, et al. (2006). Changes in immune regulation in response to examination stress in atopic and healthy individuals. Clin Exp Allergy 36:982–92
  • Iwamura C, Nakayama T. (2010). Role of NKT cells in allergic asthma. Curr Opin Immunol 22:807–13
  • Kambayashi T, Assarsson E, Michaelsson J, Berglund P, Diehl AD, Chambers BJ, Ljunggren HG. (2000). Emergence of CD8+ T cells expressing NK cell receptors in influenza A virus-infected mice. J Immunol 165:4964–9
  • Karadimitris A, Gadola S, Altamirano M, Brown D, Woolfson A, Klenerman P, Chen JL, et al. (2001). Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc Natl Acad Sci USA 98:3294–8
  • Kaufmann I, Eisner C, Richter P, Huge V, Beyer A, Chouker A, Schelling G, Thiel M. (2007). Lymphocyte subsets and the role of TH1/TH2 balance in stressed chronic pain patients. Neuroimmunomodulation 14:272–80
  • Kilpelainen M, Koskenvuo M, Helenius H, Terho EO. (2002). Stressful life events promote the manifestation of asthma and atopic diseases. Clin Exp Allergy 32:256–63
  • Kodama A, Horikawa T, Suzuki T, Ajiki W, Takashima T, Harada S, Ichihashi M. (1999). Effect of stress on atopic dermatitis: investigation in patients after the great hanshin earthquake. J Allergy Clin Immunol 104:173–6
  • Koh YI, Shim JU. (2010). Association between sputum natural killer T cells and eosinophilic airway inflammation in human asthma. Int Arch Allergy Immunol 153:239–48
  • Kohm AP, Sanders VM. (2001). Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53:487–525
  • Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. (1986). The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136:4480–6
  • Linsen L, Somers V, Stinissen P. (2005). Immunoregulation of autoimmunity by natural killer T cells. Hum Immunol 66:1193–202
  • Lisbonne M, Diem S, de Castro Keller A, Lefort J, Araujo LM, Hachem P, Fourneau JM, et al. (2003). Cutting edge: invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 171:1637–41
  • Lombardi V, Stock P, Singh AK, Kerzerho J, Yang W, Sullivan BA, Li X, et al. (2010). A CD1d-dependent antagonist inhibits the activation of invariant NKT cells and prevents development of allergen-induced airway hyperreactivity. J Immunol 184:2107–15
  • Mendes R, Bromelow KV, Westby M, Galea-Lauri J, Smith IE, O'Brien ME, Souberbielle BE. (2000). Flow cytometric visualisation of cytokine production by CD3−CD56+ NK cells and CD3+CD56+ NK-T cells in whole blood. Cytometry 39:72–8
  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. (1986). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–57
  • Nagata K, Tanaka K, Ogawa K, Kemmotsu K, Imai T, Yoshie O, Abe H, et al. (1999). Selective expression of a novel surface molecule by human Th2 cells in vivo. J Immunol 162:1278–86
  • Ohkawa T, Seki S, Dobashi H, Koike Y, Habu Y, Ami K, Hiraide H, Sekine I. (2001). Systematic characterization of human CD8+ T cells with natural killer cell markers in comparison with natural killer cells and normal CD8+ T cells. Immunology 103:281–90
  • Ortaldo JR, Winkler-Pickett RT, Yagita H, Young HA. (1991). Comparative studies of CD3− and CD3+ CD56+ cells: examination of morphology, functions, T cell receptor rearrangement, and pore-forming protein expression. Cell Immunol 136:486–95
  • Ou D, Metzger DL, Wang X, Pozzilli P, Tingle AJ. (2002). Beta-cell antigen-specific CD56(+) NKT cells from type 1 diabetic patients: autoaggressive effector T cells damage human CD56(+) beta cells by HLA-restricted and non-HLA-restricted pathways. Hum Immunol 63:256–70
  • Phillips JH, Lanier LL. (1986). Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 164:814–25
  • Pittet MJ, Speiser DE, Valmori D, Cerottini JC, Romero P. (2000). Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J Immunol 164:1148–52
  • Saeterdal I, thor Straten P, Myklebust JH, Kirkin AF, Gjertsen MK, Gaudernack G. (1998). Generation and characterization of gp100 peptide-specific NK-T cell clones. Int J Cancer 75:794–803
  • Satoh M, Seki S, Hashimoto W, Ogasawara K, Kobayashi T, Kumagai K, Matsuno S, Takeda K. (1996). Cytotoxic gammadelta or alphabeta T cells with a natural killer cell marker, CD56, induced from human peripheral blood lymphocytes by a combination of IL-12 and IL-2. J Immunol 157:3886–92
  • Schedlowski M, Hosch W, Oberbeck R, Benschop RJ, Jacobs R, Raab HR, Schmidt RE. (1996). Catecholamines modulate human NK cell circulation and function via spleen-independent beta 2-adrenergic mechanisms. J Immunol 156:93–9
  • Schuligoi R, Sturm E, Luschnig P, Konya V, Philipose S, Sedej M, Waldhoer M, et al. (2010). CRTH2 and D-type prostanoid receptor antagonists as novel therapeutic agents for inflammatory diseases. Pharmacology 85:372–82
  • Segerstrom SC, Miller GE. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 130:601–30
  • Shibuya K, Shibata K, Tahara-Hanaoka S, Shibuya A. (2006). Comment on “CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions”. J Immunol 176:3855–6
  • Shyr YM, Su CH, Wu CW, Lui WY. (2003). Does drainage fluid amylase reflect pancreatic leakage after pancreaticoduodenectomy? World J Surg 27:606–10
  • Slifka MK, Pagarigan RR, Whitton JL. (2000). NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J Immunol 164:2009–15
  • Thomas SY, Hou R, Boyson JE, Means TK, Hess C, Olson DP, Strominger JL, et al. (2003). CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J Immunol 171:2571–80
  • Vergelli M, Le H, van Noort JM, Dhib-Jalbut S, McFarland H, Martin R. (1996). A novel population of CD4+CD56+ myelin-reactive T cells lyses target cells expressing CD56/neural cell adhesion molecule. J Immunol 157:679–88

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.