750
Views
37
CrossRef citations to date
0
Altmetric
Review Article

Autoimmunity and the pathogenesis of type 1 diabetes

, &
Pages 51-71 | Received 06 May 2009, Accepted 17 Jan 2010, Published online: 15 Jun 2010

References

  • Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 1965; 14: 619–633.
  • Schranz D, Lernmark A. Immunology in diabetes: an update. Diabetes Metab Rev 1998; 14: 3–29.
  • Lernmark A. Type 1 diabetes. Clin Chem 1999; 45: 1331–1338.
  • Davidson A, Diamond B. Autoimmune diseases. N Engl J Med 2001; 345: 340–350.
  • Pugliese A. Genetics of type 1 diabetes. Endocrinol Metab Clin North Am 2004; 33: 1–16.
  • Gianani R, Eisenbarth GS. The stages of type 1A diabetes: 2005. Immunol Rev 2005; 204: 232–249.
  • Tun RY, Peakman M, Alviggi L, Hussain MJ, Lo SS, Shattock M, Pyke DA, Bottazzo GF, Vergani D, Leslie RD. Importance of persistent cellular and humoral immune changes before diabetes develops: prospective study of identical twins. BMJ 1994; 308: 1063–1068.
  • Dighiero G, Rose MB. Critical self-epitopes are key to self-tolerance. Immunol Today 1999; 20: 423–427.
  • McDewitt HO. Characteristics of autoimmunity in type 1 diabetes and type 1.5 overlap with type 2 diabetes. Diabetes 2005; 54(Suppl 2): S4–S16.
  • Knip M, Veijola R, Virtanen SM, Hyöty H, Vaarala O, Akerblom HK. Environmental triggers and determinants of type 1 diabetes. Diabetes 2005; 54(Suppl 2): S125–S136.
  • Bach JF. Type I Diabetes. In Rose NR, Mackay IR, Eds. The Autoimmune Diseases. 4th ed. Pp 483–500. London: Elsevier, 2006.
  • Wen L, Ley RE, Yu P, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu Y, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455: 1109–1113.
  • Beyan H, Buckley LR, Yousaf N. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev 2003; 19: 89–100.
  • Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther 2005; 12: 580–591.
  • Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA. Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 1994; 43: 667–675.
  • Wen L, Wong FS. How can the innate immune system influence autoimmunity in type 1 diabetes and other autoimmune disorders? Crit Rev Immunol 2005; 25: 225–250.
  • Kolb H. Benign versus destructive insulitis. Diabetes Metab Rev 1997; 13: 139–146.
  • Itoh N, Hanafusa T, Mizayaki A, Miyagawa J, Yamagata K, Yamamoto K, Waguri M, Imagawa A, Tamura S, Inada M. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993; 92: 2313–2322.
  • Gordon S. Mononuclear phagocytes in immune defense. In Roitt I, Brostoff J, Male D, Eds. Immunology. 6th ed. Pp 147–162. Edinburgh: Mosby, 2001.
  • Jun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW. The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 1999; 189: 347–358.
  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136:2348–2357.
  • Jansen A, van Hagen M, Drexhage HA. Defective maturation and function of antigen- presenting cells in type 1 diabetes. Lancet 1995; 345: 491–492.
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.
  • Tarbell KV, Yamazaki S, Steinman RM. The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin Immunol 2006; 18: 93–102.
  • Takahashi K, Honeyman MC, Harrison LC. Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans at risk for insulin-dependent diabetes. J Immunol 1998; 161: 2629–2635.
  • Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med 1998; 188: 1493–1501.
  • Lydyard PM, Rossi CE. Cells, tissues and organs of the immune system. In Roitt I, Brostoff J, Male D, Eds. Immunology. 6th ed. Pp 15–46. Edinburgh: Mosby, 2001.
  • Silveira PA, Serreze DV, Grey ST. Invasion of the killer B’s in type 1 diabetes. Front Biosci 2007; 12: 2183–2193.
  • Wraith D. Immunological tolerance. In Roitt I, Brostoff J, Male D, Eds. Immunology 6th ed. Pp 191–210. New York: Mosby, 2001.
  • Goldrath AW, Bevan MJ. Selecting and maintaining a diverse T-cell repertoire. Nature 1999; 402: 255–262.
  • Gavin M, Rudensky A. Control of immune homeostasis by naturally arising regulatory CD4+ T-cells. Curr Opin Immunol. 2003; 15(6): 690–699.
  • Juedes AE, von Herrath MG. Regulatory T-cells in type 1 diabetes. Diabetes Metab Res Rev 2004; 20: 446–451.
  • Bluestone JA, Tang Q. How do CD4+ CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 2005; 17: 638–642.
  • Tritt M, Sgouroudis E, d’Hennezel E, Albanese A, Piccirillo CA. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 2008; 57: 113–23.
  • Ogawa M, Maruyama T, Hasegawa T, KanayaT Kobayashi, F, Tochino Y, Uda H. The inhibitory effect of neonatal thymectomy on the incidence of insulitis in non-obese diabetes (NOD) mice. Biomed Res 1985; 6: 103–105.
  • Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, Bruno G, Chailloux L, Chatenoud L, Bach JM, van Endert P. CD8+ responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 2007; 56: 613–621.
  • Martinuzzi E, Novelli G, Scotto M, Blancou P, Bach JM, Chailloux L, Chatenoud L, van Endert P. The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes and treatment. Diabetes 2008; 57:1312–1320.
  • Rocha B, Dautigny N, Pereira P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur J Immunol 1989; 19: 905–911.
  • Lichtman AH, Kurt-Jones EA, Abbas AK. B-cell stimulatory factor 1 and not interleukin 2 is the autocrine growth factor for some helper T lymphocytes. Proc Soc Nat Acad Sci USA; 1987: 84:824–827.
  • Fitch FW, McKisick MD, Lancki DW, Gajewski TF. Differential regulation of murine T lymphocyte subsets. Annu Rev Immunol 1993; 11: 29–48.
  • Fiorentino DF, Bond MW, Mossman TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170: 2081–2095.
  • Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383: 787–793.
  • Sharif S, Arreaza GA, Zucker P, Delovitch TL. Regulatory natural killer T cells protect against spontaneous and recurrent type 1 diabetes. Ann NY Acad Sci 2002; 958: 77–88.
  • Eizirik DL,Mandrup-Poulsen T. A choice of death: the signal transduction of immune-mediated beta-cell apoptosis. Diabetologia 2001; 44: 2115–2133.
  • Moriwaki M, Itoh N, Miyagawa J. Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset type 1 diabetes mellitus. Diabetologia 1999; 42: 1332–1340.
  • Qin H, Trudeau JD, Reid GS, Lee IF, Dutz JP, Santamaria P, Verchere CB, Tan R. Progression of spontaneous autoimmune diabetes is associated with a switch in the killing mechanism used by autoreactive CTL. Int Immunol 2004; 16: 1657–1662.
  • Kreuwel HT, Morgan DJ, Krahl T, Ko A, Sarvetnick N, Sherman LA. Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. J Immunol 1999; 163: 4335–4341.
  • Kloeppel G, Löehr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes. Surv Synth Path Res 1985; 4: 110–125.
  • Srikanta S, Ganda OP, Jackson RA, Gleason RE, Kaldany A, Garovoy MR, Milford EL, Carpenter CB, Soeldner JS, Eisenbarth GS. Type 1 diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann Int Med 1983; 99: 320–326.
  • Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54(Suppl 2): S97–S107.
  • Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. Annu Rev Biophys Biomol Struct 2003; 32: 93–114.
  • McQueen KL, Parham P. Variable receptors controlling activation and inhibition of NK cells. Curr Opin Immunol 2002; 14: 615–621.
  • French AR, Yokoyama WM. Natural killer cells and autoimmunity. Arthritis Res Ther 2004; 6: 8–14.
  • Rodacki M, Milech A, Oliveria JE. NK cells and type 1 diabetes. Clin Devel Immunol 2006; 13: 101–107.
  • Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA 2004; 101: 8102–8107.
  • Rodacki M, Svoren B, Butty V, Besse W, Laffel L, Benoist C, Mathis D. Altered natural killer cells in type 1 diabetic patients. Diabetes 2007; 56: 177–185.
  • Novak J, Griseri T, Beaudoin L, Lehuen A. Regulation of type 1 diabetes by NKT cells. Int Rev Immunol 2007; 26: 49–72.
  • Goodier MR, Nawroly N, Beyan H, Hawa M, Leslie RD, Londei M. Identical twins discordant for type 1 diabetes show a different pattern of in vitro CD56+ cell activation. Diabetes Metab Res Rev 2006; 22: 367–375.
  • Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N. Multiple immuno-regulatory defects in type 1 diabetes. J Clin Invest 2002; 109: 131–140.
  • Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A. Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 2002; 110: 793–800.
  • Hammond KL, Kronenberg M. Natural killer T cells: natural or unnatural regulators of autoimmunity? Curr Opin Immunol 2003; 15: 683–689.
  • Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 2003; 198: 1069–1076.
  • Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert JM, Leite-De-Moraes M, Gouarin C, Zhu R, Hameg A, Nakayama T, Taniguchi M, Lepault F, Lehuen A, Bach JF, Herbelin A. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of auto-immune type 1 diabetes. Nat Med 2001; 7: 1057–1062.
  • Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Strominger JL, Clare-Salzer M, Wilson SB. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001; 98: 13838–13843.
  • Gombert JM, Herbelin A, Tancrède-Bohin E, Dy M, Carnaud C, Bach JF. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996; 26: 2989–2998.
  • Rabinovitch A, Suarez-Pinzon WL. Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev Endocr Metab Disord 2003; 4: 291–299.
  • Durinovic-Bello I, Riedl M, Rosinger S. Th2 dominance of T helper cell response to preproinsulin in individuals with preclinical type 1 diabetes. Ann NY Acad Sci 2002; 958: 209–213.
  • Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, Roep BO, Peakman M. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 2004; 113: 451–463.
  • Durinovic-Bello I, Jelinek E, Schlosser M, Eiermann T, Boehm BO, Karges W, Marchand L, Polychronakos C. Class III alleles at the insulin VNTR polymorphism are associated with regulatory T-cell responses to proinsulin epitopes in HLA-DR4 DQ8 individuals. Diabetes 2005; 54(Suppl 2): S18–S24.
  • Wucherpfennig KW, Zhang J, Witek C, Matsui M, Modabber Y, Ota K, Hafler DA. Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J Immunol 1994; 152: 5581–5592.
  • Faideau B, Larger E, Lepault F, Carel JC, Boitard C. Role of β-cells in type 1 diabetes pathogenesis. Diabetes 2005; 54(Suppl 2): S87–S96.
  • Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes 2005; 54(Suppl 1): S25–S31.
  • Verge CF, Stenger D, Bonifacio E, Colman PG, Pilcher C, Bingley PJ, Eisenbarth GS. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell autoantibodies) in Type 1 diabetes. Diabetes 1998; 47: 1857–1866.
  • Hu L, Eisenbarth GS. Chapter 10. Humoral Immunity. In Type 1 Diabetes: Cellular, Molecular and Clinical Immunology. George S., Eisenbarth, Ed. Online ver 3.0. www.uchsc.edu/misc/diabetes/books/type1/type1.html (20 Aug 2009)
  • Pihoker C, Gilliam LH, Hampe CS, Lernmark A. Autoantibodies in diabetes. Diabetes 2005; 54(Suppl 1): S52–S61.
  • Standifer NE, Burwell EA, Gersuk VH, Greenbaum CJ, Nepom GT. Changes in autoreactive T cell avidity during type 1 diabetes development. Clin Immunol 2009; 132: 312–320.
  • Kimpimaki T, Kulmala P, Savola K, Kupila A, Korhonen S, Simell S, Ilonen J, Simell O, Knip M. Natural history of β-cell autoimmunity in young children with increased genetic susceptibility to type1diabetes recruited from the general population. J Clin Endocrinol Metab 2002; 87: 4572–4579.
  • Mrena S, Savola K, Kulmala P, Åkerblom HK, Knip M. Staging of preclinical type 1 diabetes in siblings of affected children: childhood diabetes in Finland study group. Pediatrics 1999; 108: 925–930.
  • Kupila A, Keskinen P, Simell T, Erkkila S, Arvilommi P, Korhonen S, Kimpimaki T, Sjaroos M, Ronkainen M, Ilonen J, Knip M, Simell O. Genetic risk determines the emergence of diabetes-associated autoantibodies in young children. Diabetes 2002; 51: 646–651.
  • Kuglin B, Gries FA, Kolb H. Evidence of IgG autoantibodies against human proinsulin in patients with IDDM before insulin treatment. Diabetes 1988; 37: 130–132.
  • Böhmer K, Keilacker H, Kuglin B, Hübinger A, Bertrams J, Gries FA, Kolb H. Proinsulin autoantibodies are more closely associated with type 1 (insulin-dependent) diabetes mellitus than insulin autoantibodies. Diabetologia 1991; 34: 830–834.
  • Hummel M, Williams AJ, Norcross A, Standl E, Bonifacio E, Ziegler AG, Bingley PJ. Proinsulin-specific autoantibodies are relatively infrequent in young offspring with pre-type 1 diabetes. Diabet Care 2001; 24: 1843–1844.
  • Williams AJ, Bingley PJ, Chance RE, Gale EA. Insulin autoantibodies: more specific than proinsulin autoantibodies for prediction of type 1 diabetes. J Autoimmun 1999; 13: 357–363.
  • Keilacker H, Rjasanowski I, Besch W, Kohnert KD. Autoantibodies to insulin and to proinsulin in type 1 diabetic patients and in at-risk probands differentiate only little between both antigens. Horm Metab Res 1995; 27: 90–94.
  • Chen W, Bergerot I, Elliott JF, Harrison LC, Abiru N, Eisenbarth GS, Delovitch TL. Evidence that a peptide spanning the B-C junction of proinsulin is an early autoantigen epitope in the pathogenesis of type 1 diabetes. J Immunol 2001; 167: 4926–4935.
  • Toma A, Haddouk S, Briand JP, Camoin L, Gahery H, Connan F, Dubois-Laforgue D, Caillat-Zucman S, Guillet JG, Carel JC, Muller S, Choppin J, Boitard C. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci USA 2005; 102: 10581–10586.
  • Seyfert-Margolis V, Gisler TD, Asare AL, Wang RS, Dosch HM, Brooks-Worrell B, Eisenbarth GS, Palmer JP, Greenbaum CJ, Gitelman SE, Nepom GT, Bluestone JA, Herold KC. Analysis of T-cell assays to measure autoimmune responses in subjects with type 1 diabetes. Results of a blinded controlled study. Diabetes 2006; 55: 2388–2394.
  • Narendran P, Mannering SI, Harrison LC. Proinsulin—a pathogenic autoantigen in type 1 diabetes. Autoimmun Rev 2003; 2: 204–210.
  • Jasinski JM, Eisenbarth GS. Insulin as a primary autoantigen for type 1A diabetes. Clin Dev Immunol 2005; 12: 181–186.
  • Wong FS. Insulin—a primary autoantigen in type 1 diabetes? Trends Mol Med 2005; 11: 445–448.
  • Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 2005; 435: 220–223.
  • Nakayama M, Beilke JN, Jasinski JM, Kobayashi M, Miao D, Li M, Coulombe MG, Liu E, Elliott JF, Gill RG, Eisenbarth GS. Priming and effector dependence on insulin B: 9-23 peptide in NOD islet autoimmunity. J Clin Invest 2007; 117: 1835–1843.
  • Skowera A, Ellis RJ, Varela-Calvino R, Arif S, Huang GC, Van-Krinks C, Zaremba A, Rackham C, Allen JS, Tree TI, Zhao M, Dayan CM, Sewell AK, Unger W, Drijfhout JW, Ossendorp F, Roep BO, Peakman M. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest 2008; 118: 3390–3402.
  • Di Lorenzo TP, Peakman M, Roep B.O. Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007; 148: 1–16.
  • Ujihara N, Daw K, Gianani R, Boel E, Yu L, Powers AC. Identification of glutamic acid decarboxylase autoantibody heterogeneity and epitope regions in type 1 diabetes. Diabetes 1994; 43: 968–975.
  • Christie MR, Brown TJ, Cassidy D. Binding of antibodies in sera from type 1 (insulin-dependent) diabetic patients to glutamate decarboxylase from rat tissues. Evidence for antigenic and non-antigenic forms of the enzyme. Diabetologia 1982; 35: 380–384.
  • Velloso LA, Kämpe O, Hallberg A, Christmanson L, Betsholtz C, Karlsson FA. Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes and determination of autoantibodies using a radioligand produced by eukaryotic expression. J Clin Invest 1993; 91: 2084–2090.
  • Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 1994; 94: 2125–2129.
  • Richter W, Shi Y, Baekkeskov S. Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-terminal domains of the smaller form of glutamate decarboxylase. Proc Natl Acad Sci USA 1993; 90: 2832–2836.
  • Harrison LC, Honeyman MC, DeAizpurua HJ, Schmidli R, Colman PG, Tait BD, Cram DS. Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. Lancet 1993; 341: 1365–1369.
  • Christie MR, Tun RY, Lo SS, Cassidy D, Brown TJ, Hollands J, Shattock M, Bottazzo GF, Leslie RD. Antibodies to GAD and tryptic fragments of islet 64K antigen as distinct markers for development of IDDM. Studies with identical twins. Diabetes 1992; 41: 782–787.
  • Christie MR, Genovese S, Cassidy D, Bosi E, Brown TJ, Lai M, Bonifacio E, Bottazzo GF. Antibodies to islet 37k antigen, but not to glutamate decarboxylase, discriminate rapid progression to IDDM in endocrine autoimmunity. Diabetes 1994; 43: 1254–1259.
  • Payton MA, Hawkes CJ, Christie MR. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512). J Clin Invest 1995; 96: 1506–1511.
  • Gorus FK, Goubert P, Semakula C, Vandewalle CL, De Schepper J, Scheen A, Christie MR, Pipeleers DG. IA-2-autoantibodies complement GAD65 autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings. Diabetologia 1997; 40: 95–99.
  • Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, Rewers M, Eisenbarth GS, Jensen J, Davidson HW, Hutton JC. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007; 104: 17040–17045.
  • Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, Gellert S, Colman PG, Harrison LC, Lew AM, Thomas HE, Kay TW. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 2006; 116: 3258–3265.
  • Lehmann PV, Targoni OS, Forsthuber TG. Shifting T-cell activation thresholds in autoimmunity and determinant spreading. Immunol Rev 1998; 164: 53–61.
  • Burnet FM, Fenner F. The Production of Autoantibodies. Pp 102–108. London: Macmillan, 1949.
  • Chatenoud L, Bach JF. Regulatory T cells in the control of autoimmune diabetes: the case of the NOD mouse. Int Rev Immunol 2005; 24: 247–267.
  • St Clair EW, Turka LA, Saxon A, Matthews JB, Sayegh MH, Eisenbarth GS, Bluestone J. New reagents on the horizon for immune tolerance. Annu Rev Med 2007; 58: 329–346.
  • Kisielow P, Blüthmann H, Staerz UD, Steinmetz M, von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4 + 8+ thymocytes. Nature 1988; 333: 742–746.
  • Ashton-Rickardt PG, Tonegawa S. A differential-avidity model for T-cell selection. Immunol Today 1994; 15: 362–366.
  • Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV, Gale EA. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 2004; 364: 1699–1700.
  • DiLorenzo TP, Lieberman SM, Takaki T, Honda S, Chapman HD, Santamaria P, Serreze DV, Nathenson SG. During the early prediabetic period in NOD mice, the pathogenic CD8+T-cell population comprises multiple antigenic specificities. Clin Immunol 2002; 105: 332–341.
  • Amrani A, Verdaguer J Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 2000; 406: 739–742.
  • Chentoufi AA, Polychronakos C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance. Diabetes 2002; 51: 1383–1390.
  • Pugliese A. Central and peripheral autoantigen presentation in immune tolerance. Immunology 2004; 111: 138–146.
  • Simmonds MJ, Gough SCL. Genetic insights into disease mechanisms of autoimmunity. Br Med Bull 2005; 71: 93–113.
  • Todd JA, Bell JI, McDevitt HO. HLA-DQ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604.
  • Kumar D, Gemayel NS, Deapen D, Kapadia D, Yamashita PH, Lee M, Dwyer JH, Roy-Burman P, Bray GA, Mack TM. North-American twins with IDDM: genetic, etiological and clinical significance of disease concordance according to age, zygosity and the interval after diagnosis in the first twin (insulin-dependent diabetes mellitus). Diabetes 1993; 42: 1351–1363.
  • Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on diverse pathogenesis and treatment. Lancet 2001; 358: 221–229.
  • Azam A, Eisenbarth GS. Immunopathogenesis and immunotherapeutic approaches to type 1A diabetes. Expert Opin Biol Ther 2004; 4: 1569–1575.
  • Nepom GT, Kwok WW. Molecular basis for HLA-DQ associations with IDDM. Diabetes 1998; 47: 1177–1184.
  • Bennett ST, Wilson AJ, Cucca F, Nerup J, Pociot F, Mckinney PA, Barnett AH, Bain SC, Todd JA. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J Autoimmun 1996; 9: 415–421.
  • Motzo C, Contu D, Cordell HJ, Lampis R, Congia M, Marruso MG, Todd JA, Devoto M, Cucca F. Heterogeneity in the magnitude of the insulin gene effect on HLA risk in type 1 diabetes. Diabetes 2004; 53: 3286–3291.
  • Ueda H et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.
  • Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nat Genet 2004; 36: 337–338.
  • Smyth D et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53: 3020–3023.
  • Langholz B, Tuomilehto-Wolf E, Thomas D, Pitkaniemi J, Tuomilehto J. Variation in HLA-associated risks of childhood insulin-dependent diabetes in the Finnish population: 1. Allele effects at A, B, and DR loci. DiMe Study Group. Childhood Diabetes in Finland. Genet Epidemiol 1995; 12: 441–445.
  • Demaine AG, Hibberd ML, Mangles D, Millward BA. A new marker in the HLA class I region is associated with the age at onset of IDDM. Diabetologia 1995; 38: 623–628.
  • Nakanishi K, Kobayashi T, Murase T, Nakatsuji T, Inoko H, Tsuji K, Kosaka K. Association of HLA-A24 with complete beta-cell destruction in IDDM. Diabetes 1993; 42: 1086–1093.
  • Hanifi Moghaddam P, de Knijf P, Roep BO, Van der Auwera B, Naipal A, Gorus F, Schuit F, Giphart MJ. Genetic structure of IDDM1: two separate regions in the major histocompatibility complex contribute to susceptibility or protection. Diabetes 1998; 47: 263–269.
  • Kelly MA, Rayner ML, Mijovic CH and Barnett AH. Molecular aspects of type 1 diabetes. Mol Pathol 2003; 56: 1–10.
  • Barrett JC et al. The Type 1 Diabetes Genetics Consortium. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41: 703–707.
  • Undlien DE, Lie BA, Thorsby E. HLA complex genes in type 1 diabetes and other autoimmune diseases. Which genes are involved? Trends Genet 2001; 17: 93–100.
  • Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, Mychaleckyj JC, Todd JA, Bonella P, Fear AL, Lavant E, Louey A, Moonsamy P. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk. Analysis of the type 1 diabetes genetics consortium families. Diabetes 2008; 57: 1084–1092.
  • Pugliese A, Eisenbarth GS. Type 1 diabetes mellitus in man: genetic susceptibility and resistence. In Eisenbarth GS, Ed. Immunology of Type 1 Diabetes. 2nd ed. Pp 170–203. New York: Kluwer Academic/Plenum Publishers, 2004.
  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–512.
  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987; 329: 512–518.
  • Cucca F, Lampis R, Congia M, Angius E, Nutland S, Bain SC, Barnett AH, Todd JA. A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Hum Mol Genet 2001; 10: 2025–2037.
  • Male D. T-cell receptors and major histocompatibility complex molecules. In I Roitt, I, Brostoff, J, Male, D, Eds. Immunology. 6th Ed. Pp 87–104, New York: Mosby, 2001.
  • Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in type 1 diabetes and associated disorders. Diabetologia 2002; 45: 605–622.
  • Wilcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 2009; 155: 173–181.
  • Chaillous L, Rohmer V, Maugendre D, Lecomte P, Marechaud R, Marre M, Guilhem I, Charbonnel B, Sai P. Differential β-cell response to glucose, glucagon, and arginine during progression to type 1 (insulin-dependent) diabetes mellitus. Metabolism 1996; 45: 306–314.
  • Keskinen P, Korhonen S, Kupila A, Veijola R, Erkkilä S, Savolainen H, Arvilommi P, Simell T, Ilonen J, Knip M, Simell O. First-phase insulin response in young healthy children at genetic and immunological risk for type 1 diabetes. Diabetologia 2002; 45: 1639–1648.
  • Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. BMJ 2004; 328: 750–754.
  • Tait BD, Harrison LC, Drummond BP, Stewart V, Varney MD, Honeyman MC. HLA antigens and age at diagnosis of insulin-dependent diabetes mellitus. Hum Immunol 1995; 42: 116–122.
  • Gillespie KM, Gale EA, Bingley PJ. High familial risk and genetic susceptibility in early onset childhood diabetes. Diabetes 2002; 51: 210–214.
  • Orban T, Kis J, Szereday L, Engelmann P, Farkas K, Jalahej H, Treszl A. Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 2007; 28: 177–187.
  • Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ 1995; 311: 913–917.
  • Staines A, Bodansky HJ, McKinney PA, Alexander FE, McNally RJ, Law GR, Lilley HE, Stephenson C, Cartwright RA. Small area variation in the incidence of childhood insulin-dependent diabetes in Yorkshire,UK: links with overcrowding and population density. Int J Epidemiol 1997; 26: 1307–1313.
  • Kukko M, Toivonen A, Kupila A, Korhonen S, Keskinen P, Veijola R, Virtanen SM, Ilonen J, Simell O, Knip M. Familial clustering of β-cell autoimmunity in initially non-diabetetic children. Diabet Metab Res Rev 2006; 22: 53–58.
  • Leslie RDG, Elliott B. Early environmental events as a cause of IDDM: evidence and implications. Diabetes Care 1994; 43: 843–850.
  • Leslie RDG, Delli Castelli M. Age-dependent influences on the origins of autoimmune diabetes: evidence and implications. Diabetes 2004; 53: 3033–3040.
  • Stewart-Brown S, Haslum M, Butler N. Evidence for increasing prevalence of diabetes mellitus in childhood. BMJ 1983; 286: 1855–1857.
  • Karvonen M, Tuomilehto J, Libman I, Laporte R. A review of the recent epidemiological data on the worldwide incidence of type 1 diabetes mellitus. Diabetologia 1993; 36: 883–892.
  • Schoenle EJ, Molinari L, Bagot M, Semadeni S, Wiesendanger M. Epidemiology of IDDM in Switzerland. Increasing incidence rate and rural-urban differences in Swiss men born 1948–1972. Diabetes Care 1994; 17: 955–960.
  • Patterson CC, Dahlquist GG, Gyűrös E, Green A, Soltész G. EURODIAB Study Group. Incidence trends for childhood type l diabetes in Europe during 1989–2003 and predicted new cases 2005–2020: a multicentre prospective registration study. Lancet 2009; 373: 873–876.
  • Gale EAM. The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002; 51: 3353–3361.
  • Yoon JW, Ko W, Bae YS, Pak CY, Amano K, Eun HM, Kim MK. Identification of antigenic differences between the diabetogenic and non-diabetogenic variants of encephalomyocarditis virus using monoclonal antibodies. J Gen Virol. 1988; 69:1085–1090.
  • Eun HM, Bae YS, Yoon JW. Amino acid differences in capsid protein, VP1, between diabetogenic and nondiabetogenic variants of encephalomyocarditis virus. Virology. 1988; 163: 369–373.
  • LaPorte RE, Tajima N, Akerblom HK, Berlin N, Brosseau J, Christy MK, Drash AL, Fishbein H, Green A, Hamman R. Harris M, King H, Laron Z, Neil A. Geographic differences in the risk of insulin-dependent diabetes mellitus: the importance of registries. Diabetes Care 1985; 8(Suppl 1): 101–107.
  • Serrano-Rios M, Goday A, Martinez Larrad T. Migrant populations and the incidence of type 1 diabetes mellitus: an overview of the literature with a focus on the Spanish-heritage countries in Latin America. Diabetes Metab Res Rev 1999; 15: 113–132.
  • Bodansky HJ, Staines A, Stephenson C, Haigh D, Cartwright R. Evidence for an environmental effect in the etiology of insulin dependent diabetes in a transmigratory population. BMJ 1992; 304: 1020–1022.
  • Podar T, Laporte RE, Tuomilehto J, Shubnikov E. Risk of childhood type 1 diabetes for Russians in Estonia and Siberia. Int J Epidemiol 1993; 22: 262–267.
  • Calori G, Gallus G, Bognetti E. Insulin-dependent diabetes mellitus in Sardinian-heritage children living in Lombardy. Lancet 1998; 351: 263–264.
  • Zung A, Elizur M, Weintrob N, Bistritzer T, Hanukoglu A, Zadik Z, Phillip M, Miller K, Koren I, Brautbar C, Israel S. Type 1 diabetes in Jewish Ethiopian immigrants in Israel: HLA class II immunogenetics and contribution of new environment. Hum Immunol 2004; 65: 1463–1468.
  • Harrison LC, Honeyman MC. Cow’s milk and type 1 diabetes. The real debate is about mucosal immune function. Diabetes 1999; 48: 1501–1507.
  • Atkinson M, Gale EAM. Infant diets and type 1 diabetes: too early, too late or just too complicated? JAMA 2003; 290: 1771–1772.
  • Norris JM, Beaty B, Klingensmith G. Lack of association between early exposure to cow milk’s protein and β-cell autoimmunity. Diabetes Autoimmunity Study in the Young (DAISY). JAMA 1996; 276: 609–614.
  • Hummel M, Fuchtenbusch M, Schenker M, Ziegler AG. No major association of breast-feeding, vaccinations and childhood viral diseases with early islet autoimmunity in the German BABYDIAB study. Diabetes Care 2000; 23: 969–974.
  • Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 2003; 290: 1721–1728.
  • Hettiarachchi KD, Zimmet PZ, Myers MA. Dietary toxins, endoplasmic (ER) stress and diabetes. Curr Diabetes Rev 2008; 4: 146–156.
  • Myers M, Zimmet PZ,Mackay I. Toxic type 1 diabetes, Rev Endo Metab Disord 2003; 4: 225–231
  • Gale EAM. A missing link in the hygiene hypothesis? Diabetologia 2002; 45: 588–594.
  • Lévy-Marchal C, Patterson C, Green A. On behalf of the Eurodiab ACE Study Group: variation by age group and seasonality at diagnosis of childhood IDDM in Europe. Diabetologia 1995; 38: 823–830.
  • Laron Z. Incidence and seasonality of type 1 diabetes mellitus-what now? J Pediatr Endocrinol Metab 2002; 15: 573–575.
  • Clarke WL, Shaver KA, Bright GM, Rogol AD, Nance WE. Autoimmunity in congenital rubella syndrome. J Pediatr 1984; 104: 370–373.
  • Viskari H, Paronen J, Keskinen P, Simell S, Zawilinska B, Zgorniak-Nowosielska I, Korhonen S, Ilonen J, Simell O, Haapala AM, Knip M, Hyöty H. Humoral β-cell autoimmunity is rare in patients with the congenital rubella syndrome. Clin Exp Immunol 2003; 133: 378–383.
  • Jaeckel E, Manns M, von Herrath M. Viruses and diabetes. Ann NY Acad Sci 2002; 958: 7–25.
  • Chehadeh W, Weill J, Vantyghem MC, Alm G, Lefebvre J, Wattre P, Hober D. Increased level of interferon-ά in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackie-virus B infection. J Infect Dis 2000; 181: 1929–1939.
  • Huang X, Yuang J, Goddard A, Foulis A, James RF, Lernmark A, Pujol-Borrell R, Rabinovitch A, Somoza N, Stewart TA. Interferon expression in the pancreases of patients with type 1 diabetes. Diabetes 1995; 44: 658–664.
  • Devendra D, Eisenbarth GS. Interferon-alpha-a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. Clin Immunol 2004; 111: 225–233.
  • Serreze DV, Wasserfall C, Ottendorfer EW, Stalvey M, Pierce MA, Gauntt C, O’Donnell B, Flanagan JB, Campbell-Thompson M, Ellis TM, Atkinson MA. Diabetes acceleration or prevention by a Coxsackievirus B4 infection: critical requirements for both interleukin-4 and gamma interferon. J Virol 2005; 79: 1045–1052.
  • You S, Chatenoud L. Proinsulin: a unique autoantigen triggering autoimmune diabetes. J Clin Invest 2006; 116: 3108–3110.
  • Ott PA, Dittrich MT, Herzog BA Guerkov R, Gottlieb PA, Putnam AL, Durinovic-Bello I, Boehm BO, Tary-Lehmann M, Lehmann PV. T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading. J Clin Immunol 2004; 24: 327–329.
  • Panagiotopoulos C, Trudeau JD, Tan R. T-cell epitopes in type 1 diabetes. Curr Diab Rep 2004; 4: 87–94.
  • Doyle HA, Mamula MJ. Posttranslational protein modifications in antigen recognition and autoimmunity. Trends Immunol 2001; 22: 443–449.
  • Mannering SI, Harrison LC, Williamson NA, Morris JS, Thearle DJ, Jensen KP, Kay TW, Rossjohn J, Falk BA, Nepom GT, Purcell AW. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med 2005; 202: 1191–1197.
  • Csorba TR. Higher molecular weight insulin precursors as autoantigens in type 1 diabetes. Med Hypotheses 1990; 33: 113–116.
  • Csorba TR, Lyon AW. Abnormal proinsulin congeners as autoantigens that initiate the pathogenesis of type 1 diabetes. Med Hypotheses 2005; 64: 186–191.
  • Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 1998; 161: 3912–3918.
  • Tian J, Zekzer D, Lu Y, Dang H, Kaufman DL. B cells are crucial for determinant spreading of T cell autoimmunity among β-cell antigens in diabetes-prone nonobese diabetic mice. J Immunol 2006; 176: 2654–2661.
  • Liu M, Li Y, Cavener D, Arvan P. Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J Biol Chem 2005; 280: 13209–13212.
  • Liu M, Hodish I, Rhodes CJ, Arvan P. Proinsulin maturation, misfolding, and proteotoxicity. Proc Nat Acad Sci USA 2007; 104: 15841–15846.
  • Hirasawa K, Jun HS, Han HS, Zhang ML, Hollenberg MD, Yoon JW. Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibition of the tyrosine kinase signaling pathway and subsequent suppression of nitric oxide production in macrophages. J Virol 1999; 73: 8541–8548.
  • Koulmanda M, Bhasin M, Hoffman L, Fan Z, Qipo A, Shi H, Bonner-Weir S, Putheti P, Degauque N, Libermann TA, Auchincloss H Jr, Flier JS, Strom TB. Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc Natl Acad Sci USA 2008; 105: 16242–16247.
  • Ramachandran R, Hollenberg MD. Proteinases and signaling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2008, 153(Suppl 1): S263–S282.
  • Harrison LC. The prevention of autoimmune disease: type 1 diabetes as a paradigm. In Rose NR, Mackay IR, Eds. The Autoimmune Diseases. 4th ed. Pp 1045–1062. London: Elsevier, 2006.
  • Harrison LC. Risk assessment, prediction and prevention of type 1 diabetes. Pediatr Diabetes 2001; 2: 71–82.
  • Fourlanos S, Narendran P, Byrnes GB, Colman PG, Harrison LC. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 2004; 47: 1661–1667.
  • Polychronakos C. Animal models of spontaneous autoimmune diabetes: notes on their relevance to the human disease. Curr Diab Rep 2004; 4: 151–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.