67
Views
23
CrossRef citations to date
0
Altmetric
Research Article

The Significance of 2, 3–DPG in Red Blood Cell Transfusions

, &
Pages 107-174 | Published online: 27 Sep 2008

References

  • Hoppe-Seyler F. Uber die chemischen und optischen Eigneschaften des Blutfarbstoffs. Virchow's Arch. Pathol. Anat. 1864; 29: 233
  • Stokes G. C. On the reduction and oxidation of the colouring matter of the blood. Proc. R. S. London 1864; 13: 355
  • Krogh A. The number and distribution of capillaries in muscle with calculation of the oxygen head pressure. J. Physiol. (London) 1919; 52: 409
  • Barcroft J. The Respiratory Function of the Blood. Cambridge University Press, London 1914
  • Barcroft J. The Respiratory Function of the Blood Part 2. Cambridge University Press, London 1925
  • Valtis D. J., Kennedy A. C. Defective gas-transport function of stored red blood cells. Lancet 1954; 1: 119
  • Perutz M. F. Stereochemistry of cooperative effects of haemoglobin. Nature (London) 1970; 228: 726
  • Perutz M. F. The Bohr effect and combination with organic phosphates. Nature (London) 1970; 228: 734
  • Perutz M. F., Pulsinelli P. D., Ranney H. M. Structure and subunit interaction of haemoglobin M Milwaukee. Nature (London), New Biol. 1972; 237: 259
  • Hill A. V. The possible effects of the aggregation of molecules of haemoglobin on its dissociation current. J. Physiol. 1910; 40: 4
  • Wyman J. Heme proteins. Adv. Protein Chem. 1948; 4: 407
  • Benesch R. E., et al. The chemistry of the Bohr effect. II. Some properties of hemoglobin H. J. Biol. Chem. 1961; 236: 2926
  • Simon S. R., Konigsberg W. H. Chemical modification of hemoglobins: a study of conformation restraint by internal bridging. Proc. Natl. Acad. Sci. U.S.A. 1966; 56: 749
  • Antonini E., et al. Studies on carboxypeptidase digests of human hemoglobin. J. Biol. Chem. 1961; 236: PC60
  • Neer E. J., Konigsberg W. H. The characterization of modified human hemoglobin. II. Reaction with 1-fluoro-2, 4-dinitrobenzene. J. Biol. Chem. 1968; 243: 1966
  • Haurowitz F. Das Cleichgewicht zwischen Hämoglobin und Sauerstoff. Hoppe-Seyler's Z. Physiol. Chem. 1938; 254: 266
  • Muirhead H., Cox J. M., Mazzarella L., Perutz M. F. Structure and function of haemoglobin. III. J. Mol. Biol. 1967; 28: 117
  • Wyman J. Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 1964; 19: 223
  • Monod J., Wyman J., Changeux J. P. On the nature of allosteric transitions. A plausible model. J. Mol Biol. 1965; 12: 88
  • Bohr C., Hasselbalch K., Krogh A. Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand. Arch. Physiol. 1904; 16: 402
  • Kilmartin J. V. The Bohr effect of human hemoglobin. Trends Biochem. Sci. 1977; 2: 247
  • Kilmartin J. V., Rossi-Bernardi L. Inhibition of CO2 combination and reduction of the Bohr effect in haemoglobin chemically modified at its alpha-amino groups. Nature (London) 1969; 222: 1243
  • Perutz M. F., Murihead H., Mazzarella L., Crowther R. A., et al. Identification of residues responsible for the alkaline Bohr effect in haemoglobin. Nature (London) 1969; 222: 1240
  • Kilmartin J. V., Breen J. J., Roberts G. C. K., Ho C. Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1246
  • Ferguson J. K. W., Roughton F. J. W. The chemical relationships with physiological importance of carbamino compounds of CO2 with haemoglobin. J. Physiol. (London) 1934; 83: 87
  • Kilmartin J. V., Rossi-Bernardi L. The binding of carbon dioxide by horse haemoglobin. Biochem. J. 1971; 124: 31
  • Rossi-Bernardi L., et al. The effect of organic phosphates on the binding of CO2 to human haemoglobin and CO2 transport in the circulating blood. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 225
  • Perella M., Bresciani D., Rossi-Bernardi L. The binding of CO2 to human hemoglobin. J. Biol. Chem. 1975; 250: 5413
  • Rossi-Bernardi L., Roughton F. J. W. The specific influence of carbon dioxide and carbamate compounds on the buffer power and Bohr effects in human haemoglobin solutions. J. Physiol. (London) 1967; 189: 1
  • Garby L., Robert M., Zaar B. Proton and carbamino linked oxygen affinity of normal human blood. Acta Physiol. 1972; 84: 482
  • Adair G. S. The osmotic pressure of haemoglobin in the absence of salts. Proc. R. S. London 1925; 109A: 292
  • Bauer C., Schroder E. Carbamino compounds of haemoglobin in human adult and fetal blood. J. Physiol. (London) 1972; 227: 457
  • Greenwald I. A new type of phosphoric acid isolated from blood, with some remarks on the effect of substitution on the rotation of L-glyceric acid. J. Biol. Chem. 1925; 63: 339
  • Rapoport S., Guest C. M. Distribution of acid soluble phosphorus in the blood cells of various species. J. Biol. Chem. 1941; 138: 269
  • Rapoport S., Luebering J. The formation of 2, 3-DPG in rabbit erythrocytes: the existence of diphosphoglycerate mutase. J. Biol. Chem. 1950; 183: 507
  • Rapoport S., Luebering J. Glycerate-2, 3-diphosphatase. J. Biol. Chem. 1951; 189: 683
  • Murphy J. R. Erythrocyte metabolism. I. The equilibration of glucose-C14 between serum and erythrocytes. J. Lab. Clin. Med. 1960; 55: 281
  • Duhm J., Deuticke B., Gerlach E. Metabolism and Membrane Permeability of Erythrocytes and Thrombocytes, E. Deutsch, E. Gerlach, K. Moser. G. Thieme, Stuttgart 1968; 69
  • Duhm J., Deuticke B., Gerlach E. Abhangigkeit der 2, 3-diphosphoglycerinsause-synthese in menschen-erythrocyten von der ADP-kozentration. Pflugers Arch. Ges. Physiol. 1969; 306: 329
  • Schroter W. Metabolism and Membrane Permeability of Erythrocytes and Thrombocytes, E. Deutsch, E. Gerlach, K. Moser. G. Thieme, Stuttgart 1968; 50
  • Rapoport S. The regulation of glycolysis in mammalian erythrocytes. Essays Biochem. 1968; 4: 69
  • Joyce B. K., Grisolina S. Enzyme synthesis and isolation of 2, 3-DPG. J. Biol. Chem. 1958; 233: 350
  • Sutherland E. W. The mechanism of action of phosphoglucomutase and phosphoglyceric acid mutase. J. Biol. Chem. 1949; 179: 501
  • Duhm J., Gerlach E. Metabolism and function of 2, 3-diphosphoglycerate in red blood cells. The Human Red Cell In Vitro, T. J. Greenwalt, G. A. Jaimeson. Grune & Stratton, New York 1974; 111
  • Hoch H., Chanutin A. An electrophoretic study of human plasma stored at room temperature. J. Biol. Chem. 1954; 209: 661
  • Berry E. R., Chanutin A. Electrophoretic studies of red cell extracts of stored blood. J. Clin. Invest. 1957; 36: 225
  • Berry E. R., Chanutin A. Effect of blood storage conditions on the electrophoretic patterns of red cell hemolysates. J. Clin. Inves. 1958; 37: 974
  • Rapoport S. Dimensional, osmotic and chemical changes of erythrocytes in stored blood. I. Blood preserved in sodium citrate, neutral and acid citrate-dextros (ACD) mixtures. J. Clin. Invest. 1947; 26: 591
  • Chanutin A., Curnish R. R. The effect of adenosine, inosine and adenine on the concentrations of organic phosphates and on electrophoretic component(s) of human red cells during storage of blood in acid-citrate-dextrose and citrate-phosphate-dextrose. Transfusion 1965; 5: 254
  • Bartlett G. R., Barnet H. N. Changes in the phosphate compounds of the human red blood cell during blood bank storage. J. Clin. Invest. 1960; 39: 56
  • Sugita Y., Chanutin A. Electrophoretic studies of red cell hemolysates supplemented with phosphorylated carbohydrate intermediates. Proc. Soc. Exp. Biol. Med. 1963; 112: 72
  • Chanutin A., Curnish R. R. Factors influencing the electrophoretic patterns of red cell hemolysates analyzed in cacodylate buffers. Arch. Biochem. Biophys. 1964; 106: 433
  • Chanutin A., Curnish R. R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 1967; 121: 96
  • Benesch R., Benesch R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 1967; 26: 162
  • Oski F. A., Gottlieb A. J., Miller W. W. Delivoria-Papadopolous: The effects of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2, 3-diphosphoglycerate and its in vivo consequences. J. Clin. Invest. 1970; 49: 400
  • Benesch R., Benesch R. E., Yu C. I. Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 1968; 59: 526
  • Benesch R. E., Benesch R., Yu C. I. The oxygenation of hemoglobin in the presence of diphosphoglycerate. Effect of temperature, pH, ionic strength, and hemoglobin concentration. Biochemistry 1969; 8: 2567
  • Benesch R., Benesch R. E., Enoki Y. The interaction of hemoglobin and its subunits with 2, 3-diphosphoglycerate. Proc. Natl. Acad. Sci. U.S.A. 1968; 61: 1102
  • Bunn H. F., Jandl J. H. Control of hemoglobin function within the red cell. N. Engl. J. Med. 1970; 282: 1414
  • Bauer C., Ludwig I., Ludwig M. Different effects of 2, 3-diphosphoglycerate and adenosine triphosphate on the oxygen affinity of adult and foetal human hemoglobin. I. Life Sci. 1968; 7: 1339
  • Tyuma I., Shimzu K. Different response to organic phosphates of human fetal and adult hemo globins. Arch. Biochem. 1969; 129: 404
  • de Verdier C-H., Garby L. Low binding of 2, 3-diphosphoglycerate to haemoglobin F: a contribution to the knowledge of the binding site and an explanation of the high oxygen affinity of foetal blood. Scan. J. Clin. Lab. Invest. 1969; 23: 149
  • Schroeder W. A., et al. Hemoglobin F1, an acetyl-containing hemoglobin. Biochim. Biophys. Acta 1962; 63: 532
  • Huehns E. R., Shooter E. M. The properties and reactions of haemoglobin F1 and their bearing on the dissociation equilibrium of haemoglobin. Biochem. J. 1966; 101: 852
  • Holmquist W. R., Schroeder W. A. A new N-terminal blocking group involving a Schiff base in hemoglobin A1c. Biochemistry 1966; 5: 2489
  • Bookchin R. M., Gallop P. M. Structure of hemoglobin Aic: nature of the N-terminal beta chain blocking group. Biochem. Biophys. Res. Commun. 1968; 32: 86
  • Benesch R., Benesch R. E., Renthal R. D., Maeda N. Affinity labelling of the polyphosphate binding site of hemoglobin. Biochemistry 1972; 11: 3526
  • Muirhead H., et al. Structure and function of haemoglobin. III. A three dimensional Fourier synthesis of human deoxyhemoglobin at 5.5 Å resolution. J. Mol. Biol. 1967; 28: 117
  • Arnone A. X-ray diffraction study of binding of 2, 3–diphosphoglycerate to human deoxyhaemoglobin. Nature (London) 1972; 237: 146
  • Bauer C. Antagonistic influence of CO2 and 2, 3–diphosphoglycerate on the Bohr Effect of human hemoglobin. Life Sci. 1969; 8: 1041
  • Bauer C. Reduction of the CO2 affinity of human hemoglobin solution by 2, 3–diphosphoglycerate. Resp. Physiol. 1972; 10: 10
  • Horvath S., Malenfant A., Rossi F., Rossi-Bernardi L. The oxygen affinity of concentrated human hemoglobin solutions and human blood. Am. J. Hem. 1977; 2: 343
  • Kilmartin J. V. Interaction of haemoglobin with protons, CO2 and DPG. Br. Med. Bull. 1976; 32: 209
  • Perella M., Kilmartin J. V., Figg J., Rossi-Bernardi L. Identification of high and low affinity CO2 binding sites of human hemoglobin (Letter). Nature (London) 1975; 256: 759
  • Pace M., Rossi-Bernardi L., Roughton F. J. W. The effect of organic phosphates on the reaction of haemoglobin and oxyhaemoglobin with carbon dioxide. Biochem. J. 1970; 119: 67P
  • Duhm J. Effects of 2, 3–diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflugers Arch. 1971; 326: 341
  • Duhm J. The effect of 2, 3–DPG and other organic phosphates on the Donnan equilibrium and the oxygen affinity of human blood. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 583
  • Astrup P., Engel K., Severinghaus J. W. The influence of temperature and pH on the oxygen dissociation curve of hemoglobin of human blood. Scand. J. Clin. Invest. 1965; 17: 515
  • Sidwell A. E., Jr., Munch R. H., Barton Guzman E. S., Hogness T. R. The salt effect on the hemoglobin-oxygen equilibrium. J. Biol. Chem. 1938; 123: 335
  • Green A. A., Talbot J. H. Effects of electrolytes on oxygen-hemoglobin equilibrium. J. Biol. Chem. 1933; 100: 1
  • Rossi-Fanelli A., Antonini E., Caputo A. Studies on the relationship between molecular and functional properties of hemoglobin. II. The effect of salts on the oxygen equilibrium of human hemoglobin. J. Biol. Chem. 1961; 236: 297
  • Dawson R. B., et al. The hemoglobin function of blood stored at 4d`C. Red Cell Metabolism and Function, G. J. Brewer. Plenum Press, New York 1970; 305
  • Antonini E., Brunori M. Hemoglobin. Annu. Rev. Biochem. 1970; 39: 977
  • Antonini E. Oxygen binding to hemoglobin, influence of solvent components. Forsvarsmedicin 1969; 5: 147
  • Bellingham A. J., Detter J. C., Lenfant C. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J. Clin. Invest. 1971; 50: 700
  • May A., Huehns E. R. The control of oxygen affinity of red cells with Hb Shepherds Bush. Br. J. Haematol. 1972; 22: 599
  • Murphy J. R., Wengerd M., Kellermeyer R. W. Erythrocyte O2 affinity: influence of cell density and in vitro changes in hemoglobin concentration. J. Lab. Clin. Med. 1974; 84: 218
  • Bunn H. F., Ransil B. J., Chao A. The interaction between erythrocyte organic phosphates, magnesium ion and hemoglobin. J. Biol. Chem. 1971; 246: 5273
  • Rose I. A. The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc. Natl. Acad. Sci. U.S.A. 1968; 61: 1079
  • Berger N., et al. Interaction of haemoglobin with ions. Interaction among magnesium, adenosine and 5′-triphosphate, 2, 3, -diphosphoglycerate and oxygenated and deoxygenated human haemoglobin under simulated intracellular conditions. Eur. J. Biocnem. 1973; 38: 553
  • Keys A., Snell A. M. Respiratory properties of the arterial blood in normal man and in patients with disease of the liver: position of the oxygen dissociation curve. J. Clin. Invest. 1938; 17: 59
  • Lenfant C., et al. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Lab. Clin. Invest. 1968; 47: 2652
  • Lenfant C., Torrance J. D., Reynafarje C. Shift of the oxygen-hemoglobin dissociation curve at altitude. Mechanism and effect. J. Appl. Physiol. 1971; 30: 625
  • Torrance J., Lenfant C., Cruz J., Marticorena E. Oxygen transport mechanisms in residents at high altitudes. Respir. Physiol. 1970/1971; 11: 1
  • Oski F. A., Gottlieb A. J., Delivoria-Papadopoulos M., Miller W. W. Red cell 2, 3–diphosphoglycerate in subjects with chronic hypoxemia. N. Engl. J. Med. 1969; 280: 1165
  • Fairweather L. J., Walker J., Finley D. C. 2, 3–diphosphoglycerate concentration and the dissociation of oxyhemoglobin in ventilatory failure. Clin. Sci. Mot. Med. 1974; 47: 577
  • Orzalesi M. M., Motoyama E. K. Blood oxygen affinity in children with cystic fibrosis. Am. Rev. Respir. Dis. 1973; 107: 928
  • Block A. J., Castle J. R., Keitt A. S. Chronic oxygen therapy: treatment of chronic obstructive pulmonary disease at sea level. Chest 1974; 65: 27
  • Lenfant C., Ways D., Aucutt C., Crux J. Effect of chronic hypoxia on the oxygen-hemoglobin dissociation curve and respiratory gas transport in man. Respir. Physiol. 1969; 7: 7
  • Keitt A. S., Hinkes C., Block A. J. Comparison of factors regulating red cell 2, 3–diphosphoglycerate (2, 3–DPG) in acute and chronic hypoxemia. J. Lab. Clin. Med. 1974; 84: 275
  • Flenley D. C., Fairweather L. J., Cooke N. J., Kerby B. J. Changes in haemoglobin binding curve and oxygen transport in chronic hypoxia lung disease. Br. Med. J. 1975; 1: 602
  • Ravin M. B., et al. Red cell 2, 3–diphosphoglycerate in surgical correction of cyanotic congenital heart disease. Anesth. Anaig. (Cleveland) 1973; 52: 599
  • Miller W. W. Erythrocyte oxygen transport in normal infants and in infants with cardiovascular disease. Neonatal Heart Disease, W. R. Friedman, M. Lesch, E. H. Sonnenbleck. Grune & Stratton, New York 1972; 263
  • Shappell S. D., et al. Acute change in hemoglobin affinity for oxygen during angina pectoris. N. Engl. J. Med. 1970; 282: 1219
  • Dawson R. B. Rapid adaptation to hypoxia (Letter). Engl. J. Med. 1970; 283: 265
  • Mizukami H., Eliot R. S. Abnormal Bohr effect: a possible cause of myocardial ischemia. Circulation 1965; 32: 52
  • Eliot R. S., Mizukami H. Oxygen affinity of hemoglobin in patients with acute myocardial infarction and in smokers. Circulation 1966; 34: 331
  • Kostuk W. J., Suwa K., Bernstein E. F., Sobel B. F. Altered hemoglobin oxygen affinity in patients with acute myocardial infarction. Am. J. Cardiol. 1973; 31: 295
  • Vokonas P. S., et al. Hemoglobin affinity for oxygen in the anginal syndrome with normal coronary arteriograms. J. Clin. Invest. 1974; 54: 409
  • Neill W. A., et al. Clinically suspect ischemic heart disease not corroborated by demonstrable coronary artery disease. Am. J. Cardio. 1974; 29: 171
  • Richards D. W., Jr., Strauss M. L. Oxyhemoglobin dissociation curve of whole blood in anemia. J. Clin. Invest. 1927; 4: 105
  • Mulhausen R. O., Astrup P., Kjeldsen K. Oxygen affinity of hemoglobin in patients with cardiovascular diseases, anemia, and cirrhosis of the liver. Scand. J. Clin. Lab. Invest. 1967; 19: 291
  • Valtis D. J., Kennedy A. C. The oxygen dissociation curve in anemia of various types. J. Clin. Invest. 1957; 33: 1372
  • Hjelm M. The content of 2, 3–diphosphoglycerate and some other phosphocompounds in human erythrocytes from healthy adults and subjects with different types of anemia. Forsvarsmedicin 1969; 5: 219
  • Eaton J. W., Brewer G. J. The relationship between red cell 2, 3–diphosphoglycerate and levels of hemoglobin in the human. Proc. Natl. Acad. Sci. U.S.A. 1968; 61: 756
  • Torrance J., et al. Intraerythrocytic adaptation to anemia. N. Engl. J. Med. 1970; 283: 165
  • Koch H. H., Schroeter W. Kompensatorische Veranderungen der erythrocytaren 2, 3–Diphosphoglycerat Knozentration bei Anamien and Polyglobulien. Monatsschr. Kinderheilkd. 1973; 121: 392
  • Valeri C. R., Fortier N. L. Red cell 2, 3–diphosphoglycerate and creatinine levels in patients with red cell mass deficits or with cardiopulmonary insufficiency. N. Engl. J. Med. 1969; 281: 1452
  • Card R., Brain M. The “anemia” of childhood. N. Engl. J. Med. 1973; 288: 388
  • Rapoport S. Regulation of metabolism in red cells. Proc. 11th Congr. Int. Soc. Blood Transfusion. Sydney 1966, Bibl. Haematol. (Basel) 29, (Part 1), 133, 1968
  • Passaneau J. V., Lowry O. H. Phosphofructokinase and the control of the citric acid cycle. Biochem. Biophys. Res. Commun. 1963; 13: 372
  • Mansour T. E. Studies on heart phosphofructokinase, purification, inhibition and activation. J. Biol. Chem. 1963; 238: 2285
  • Mansour T. E., Wakid N. W., Sprouse H. M. Purification, crystallization and properties of activated sheep heart phosphofructokinase. Biochem. Biophys. Rev. Commun. 1965; 19: 721
  • Rapoport S. Control mechanisms of red cell glycolysis. The Human Red Cell In Vitro, T. J. Greenwalt, G. A. Jaimeson. Grune & Stratton, New York 1974; 153
  • Dawson R. B., Kocholaty W. F. Hemoglobin function during blood storage. XV. Effects of metabolic additives inosine and methylene blue on P50 and 2, 3–DPG. Hemoglobin and Red Cell Structure and Function, G. I. Brewer. Plenum Press. 1972; 495
  • Rose I. A., Warms J. V. Control of red cell glycolysis: the cause of triose phosphate accumulation. J. Biol. Chem. 1970; 245: 40009
  • Bellingham A. J., Huehns E. R. Oxygen dissociation in red cells from patients with abnormal haemoglobins and pyruvate kinase deficiency. Forvarsmedicin 1969; 5: 207
  • Delivoria-Papadopoulos M., Oski F., Gotlieb A. J. Oxygen-hemoglobin dissociation curves: effect of inherited enzyme defects of the red cell. Science 1969; 165: 601
  • Oski F. A., et al. The role of the left-shifted or right-shifted oxygen-hemoglobin equilibrium curve. Ann. Int. Med. 1971; 44
  • Rose Z. B. The purification and properties of diphosphoglycerate mutase from human erythrocytes. J. Biol. Chem. 1968; 243: 4810
  • Rose Z. B. Effects of salts and pH on the rate of diphosphoglycerate mutase from human erythrocytes. Arch. Biochem, Biophys 1973; 158: 903
  • Rose Z. B. The enzymes of 2, 3–diphosphoglycerate metabolism in the human red cell. Red Cell Metabolism and Function, G. Brewer. Plenum Press, New York 1970
  • Rapoport S., Guest G. M. The role of diphosphoglyceric acid in the electrolyte metabolism of red blood cells: studies of pyloric pyloric obstruction in dogs. J. Biol. Chem. 1939; 675
  • Rorth M. Dependence of oxyhemoglobin dissociation and intraerythrocytic 2, 3–DPG on acid-base status of blood. I. In Vitro studies on reduced and oxygenated blood. Red Cell Metabolism and Function, G. Brewer. Plenum Press, New York 1970; 57
  • Mulhausen R. O., Astrup P. Oxygen affinity and acid-base status of human blood during exposure to hypoxia and carbon monoxide. Scand. J. Clin. Lab. Invest. Suppl. 1967; 103/22: 9, 291
  • Astrup P. Dependence of oxyhemoglobin dissociation and intraerythrocytic 2, 3–DPG on acid-base status of blood. Red Cell Metabolism and Function, G. Brewer. Plenum Press, New York 1970; 67
  • Duhm J., Gerlach E. On the mechanisms of the hypoxia induced increase of 2, 3–diphosphoglycerate in erythrocytes. Pflugers Arch. 1971; 326: 254
  • Minakami S. Effect of oxygen tension on glycolysis in erythrocytes. Forsvarsmedicin 1969; 5: 181
  • Gullbring B., Strom G. Changes in oxygen carrying function of human hemoglobin during storage in cold acid-citrate-dextrose solution. Acta Med. Scand. 1956; 155: 413
  • Akerblom O., de Verdier C.-H., Garby L., Hogman C. Restoration of defective oxygen-transport function of stored red blood cells by addition of inosine. Scand. J. Clin. Lab. Invest. 1968; 21: 245
  • Bunn H. F., May M. H., Kocholaty W. F., Shields C. F. Hemoglobin function in stored blood. J. Clin. Invest. 1969; 48: 311
  • Beutler E., Meul A., Wood L. A. Depletion and regeneration of 2, 3–diphosphoglyceric acid in stored red blood cells. Transfusion 1969; 9: 109
  • Beutler E., Wood L. The in vivo regeneration of red cell 2, 3–diphosphoglyceric acid (DPG) after transfusion of stored blood. J. Lab. Clin. Med. 1969; 74: 300
  • Valeri C. R., Hirsch N. M. Restoration in vivo of erythrocyte adenosine triphosphate, 2, 3–diphosphoglycerate, potassium ion, and sodium ion content following the transfusion of acid-citrate-dextrose human red blood cells. J. Lab. Clin. Med. 1969; 73: 722
  • Kopriva C. J., et al. Biochemical and hematological changes associated with massive transfusion of ACD stored blood in severely injured combat casualties. Ann. Surg. 1972; 176: 585
  • O'Brien T. G., Watkins E., Jr. Gas exchange dynamics of deglycerolized frozen blood. J. Thor. Cardio. Surg. 1960; 40: 611
  • Yhap E. O., Wright C. B., Popovic N. A., Alix E. C. Decreased oxygen uptake with stored blood in the isolated hindlimb. J. Appl. Physiol. 1975; 38: 882
  • Harken A. H., Woods M. The influence of oxyhemoglobin affinity on tissue oxygen consumption. Ann. Surg. 1976; 183: 130
  • Guy J. T., Bromber P. A., Metz E. N., et al. Oxygen delivery following transfusion of stored blood. 1. Normal rats. J. Appl. Physiol. 1974; 37: 60
  • Broadie T. A., Herman C. M. Oxygen consumption from fresh versus 21-day-old ACD whole blood. J. Trauma 1978; 18: 381
  • Riggs T. E., Shafer A. W., Guenter C. A. Acute changes in oxyhemoglobin affinity-effects on oxygen transport and utilization. J. Clin. Invest. 1973; 52: 2660
  • Woodson R. D., Wranne B., Detter J. C. Effects of increased blood oxygen affinity on work performance of rats. J. Clin. Invest. 1973; 52: 2717
  • Wranne B., Woodson R. D. A graded treadmill test for rats: maximal work performance in normal and anemic animals. J. Appl. Physiol. 1973; 34: 732
  • Ekblom B., Goldbarg A. N., Gullbring B. Response to exercise after blood loss and reinfusion. J. Appl. Physiol. 1972; 33: 175
  • Stenberg J., Ekblom B., Messin R. Hemodynamic response to work at simulated altitude, 4000, M. J. Appl. Physiol. 1966; 21: 1589
  • Sproule B. J., Mitchell J. H., Miller W. F. Cardiopulmonary physiological responses to heavy exercise in patients with anemia. J. Clin. Invest. 1960; 39: 378
  • Wranne B., Woodson R. D., Detter J. C. Bohr effect: interaction between H; CO2 and 2, 3–DPG in fresh and stored blood. J. Appl. Physiol. 1972; 32: 749
  • Bakker J. C., Gortmaker G. C., Vrolijk A. C. M., Offerijns F. G. J. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. I. Studies at different levels of hypoxic hypoxia. Pflugers Arch. 1976; 362: 21
  • Bakker J. C., Gortmaker G. C., Offerijns F. G. J. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. II. Studies at different levels of hypoxia induced by decrease of blood flow rate. Pflugers Arch. 1976; 366: 45
  • Bakker J. C., Gortmaker G. C., de Vries-van Rossen A., Offerijns F. G. J. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. III. Studies different levels of anaemic hypoxia. Pflugers Arch. 1977; 368: 63
  • Chance B., Thurman R. G., Gosalvez M. Oxygen affinities of cellular respiration. Forvars-medicin. 1969; 5: 235
  • Boyer J. L., Klatskin G. Canalicular bile flow and bile secretory pressure. Gastroenterology 1970; 59: 853
  • Eaton J. W., Skelton T. D., Berger E. Survival at extreme altitude: protective effect of increased haemoglobin oxygen affinity. Science 1974; 183: 743
  • Turek Z., Kreuzer F., Hoofd L. J. C. Advantage or disadvantage of a decrease of blood oxygen affinity for tissue oxygen supply at hypoxia. A theoretical study comparing man and rat. Pflugers Arch. 1973; 342: 185
  • Rand P. W., et al. Responses to graded hypoxia at high- and low- 2, 3-diphosphoglycerate concentration. J. Appl. Physiol. 1973; 34: 827
  • Spector J. I., Zaroulis C. G., Pivacek L. E. Physiologic effects of normal- or low-oxygen-affinity red cells in hypoxic baboons. Am. J. Physiol. 1977; 232: H79
  • Proctor H. J., Parker J. C. Treatment of severe hypoxia by transfusion with red cells high in 2, 3–diphosphoglycerate (2, 3–DPG). Clin. Res. 1972; 20: 497, (Abstr.)
  • Delivoria-Papadopoulos M., Roncevic N. P., Oski F. A. Postnatal changes in oxygen transport of term, premature, and sick infants: the role of red cell 2, 3–diphosphoglycerate and adult hemoglobin. Pediatr. Res. 1971; 5: 235
  • Bartels H. Prenatal Respiration. North-Holland, Amsterdam 1970
  • Beer R., Doll E., Wenner G. Die Verschiebung der Sauerstoffdissoziationskurve des Blutes von Sauglingen wahrend derersten Lebensmonate. Pflugers Arch. Ges. Physiol. 1958; 265: 526
  • Bard H., et al. The adaptation of the fetal red cells of newborn lambs to extrauterine life: the role of 2, 3–diphosphoglycerate and adult hemoglobin. Pediatr. Res. 1976; 10: 823
  • Delivoria-Papadopoulos M., Oski F. A. Developmental Changes in the Oxygen Equilibrium of Infants as Related to “Functioning DPG Fraction” and its Alteration in Disease. presented at the Society for Pediatric Research. May, 21970. Atlantic City, Abstr.
  • Novy M. J., et al. Changes in cord blood oxygen affinity after intrauterine transfusion for erythroblastosis. N. Engl. J. Med. 1971; 285: 857
  • Delivoria-Papadopoulos M., Morrow G., III, Oski F. A. Exchange transfusion in the newborn infant with “fresh” and “old” blood. The role of storage on 2, 3-diphosphoglycerate hemoglobin-oxygen affinity, and oxygen release. J. Pediatr. 1971; 79: 898
  • Delivoria-Papadopoulos M., Miller L. D., Forster R., Oski F. A. The role of exchange transfusion in the management of low-birth-weight infants with and without severe respiratory distress syndrome. I. Initial observations. J. Pediatr. 1976; 89: 273
  • Gottuso M. A., Williams M. L., Oski F. A. The role of exchange transfusion in the management of low-birth-weight infants with and without severe respiratory distress syndrome. J. Pediatr. 1976; 89: 279
  • Stockman J. A., III, Garcia J. F., Oski F. A. The anemia of prematurity. Factors governing the erythropoietin response. Pediatr. Res. 1976; 10: 282
  • Woodson R. D., Torrance J. D., Shappell S. D., Lenfant C. The effect of cardiac disease on hemoglobin-oxygen binding. J. Clin. Invest. 1970; 49: 1349
  • Holsinger J. W., Salhany J. M., Eliot R. S. Physiologic observations on the effect of impaired blood oxygen release on the myocardium. Adv. Cardiol. 1973; 9: 81
  • Bordiuk J. M., McKenna P. J., Giannelli S., Jr., Ayres S. M. Alterations in 2–3 diphosphog lycerate and O2 hemoglobin affinity in patients undergoing open-heart surgery. Circ. Suppl. 1971; 43 and 44: 1–141
  • Valeri C. R. Oxygen transport function of preserved red cells, chap. 7. Blood Banking and the Use of Frozen Blood Products, C. R. Valeri. CRC Press, Cleveland, Ohio 1976; 141
  • Nakao M., Nakao T., Yamazie S., Yoshikawa H. Adenosine triphosphate and shape of erythrocytes. J. Biochem. (Tokyo) 1961; 49: 487
  • Young J. A., Lichtman M. A., Cohen J. Reduced red cell 2, 3-diphosphoglycerate and adenosine triphosphate, hypophosphatemia, and increased hemoglobin-oxygen affinity after cardiac surgery. Circulation 1973; 47: 1313
  • Dennis R. C., et al. Improved myocardial performance following high 2–3 diphosphoglycerate red cell transfusions. Surgery 1975; 77: 741
  • Wranne B., Nordgren L., Woodson R. D. Increased blood oxygen affinity and physical work capacity in man. Scand. J. Clin. Lab. Invest. 1974; 33: 347
  • Valeri C. R., Collins F. B. Physiological effects of 2, 3-DPG-depleted red cells with high affinity for oxygen. J. Appl. Physiol. 1971; 31: 823
  • Balcerzak S., Guy J., Metz E., Bromberg P. Studies on the ability of stored blood to transport oxygen in vivo. Hemoglobin and Red Cell Structure and Function, G. Brewer. Plenum Press, New York 1972; 433
  • Arturson G., Westman M. Survival of rats subjected to acute anemia at different levels of erythrocyte 2, 3-diphosphoglycerate. Scand. J. Clin. Lab. Invest. 1975; 35: 745
  • Collins J. A. Massive transfusion. Clin. Haematol. 1976; 5: 201
  • Collins J. A. The age and hematocrit of stored blood in determining the survival of rats after exchange transfusion and hemorrhage. The Red Cell, G. Brewer. Plenum Press, New York 1978; 617
  • Woodson R. D. Abstract, 16th Int. Congr. Hematol., KyotoJapan, September, 1976
  • Bowen J. C., Fleming W. H. Increased oxyhemoglobin affinity after transfusion of stored blood. Ann. Surg. 1974; 180: 760
  • Rice C. L., Herman C. M., Kresow L. H. Benefits from improved oxygen delivery of blood in shock therapy. J. Surg. Res. 1975; 19: 193
  • Weisel R. D., et al. Adverse effects of transfusion therapy during abdominal aortic aneurysectomy. Surgery 1978; 83: 682
  • Lichtman M. A., et al. The relationships between arterial oxygen flow rate, oxygen binding by hemoglobin, and oxygen utilization after myocardial infarction. J. Clin. Invest. 1974; 54: 501
  • Sheldon G. F. What is the clinical importance of alterations of the hemoglobin oxygen affinity in preserved blood-especially as produced by variations of red cell 2, 3 DPG content?. Vox Sang. May, 1977
  • Simon E. R., Chapman R. G., Finch C. A. Adenine in red cell preservation. J. Clin. Invest. 1962; 41: 351
  • Simon E. R. Red cell preservation: further studies with adenine. Blood 1962; 20: 485
  • Simon E. R. Adenine and purine nucleosides in human red cell preservation. A review. Transfusion 1967; 7: 395
  • Strumia M. M., Strumia P. V., Eusebi A. J. The preservation of blood for transfusion. VII. Effect of adenine and inosine on the adenosine triphosphate and viability of red cells when added to blood stored from zero to seventy days at 1°C. J. Lab. Clin. Med. 1970; 75: 244
  • Strumia M. M., Strumia P. V., Eusebi A. J. Effect of multiple additions of adenine-inosine on the function of stored erythrocytes. Proc. Soc. Exp. Biol. Med. 1970; 135: 443
  • Strumia M. M., Strumia P. V. Transfusion of long stored whole blood or washed red blood cells incubated with adenine and inosine. Transfusion 1971; 11: 258
  • Strumia M. M., Strumia P. V. Conditions affecting the maintenance of adenosine triphosphate, 2, 3-diphosphoglycerate and oxygen dissociation by addition of adenine and inosine to blood stored at 1°C. Transfusion 1972; 12: 68
  • Strumia M. M., Strumia P. V. Preservation of blood for transfusion. IX. The effect of increased pH and addition of inosine only and adenine and inosine on the red cell function. J. Lab. Clin. Med. 1972; 79: 863
  • Dern R. J., Brewer G. J., Wiorkowski J. J. Studies on the preservation of human blood. II. The relationship of erythrocyte adenosine triphosphate levels and other in vivo measures to red cell storageability. J. Lab. Clin. Med. 1967; 69: 968
  • Loutit J. F., Mollison P. L. Advantages of a disodium-citrate glucose mixture as a blood preservative. Br. Med. J. 1943; 2: 744
  • Loutit J. F., Moilison P. L., Young I. M. Citric acid-sodium citrate-glucose mixtures for blood storage. Q. J. Exp. Physiol. 1943; 32: 183
  • Rapoport S. The regulation of glycolysis in mammalian erythrocytes. Essays Biochem. 1968; 4: 69
  • Gibson J. G., II, et al. A citrate phosphate dextrose solution for the preservation of human blood. Am. J. Clin Pathol. 1957; 28: 569
  • de Verdier C-H., Hogman C. F., Garby L., Killander J. Storage of human red cells. II. The effect of pH and of the addition of adenine. Acta Physiol. Scand. 1964; 60: 141
  • Chanutin A. The effect of the addition of adenine and nucleosides at the beginning of storage on the concentrations of phosphates of human erythrocytes during storage in acid-citrate-dextrose and citrate-phosphate-dextrose. Transfusion 1967; 7: 120
  • Huisman T. H. J., et al. Oxygen equilibria and biochemical changes of whole blood stored in different preservative media. Transfusion 1969; 9: 180
  • Dawson R. B., et al. The control of hemoglobin function in blood stored for transfusion purposes. Blood Oxygenation, D. Hershey. Plenum Press, New York 1970; 231
  • Dawson R. B., Kocholaty W. F., Gray J. L. Hemoglobin function and 2, 3 DPG levels of blood stored at 4°C in ACD and CPD pH effect. Transfusion 1970; 10: 299
  • Dawson R. B., Loken M. R., Crater D. H. Hemoglobin function in stored blood. IX. Preservation with pH to maintain red blood cell, 2, 3 DPG (function) and ATP (viability). Transfusion 1972; 12: 46
  • Shafer A. W., et al. 2, 3–diphosphoglycerate in red cells stored in acid citrate dextrose and citrate phosphate dextrose: implications regarding delivery of oxygen. J. Lab. Clin. Med. 1974; 77: 430
  • Beutler E., Duron O. Effect of pH on preservation of red cell ATP. Transfusion 1965; 5: 17
  • Kozek W., Bishiop C. Comparison of blood stored in ACD and in a solution containing heparin, phosphate, glucose and adenine. Transfusion 1964; 4: 271
  • Beutler E., Duron O. The preservation of red cell ATP: the effect of phosphate. Transfusion 1966; 6: 124
  • Bishop C. Blood preservation solutions containing adenine, phosphate and guanosine. Proc. Soc. Exp. Biol. Med. 1966; 122: 424
  • Dawson R. B., Kocholaty W. F. Hemoglobin function in stored blood. VI. The effect of phosphate on erythrocyte ATP and 2, 3-DPG. Am. J. Clin. Pathol. 1971; 56: 656
  • Henderson R. J., Hill F. L., Mills G. C. Phosphorylation of tris (hydroxy-methyl) aminomethane by human erythrocytes. Arch. Biochem. 1970; 139: 311
  • Beutler E., Wood L. Preservation of red cell 2, 3-diphosphoglycerate in modified ACD solution and in experimental artificial storage media. Vox. Sang. 1971; 20: 403
  • Beutler E., Wood L. Preservation of red cell 2, 3-DPG and viability in bicarbonate containing medium: the effect of blood bag permeability. J. Lab. Clin. Med. 1972; 80: 723
  • Wood L., Beutler E. Storage of erythrocytes in artifical media. Transfusion 1971; 11: 123
  • Beutler E. Experimental blood preservatives for liquid storage. The Human Red Cell in Vitro, T. J. Greenwalt, G. A. Jaimeson. Grune & Stratton, New York 1974; 189
  • Harmening D. M., Dawson R. B. The use of an ion exchange resin as a blood preservative system. presented at 30th Annu. Meet. Am. Assoc. Blood Banks. Atlanta 1977, (Abstr.)
  • Rohm, Haas. Amberlite Ion-Exchange Resins Laboratory Guide, Philadelphia
  • Dawson R. B., Harmening D. M. A look at blood preservation research. Bull. Univ. Md. Sch. Med. 1978; 63: 4
  • Harmening D. M. Red cell preservation breakthroughs. Lab World October, 1978; 96
  • Gabrio B. W., et al. Erythrocyte preservation. IV. In vitro reversibility of the storage lesion. J. Biol. Chem. 1955; 215: 357
  • Gabrio B. W., Stevens A. R., Finch C. A. Erythrocyte preservation. VII. Metabolic degradation of nucleosides in vitro and in vivo. J. Clin. Invest. 1957; 36: 429
  • Hennessey M., Finch C. A., Gabrio B. W. Erythrocyte preservation. VIII. Metabolic degradation of nucleosides in vitro and in vivo. J. Clin. Invest. 1957; 36: 429
  • Alcerblom O., et al. Restoration of defective oxygen-transport function of stored red blood cells by addition of inosine. Scand. J. Clin. Lab. Invest. 1968; 21: 235
  • Lange R. D., Crosby W. H., Donohue D. M., et al. Effect of inosine on red cell preservation. J. Clin, invest. 1958; 37: 1485
  • Alcerblom O., et al. Late addition of inosine to stored blood. Effects on erythrocyte viability and metabolism. 5th Berliner Symp. Structure Function Erythrocytes, Berlin, September, 1967
  • Mc Manus T. J., Rees J. S., Gibson J. G. Effect of purine ribosides on glucose and pyruvate metabolism of human erythrocytes. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1957; 16: 220
  • Paniker N. V., Beutler E. Pyruvate effect in maintenance of ATP and 2, 3-DPG of stored blood. J. Lab. Clin. Med. 1971; 78: 472
  • Dawson R. B., Ellis T. J., Spurlock B. W., Hershey R. T. Blood preservation: using metabolic regulators and nutrients. t. Pyruvate and DHA (dihyrdoxyacetone). Mil. Med. 1976; 141: 691
  • Oski F. A., et al. The in vitro restoration of red cell 2–3 diphosphoglycerate levels in banked blood. Blood 1971; 37: 52
  • Sugerman H. J., et al. Experimentally induced alterations in affinity of hemoglobin for oxygen. II. In vivo effect of inosine, pyruvate, and phosphate on oxygen-hemoglobin affinity in Rhesus monkey. Blood 1972; 39: 525
  • Miller L. D., et al. Administration of Inosine to Man. Preservation of Red Blood Cells, H. Chaplin, Jr. National Academy of Sciences, Washington, DC 1973; 253
  • Giannelli S., Jr., et al. Prevention of increased hemoglobin-oxygen affinity in open-heart operations with inosine-phosphate-pyruvate solution. Ann. Thorac. Surg. 1976; 21: 386
  • Nakao M., Nakao T., Tatibana M., Yoshikawa H. Phosphorus metabolism in human erythrocyte. III. Regeneration of adenosine triphosphate in long-stored erythrocyte by incubation with inosine and adenine. J. Biochem. 1960; 47: 661
  • Wada T., et al. Post-transfusion survival of red blood cells stored in a medium containing adenine and inosine. Proc. Jpn. Acad. 1960; 36: 618
  • Yoshikawa H., Nakao M. Nucleotide metabolism and its relation to functions of preserved human erythrocytes. Folia Haematol. 1962; 78: 516
  • de Verdier C.-H., Garby L., Hjelm M., Hogman C. F. Adenine in blood preservation: posttransfusion viability and biochemical changes. Transfusion 1964; 4: 331
  • Shafer A. W., Trombold J. S. Phosphorylated carbohydrate intermediates of the human erythrocyte during storage in acid citrate dextrose. IV. Effect of addition of adenine, inosine, inosine-adenine and adenosine at the beginning of storage. Transfusion 1964; 4: 120
  • Beutler E., Duron O. Factors influencing the preservation of red cell ATP in storage. Folia Haematol. 1965; 83: 509
  • Sugita Y., Simon E. R. The mechanism of action of adenine in red cell preservation. J. Clin. Invest. 1965; 44: 629
  • Hurn B. A., Whitmore D. N., Lock S. P. Adenine and blood storage. Vox Sang. 1966; 11: 1
  • Chanutin A. Effect of storage of blood in ACD-adenine-inorganic phosphate plus nucleosides on metabolic intermediates of human red cells. Transfusion 1967; 7: 409
  • Manohar S. V., Denstedt O. F., Rubinstein D. The metabolism of the erythrocyte. XVII. Mechanism of incorporation of adenine into and resultant elevation of ATP and ADP in human erythrocytes. Can. J. Biochem. Physiol. 1967; 45: 1153
  • Shields C. E., et al. Clinical evaluation of transfused blood after long-term storage in ACD with adenine. Transfusion 1969; 9: 246
  • Strumia M. M., Strumia P. V., Eusebi A. J. The preservation of blood for transfusion. VIII. Effect of adenine nd inosine on the adenosine triphosphate and viability of red cells of blood stored at 1°C for 21 days. J. Lab. Clin. Med. 1970; 76: 907
  • Sussman L. N., Camacho D., Rosen E. Use of adenine-ACD solution in long term storage of blood. Am. J. Clin. Pathol. 1971; 55: 565
  • Zuck T. F., et al. The in vivo survival of red cells stored in modified CPD with adenine: report of a multi-institutional cooperative effort. Transfusion 1977; 17: 374
  • Fed. Regist. May 26, 1978
  • Beutler E., Teeple L. Mannose metabolism in the human erythrocyte. J. Clin. Invest 1969; 48: 461
  • Beutler E., Mathai C. K. Genetic variations in red cell galactose-1-phosphate uridyl transferase. Hereditary Disorders of Erythrocyte Metabolism, E. Beutler. Grune & Stratton, New York 1968; 66
  • Beutler E., Duron O. Studies on blood preservation. The relative capacities of hexose, hexitols and ethanol to maintain red cell ATP levels during storage. Transfusion 1966; 6: 537
  • Dawson R. B., et al. Blood preservation. XXVII. Fructose and mannose maintain ATP and 2, 3–PG. Transfusion 1978; 18: 347
  • Brake J. M., Diendoerfer F. H. Preservation of red blood cell 2, 3-diphosphoglycerate in stored blood containing dihydroxyacetone. Transfusion. 1973; 13: 84
  • Beutler E., Guinto E. Dihydroxyacetone metabolism by human erythrocytes: demonstration of triokinase activity and its characterization. Blood. 1973; 41: 559
  • Beutler E., Guinto E. The metabolism of dihydroxyacetone by intact erythrocytes. J. Lab. Clin. Med. 1973; 82: 534
  • Dawson R. B. Blood preservation using metabolic regulators and nutrients. XXI. Further studies on pyruvate and DHA. Transfusion 1976; 16: 446
  • Dawson R. B. Blood storage. XXIV. Red blood cell 2, 3-DPG and ATP maintenance for 6 weeks in CPD-adenine with higher phosphate, pyruvate and DHA. Transfusion 1977; 17: 242
  • Wood L., Beutler E. The effect of ascorbic acid on the 2, 3-DPG level of stored blood. Clin. Res. 1972; 20: 186
  • Wood L., Beutler E. The effect of ascorbate on maintenance of 2, 3-DPG in stored red cells. Br. J. Hematol. 1973; 25: 611
  • Jacob H. S., Jandl J. H. Effect of sulfhydryl inhibition on red blood cells. II. Glutathione IX regulation of the hexose monophosphate pathway. J. Biol. Chem. 1966; 241: 4243
  • Easton J. W., Brewer G. J. Pentose phosphate metabolism. The Red Blood Cell, D. M. Surgenor. Academic Press, New York 1974; 435
  • Wood L., Beutler E. The effect of ascorbate and DHA on the 2, 3DPG and ATP levels of stored human red cells. Transfusion 1974; 14: 272
  • Dawson R. B. Blood Storage. XXV. Ascorbic acid (vitamin C) and DHA maintenance of 2, 3 DPG for 6 weeks in CPD-ad. Transfusion 1977; 17: 248
  • Dawson R. B., Kocholaty W. F. Hemoglobin function during blood storage. XV. Use of metabolic additives methylene blue, inosine and adenine. Adv. Exp. Med. Biol. 1972; 28: 495
  • Kocholaty W. F., Dawson R. B. The effect of methylene blue addition to whole blood during prolonged storage. Vox. Sang. 1972; 22: 236
  • Dawson R. B., Hershey R. T., Myers C. S. Preservation of eyrthrocytes using metabolic regulators and nutrient. V. Inosine and methylene blue. Am. J. Clin. Pathol. 1978; 69: 505
  • Mills G. C. The physiologic regulation of erythrocyte metabolism. Tex. Rep. Biol. Med. 1969; 27: 773
  • Metz E. N., Balcerzak S. P., Sagone A. L. Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes. J. Clin. Invest. 1976; 58: 797
  • Szeinberg A., Marks P. A. Substances stimulating glucose catabolism by the oxidative reactions of the pentose phosphate pathway in human erythrocytes. J. Clin. Invest. 1961; 40: 914
  • Dern R. J., Wiorkowski J. J., Matsuda T. Studies on the preservation of human blood. V. The effect of mixing anticoagulated blood during storage on the poststorage erythrocyte survival. J. Lab. Clin. Med. 1970; 75: 37
  • Beutler E. Viability, function, and rejuvenation of liquid-stored red cells. Preservation of Red Blood Cells, H. Chaplin, Jr. National Academy of Sciences, Washington, DC 1973; 195
  • Brewer G. J. Erythrocyte metabolism. Progress in Clinical and Biological Research, J. A. Griep. Alan R. Liss, New York 1976; Vol. 11: 5
  • Valeri C. R., Zaroulis C. G. Cryopreservation and red cell function. Progress in Transfusion and Transplantation, P. J. Schmidt. American Association of Blood Banks, Washington, DC 1972; 343
  • Valeri C. R. Biochemical modification of red blood cells prior to cryopreservation. Clinical and Practical Aspects of the Use of Frozen Blood, R. B. Dawson. American Association of Blood Banks, Washington, DC 1977; 61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.