15
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Intra- and Transepithelial Analytical Techniques

, &
Pages 339-395 | Published online: 27 Sep 2008

References

  • Bernard C. Lecons sur les Phenomenes de la vie communs aux animaux et aux vegetaux. Bailliere, Paris 1878
  • Ussing H. H. The Relation Between Active Transport and Bioelectric Phenomena. Lectures at the Instituto de Biofisica Universidade do Brasil. 1955
  • Wearn J. T., Richards A. N. Observations on the composition of glomerular urine with particular reference to the problem of reabsorption in the renal tubules. Am. J. Physiol. 1924; 71: 209
  • Burg M. B., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 1966; 210: 1293
  • Armstrong W. McD., Garcia-Diaz J. F., O'Doherty J., O'Regan M. G. Transrnucosal Na* electrochemical potential difference and solute accumulation in epithelial cells of the small intestine. Fed. Proc 1979; 38: 2722
  • Blankemeyer J. T. Active transport of potassium by insect midgut. Fed. Proc. 1981; 40: 2412
  • Boulpaep E. L. Cellular Mechanisms of Renal Tubular Ion Transport. Current Topics in Membranes and Transport, F. Bronner, A. Kleinzeller. Academic Press, New York 1980; Vol. 13
  • Boulpaep E. L., Sackin H. Equivalent electrical circuit analysis and rheogenic pumps in epithelia. Fed. Proc. 1979; 38: 2010
  • Bourguet J., Chevalier J., Parisi M., Ripoche P. Controle Hormonal des Transports Epitheliaux. 1NSERM, Paris 1979; 85
  • Civan M. M. The sodium transport pool of epithelial tissues. Water Relations in Membrane Transport in Plants and Animals, A. M. Jungreis, T. K. Hodges, A. Kleinzeller, S. G. Schultz. Academic Press, New York 1977; 187
  • Civan M. M. Potassium activities in epithelia. Fed. Proc 1980; 39: 2865
  • DeSousa R. C. Mecanismes de transport de l'eau et du sodium par les cellules des epithelia d'amphibians et du tubule renal isole'. J. Physiol. Paris 1975; 71: 5A
  • De Sousa R. C, Grosso A., Rossier B. C, Rossier M., Voute C. L. Epithelia as hormone and drug receptors. J. Membrane Biol., 1978, special issue
  • DiBone D. R., Mills J. W. Distribution of Na* pump sites in transporting epithelia. Fed. Proc 1979; 38: 134
  • Erlij D. Solute transport across isolated epithelia. Kidney Int. 1976; 9: 76
  • Essig A., Caplan S. R. The use of linear nonequilibrium thermodynamics in the study of renal physiology. Am. J. Physiol. 1979; 236: F211
  • Frizzell R. A., Duffey M. E. Chloride activities in epithelia. Fed. Proc 1980; 39: 2860
  • Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport in epithelial tissues. Am. J. Physiol. 1979; 236: F1
  • Fromter E. The Feldberg Lecture 1976 Solute transport across epithelia: what can we learn from micropuncture studies on kidney tubules?. J. Physiol. London 1979; 288: 1
  • Giebisch G. Problems of epithelial potassium transport: special consideration of the nephron. Fed. Proc 1981; 40: 2395
  • Giebisch G., Tosteson D. C, Ussing H. H. Membrane Transport in Biology. Springer-Verlag, Berlin 1978; Vol. 3
  • Giebisch G., Tosteson D. C, Ussing H. H. Membrane Transport in Biology. Springer-Verlag, Berlin 1979; Vol. 4(A and B)
  • Helman S. I. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models. Fed. Proc 1979; 38: 2743
  • Jergensen P. L. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 1980; 60: 864
  • Lewis S. A., Wills N. K. Intracellular ion activities and their relationship to membrane properties of tight epithelia. Fed. Proc 1979; 38: 2739
  • Lindemann B., Voute C. Structure and function of the epidermis. Frog Neurobiology, R. Llines, W. Precht. Springer-Verlag, Berlin 1976; 169
  • Macknight A. D.C. Epithelial transport of potassium. Kidney Int. 1977; 11: 39
  • Macknight A. D.C. Comparison of analytical techniques: chemical, isotopic, and microprobe analysis. Fed. Proc 1980; 39: 2881
  • Macknight A. D., Cdibona D. R., Leaf A. Sodium transport across toad urinary bladder: a model'tight'epithelium. Physiol., Rev. 1980; 60: 615
  • Macknight A. D. C., Leader J. P. Epithelial Ion and Water Transport. Raven Press, New York 1981
  • O'Neil R. G. Potassium secretion by the cortical collecting tubule. Fed. Proc 1981; 40: 2403
  • Reuss L. Mechanisms of sodium and chloride transport by gallbladder epithelium. Fed. Proc 1979; 38: 2733
  • Schultz S. G. Application of equivalent electrical circuit models to study of sodium transport across epithelial tissues. Fed. Proc 1979; 38: 2024
  • Schultz S. G. Potassium transport by rabbit descending colon. in vitro. Fed. Proc 1981; 40: 2408
  • Schultz S. G., Thompson S. M., Suzuki Y. Equivalent electrical circuit models and the study of Na transport across epithelia: nonsteady-state current-voltage relations. Fed. Proc 1981; 40: 2443
  • Ussing H. H., Bindslev N., Lassen N. A., Sten-Knudsen D. Water Transport across Epithelia. Barriers, Gradients, and Mechanisms. Munksgaard, Copenhagen 1981
  • Wright F. S. Potassium transport of successive segments of the mammalian nephron. Fed. Proc 1981; 40: 2398
  • Fromter E., Diamond J. M. Route of passive ion permeation in epithelia. Nature New Biol. 1972; 235: 9
  • Koefoed-Johnsen V., Ussing H. H. The contributions of diffusion and flow to the passage of D2O through living membranes. Acta Physiol., Scand. 1953; 28: 60
  • Aronson P. S. Identifying secondary active solute transport in epithelia. Am. J. Physiol. 1981; 240: Fl
  • Gunn R. B. Co- and counter-transport mechanisms in cell membranes. Ann. Rev. Physiol. 1980; 42: 249
  • Tosteson D. C. Cation countertransport and cotransport in human red cells. Fed. Proc 1981; 40: 1429
  • Kedem O. Criteria of active transport. Proc Symp. Transport and Metabolism, A. Kleinzeller, A. Kotyk. Academic Press, New York 1961; 87
  • Katchalsky A., Curran P. F. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, Mass 1965
  • Kedem O., Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 1958; 27: 229
  • Diamond J. M. Osmotic water flow in leaky epithelia. J. Membrane Biol. 1979; 51: 195
  • Hill A. Salt-water coupling in leaky epithelia. J. Membrane Biol. 1980; 56: 177
  • Ussing H. H., Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 1951; 23: 110
  • Ussing H. H., Kruheffer P., Thaysen J. H., Thorn N. A. The Alkali Metal Ions in Biology. Springer-Verlag, Berlin 1960
  • Tai Y-H., Tai C-Y. The conventional short-circuiting technique under short-circuits most epithelia. J. Membrane Biol. 1981; 59: 173
  • Ussing H. H. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 1949; 19: 43
  • Curran P. F., Schultz S. G. Transport across membranes: general principles. Handbook of Physiology. Section 6, C. F. Code, W. Heidel. American Physiological Society, Washington, DC 1968; Vol. 3: 1217
  • Ussing H. H. Interpretation of tracer fluxes. Membrane Transport in Biology, G. Giebisch, D. C. Tosteson, H. H. Ussing. Springer-Verlag, New York 1978; Vol. I: 15
  • Dobson J. G., Jr, Kidder G. W., III. Edge damage and effect in in vitro frog skin preparations. Am. J. Physiol. 1968; 214: 719
  • Helman S. I., Miller D. A. In vitro techniques for avoiding edge damage in studies of frog skin. Science 1971; 173: 146
  • Walser M. Role of edge damage in sodium permeability of toad bladder and a means of avoiding it. Am. J. Physiol. 1970; 219: 252
  • Erlij D. Basic electrical properties of tight epithelia determined with a simple method. Pfl'ug. Arch. 1976; 364: 91
  • Higgins J. T., Jr, Cesaro L., Gebler B., Frömter E. Electrical properties of amphibian urinary bladder epithelia. I. Inverse relationship between potential difference and resistance in tightly mounted preparations. Pflug. Arch. 1975; 358: 41
  • Lewis S. A., Diamond J. M. Na+ transport by rabbit urinary bladder, a tight epithelium. J. Membrane Biol. 1976; 28: I
  • Lang F., Greger R., Lechene C, Knox F. G. Micropuncture techniques. Methods in Pharmacology, M. Martinez-Maldanado. Plenum Press, New York 1978; Vol. 4B: 75
  • Ullrich K. J., Frömter E., Baumann K. Micropuncture and microanalysis in kidney physiology. Laboratory Techniques in Membrane Biophysics, H. Passow, R. Slampfli. Springer-Verlag, Berlin 1969; 106
  • Chonko A. M., Irish J. M., Welling D. J. Microperfusion of isolated tubules. Methods in Pharmacology, M. Martinez-Maldanado. Plenum Press, New York 1978; Vol. 4B: 221
  • Schafer J. A., Andreoli T. E. Perfusion of isolated mammalian renal tubules. Membrane Transport in Biology, G. Giebisch, D. C Tosteson, H. H. Ussing. Springer-Verlag, Berlin 1979; Vol. 4B: 473
  • Spring K. R. Insertion of an axial electrode into renal proximal tubule. Yale J. Biol. Med. 1972; 45: 426
  • Spring K. R., Paganelli G. Sodium flux in Necturus proximal tubule under voltage clamp. J. Gen. Physiol. 1972; 60: 181
  • Sauer F. Nonequilibrium thermodynamics of kidney tubule transport. Handbook of Physiology, Section 8, J. Orloff, R. W. Berliner. American Physiological Society, Washington, DC 1973; 399
  • Ullrich K. J. Permeability characteristics of the mammalian nephron. Handbook of Physiology, Section 8, J. Orloff, R. W. Berliner. American Physiological Society, Washington, DC 1973; 377
  • Boulpaep E., Giebisch G. Electrophysiological measurements on the renal tubule. Methods in Pharmacology, M. Martinez-Maldanado. Plenum Press, New York 1978; Vol. 4B: 165
  • Giebisch G., Windhager E. E. Electrolyte transport across renal tubular membranes. Handbook of Physiology, Section 8, J. Orloff, R. W. Berliner. American Physiological Society, Washington, DC 1973; 315
  • Wright E. M., Diamond J. M. Effects of pH and polyvalent cations on the selective permeability of gallbladder epithelium to monovalent ions. Biochim. Biophys. Acta 1968; 163: 57
  • Jarrell J. A., Mills J. W., King J. G. A mass spectrometer to measure transepithelial unidirectional labelled water fluxes. Am. J. Physiol. 1981; 241: C86
  • Sha'afi R. I. Permeability for water and other polar molecules. Membrane Transport, S. L. Bonting, J. J. H. de Pont. Elsevier/North-Holland Biomedical Press, Amsterdam 1981; 29
  • Bentley P. J. The effects of neurohypophyseal extracts on water transfer across the wall of the isolated urinary bladder of the toad. Bufo marinus, J. Endocrincol 1958; 17: 201
  • Diamond J. M. The reabsorptive function of the gallbladder. J. Physiol. London 1962; 161: 442
  • Van Os C. H., Wiedner G., Wright E. M. Volume flows across gallbladder epithelium induced by small hydrostatic and osmotic gradients. J. Membrane Biol. 1979; 49: I
  • Bourget J., Jard S. Un dispositif automatique de mesure et d'enregistrement du flux net d'eau a travers la peau et la vessie des amphibiens. Biochim. Biophys. Acta 1964; 88: 442
  • Edelman I. S., Petersen M. J., Gulyassy P. F. Kinetic analysis of the antiduretic action of vasopressin and adenosine-3′,5′-monophosphate. J. Clin. Invest. 1964; 43: 2185
  • Ruphi M., de Sousa R. C, Farrod-Coune E., Posternak J. M. Optical method for measuring water flow with automatic recording. Experientia 1972; 28: 1391
  • Reid E. W. Report on experiments upon “absorption without osmosis”. Br. Med. J. 1892; I: 323
  • Grantham J. J., Irwin R. L., Qualizza P. B., Tucker D. R., Whittier F.C. Fluid secretion in isolated proximal straight renal tubules. Effects of human uremic serum. J. Clin. Invest. 1973; 52: 2441
  • Grantham J. J., Qualizza P. B., Welling L. W. Influence of serum proteins on net fluid reabsorption of isolated proximal tubules. Kidney Int. 1972; 2: 66
  • Pedley T. J., Fischbarg J. Unstirred layer effects on osmotic water flow across gallbladder epithelium. J. Membrane Biol. 1980; 54: 89
  • Weinstein A. M., Stephenson J. L. Models of coupled salt and water transport across leaky epithelia, J. Membrane Biol. 1981; 60: 1
  • Weinstein A. M., Stephenson J. L., Spring K. R. The coupled transport of water. Membrane Transport, S. L. Bonting, J. J. H. de Pont. Elsevier/North-Holland Biomedical Press, Amsterdam 1981; 311
  • Dainty J. Water relations of plant cells. Adv. Bot. Res. 1963; 1: 279
  • House C. R. Water Transport in Cells and Tissues. Physiological Society Monographs, No. 24, Arnold, London 1974
  • Handler J. S., Orloff J. Antidiuretic hormone. Ann. Rev. Physiol. 1981; 43: 611
  • Andreoli T. E. Salt and water transport processes in the proximal straight tubule. Renal Function, G. Giebisch, E. F. Purcell. Josiah Macy Jr. Foundation, New York 1977; 186
  • Thomas R. C. Ion-Sensitive Microelearodes. How to Make and Use Them. Academic Press, New York 1978
  • Lassen U. V., Rasmussen B. E. Use of microelectrodes for measurement of membrane potential. Membrane Transport in Biology, G. Giebisch, D. C Tosteson, H. H. Ussing. Springer-Verlag, Berlin 1978; Vol. 1: 169
  • Hironaka T., Morimoto S. The resting membrane potential of frog sartorius muscle. J. Physiol. 1979; 297: 1
  • Adrian R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. London 1956; 133: 631
  • Nastuk W. L., Hodgkin A. L. The electrical activity of single muscle fibres. J. Cell. Comp. Physiol 1950; 43: 39
  • Armstrong W. McD., Garcia-Diaz J. F. Criteria for the use of micro-electrodes to measure membrane potentials in epithelial cells. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 43
  • Brown K. T., Flaming D. G. New microelectrode techniques for intra-cellular work in small cells. Neuroscience 1977; 2: 813
  • Thomas R. C., Cohen C. J. A liquid ion-exchanger alternative to KC1 for filling intracellular reference microelectrodes. Pflüg. Arch. 1981; 390: 96
  • Ling G., Gerard R. W. The normal membrane potential of frog sartorius fibres. J. Cell. Comp. Physiol. 1949; 34: 383
  • Fisher R. S., Erlij D., Helman S. I. Intracellular voltage of isolated epithelia of frog skin. Apical and basolateral cell punctures. J. Gen. Physiol. 1980; 76: 447
  • Higgins J. T., Gebler B., Frbmter E. Electrical properties of amphibian urinary bladder. II. The cell potential profile in. Necturus maculosus, Pflug. Arch. 1977; 371: 87
  • Narvarte J., Finn A. L. Microelectrode studies in toad urinary bladder epithelium. Effects of Na concentration changes in the mucosal solution on equivalent electromotive forces. J. Gen. Physiol. 1980; 75: 323
  • Schultz S. G., Thompson S. M., Suzuki Y. On the mechanism of sodium entry across the apical membrane of rabbit colon. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 285
  • Reuss L., Finn A. L. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances. J. Gen. Physiol 1974; 64: 1
  • Nelson D. J., Ehrenfeld J., Lindemann B. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with micro-electrodes filled with 3M KC1. J. Membrane Biol 1978; 91, special issue
  • Zeuthen T. Intracellular gradients of electrical potential in the epithelial cells of the Necturus gallbladder. J. Membrane Biol 1977; 33: 281
  • Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J. Gen. Physiol 1977; 69: 571
  • Helman S. I., Nagel W., Fisher R. S. Effects of ouabain on active transepithelial Na transport by frog skin: studies with microelectrodes. J. Gen. Physiol 1979; 74: 105
  • Nagel W. The intracellular electrical potential profile of the frog skin epithelium. Pflüg. Arch. 1976; 365: 135
  • DeLong J., Civan M. ML. Intracellular chemical activity of potassium in toad urinary bladder. Current Topics in Membranes and Transport, F. Bronner, A. Kleinzeller. Academic Press, New York 1980; Vol. 13: 93
  • Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J. Membrane Biol 1975; 25: 115
  • Suzuki K., Frbmter E. The potential and resistance profile of Necturus gallbladder cells. Pflüg. Arch. 1977; 371: 109
  • Van Os C. H., Siegers J. F. G. The electrical potential profile of gall-bladder epithelium. J. Membrane Biol 1975; 24: 341
  • Nagel W., Durham J. H., Brodsky W. A. Electrical characteristics of apical and basal-lateral membranes in the turtle bladder epithelial cell layer. Biochim. Biophys. Acta 1981; 646: 77
  • Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. J. Gen. Physiol 1971; 57: 639
  • Schultz S. G., Frizzell R. A., Nellans H. N. Active sodium transport and the electrophysiology of rabbit colon. J. Membrane Biol 1977; 33: 351
  • Boulpaep E. L. Electrophysiology of the kidney. Membrane Transport in Biology, G. Giebisch, D. C Tosteson, H.H. Ussing. Springer-Verlag, Berlin 1979; Vol. 4A: 97
  • Leader J. P., Macknight A. D.C. Alternative methods for measurement of membrane potentials in epithelia. Fed. Proc 1982; 41: 54
  • Lichtshtein D., Kaback H. R., Blume A. J. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proc, Nail. Acad. Sci. U.S.A. 1979; 76: 650
  • Lichtshtein D, Dunlop K., Kaback H. R., Blume A. J. Mechanism of monensin-induced hyperpolarisation of neuroblastoma-glioma hybrid NG108-15. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 2580
  • Schuldiner S., Kaback H. R. Membrane potential and active transport in membrane vesicles from. Escherichia coli. Biochemistry 1975; 14: 5451
  • Waggoner A. G. Dye indicators of membrane potential. Ann. Rev. Biophys. Bioeng. 1979; 8: 47
  • Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. London 1974; 239: 519
  • Graves C. N., Sachs G., Rehm W. S. Use of a fluorescent cyanine dye for electrophysiological studies on the frog cornea. Am. J. Physiol. 1980; 238: C2I
  • Cohen L. B., Salzberg B. M., Davila V., Ross W. N., Landowne D., Waggoner A. G., Wang C.-H. Change in axon fluoresence during activity: molecular probes of membrane potential. J. Membrane Biol. 1974; 19: 1
  • Cohen L. B., Salzberg B. M. Optical measurement of membrane potential. Rev. Physiol. Biochem. Pharmacol. 1978; 83: 36
  • Fuji S., Hirota A., Kamino K. Optical signals from early embryonic chick heart stained with potential sensitive dyes: evidence for electrical activity. J. Physiol. London 1980; 304: 503
  • Grinvald A., Salzberg B. M., Cohen L. B., Kamino K., Waggoner A. G., Wang C.-H., Ti D. Simultaneous recording from 14 neurons in the supra-oesophageal ganglion of the barnacle using a new potential-sensitive dye. Biophys. J. 1977; 17: 126a
  • Salama G., Morad M. Merocyanine 540 as an optical probe of trans-membrane electrical activity in the heart. Science 1976; 191: 485
  • Robinson J. R. Some effects of glucose and calcium upon the metabolism of kidney slices from adult and newborn rats. Biochem. J. 1949; 45: 68
  • Robinson J. R. Osmoregulation in surviving slices from the kidneys of adult rats. Proc. R. Soc. Lond. B. 1950; 137: 378
  • Mudge G. H. Studies on potassium accumulation by rabbit kidney slices: effect of metabolic activity. Am. J. Physiol. 1951; 165: 113
  • Leaf A. On the mechanism of fluid exchange of tissues in vitro. Biochem. J. 1956; 62: 241
  • Burg M. B., Orloff J. Effect of strophanthidin on fluxes of potassium in rabbit kidney slice. Am. J. Physiol 1963; 205: 139
  • Bojesen E., Leyssac P. P. The kidney cortex slice technique as a model for sodium transport in vivo. A qualitative evaluation. Acta Physiol. Scand. 1965; 65: 20
  • Burg M. B., Orloff J. Effect of temperature and medium K on Na and K fluxes in separated renal tubules. Am. J. Physiol. 1966; 211: 1005
  • Burg M. B., Orloff J. Oxygen consumption and active transport in separated renal tubules. Am. J. Physiol. 1962; 203: 327
  • Burg M. B., Grollman E. F., Orloff J. Sodium and potassium flux of separated renal tubules. Am. J. Physiol. 1964; 206: 483
  • Frizzell R. A., Koch M. J., Schultz S. G. Ion transport by rabbit colon. 1. Active and passive components. J. Membrane Biol. 1976; 27: 297
  • Aceves J., Erlij D. Sodium transport across the isolated epithelium of the frog skin. J. Physiol. London 1971; 212: 195
  • Parsons R. H., Hoshiko T. Separation of epithelium from frog skin and rapid washout of 22Na. J Gen. Physiol. 1971; 57: 254
  • Rajerison R. M., Montegut M., Jard S., Morel F. The isolated frog skin preparation: permeability characteristics and responsiveness to oxytocin, cyclic AMP and theophylline. Pflüg, Arch. 1972; 332: 302
  • Macknight A. D., Cdibona D. R., Leaf A., Civan M. M. Measurement of the composition of epithelial cells from the toad urinary bladder. J. Membrane Biol. 1971; 6: 108
  • Shporer M., Civan M. M. The state of water and alkali cations within the intracellular fluids: the contribution of NMR spectroscopy. Current Topics in Membranes and Transport, F. Bronner, A. Kleinzeller. Academic Press, New York 1977; I
  • Dworzack D. L., Grantham J. J. Preparation of renal papillary collecting duct cells for study. in vitro. Kidney Int. 1975; 191: 8
  • Little J. R. Determination of water and electrolytes in tissue slices. Anal. Biochem. 1964; 7: 87
  • McLver D. J. L., Macknight A. D.C. Extracellular space in some isolated tissues. J. Physiol. London 1974; 239: 31
  • Cotlove E., Trantham H. V., Bowman R. L. An instrument and method for automatic, rapid, accurate and sensitive titration of chloride in biological samples. J. Lab. Clin. Med. 1958; 51: 461
  • Macchia D. D., Polimeni P. I., Page E. Cellular CI content and concentrations of amphibian skeletal and heart muscle. Am. J. Physiol. 1978; 235: CI22
  • Greger R., Lang F., Knox F. G., Lechene C. Analysis of tubule fluid. Methods in Pharmacology, M. Martinez-Maldanado. Plenum Press, New York 1978; Vol. 4B: 105
  • Solomon A. K. Compartmental methods of kinetic analysis. Mineral Metabolism, C. L. Comer, F. Bronner. Academic Press, New York 1960; 119
  • Finn A. L., Rockoff M. L. The kinetics of sodium transport in the toad bladder. I. Determination of the transport pool. J. Gen. Physiol. 1971; 57: 326
  • Biagi B., Gonzalez E., Giebisch G. A kinetic model for ion fluxes in the isolated perfused tubule. Current Topics in Membranes and Transport, F. Bronner, A. Kleinzeller. Academic Press, New York 1980; Vol. 13: 229
  • Robinson B. A., Macknight A. D.C. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. 111. Exchangeability of epithelial cellular potassium. J. Membrane Biol. 1976; 26: 269
  • Zeuthen T., Wright E. M. Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J. Membrane Biol. 1981; 60: 105
  • Nellans H. N., Schultz S. G. Relations among transepithelial sodium transport, potassium exchange and cell volume in rabbit ileum. J. Gen. Physiol. 1976; 68: 441
  • Frizzell R. A., Jennings B. Potassium influx across basolateral membranes of rabbit colon: relation to sodium absorption. Fed. Proc 1977; 36: 360
  • Civan M. M. Intracellular potassium in toad urinary bladder: the recycling hypothesis. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 107
  • Biber T. U. L., Curran P. F. Direct measurement of the uptake of sodium at the outer surface of the frog skin. J. Gen. Physiol. 1970; 56: 83
  • Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J. Gen. Physiol. 1967; 50: 1241
  • Gupta B. L., Hall T. A., Moreton R. B. Electron probe x-ray microanalysis. Transport of Ions and Water in Animals, B. L. Gupta, R. B. Moreton, J. L. Oschman, B. J. Wall. Academic Press, New York 1978; 83
  • Hutchinson T. E. Determination of subcellular elemental concentration through ultrahigh resolution electron microprobe analysis. Int. Rev. Cytoi 1979; 58: 115
  • Lechene C. P. Electron probe microanalysis: its present, its future. Am. J. Physiol. 1977; 232: F39I
  • Lechene C. P. Electron probe microanalysis of biological soft tissues: principle and technique. Fed. Proc 1980; 39: 2871
  • Lechene C. P., Warner R. R. Microbeam Analysis in Biology. Academic Press, New York 1979
  • Civan M. M., Hall T. A., Gupta B. L. Microprobe study of toad urinary bladder in absence of serosal K.+. J. Membrane Biol. 1980; 55: 187
  • Gupta B. L., Hall T. A. Quantitative electron probe x-ray microanalysis of electrolyte elements within epithelial tissue compartments. Fed. Proc 1979; 38: 144
  • Saubermann A. J., Echlin P., Peters P. D., Beeuwkes R. Application of scanning electron microscopy to x-ray analysis of frozen-hydrated sections. 1. Spectrum handling techniques. J. Cell Biol. 1981; 88: 257
  • Saubermann A. J., Beeuwkes R., Peters P. D. Application of scanning electron microscopy to x-ray analysis of frozen-hydrated sections. II. Analysis of standard solutions and artificial electrolyte gradients. J. Cell Biol. 1981; 88: 268
  • Hall T. A., Anderson H. C., Appleton T. The use of thin specimens for x-ray microanalysis in biology. J. Microsc, Oxford 1973; 99: 177
  • Dörge A., Rick R., Gehring K., Thurau K. Preparation of freeze-dried cryosections for quantitative x-ray microanalysis of electrolytes in biological soft tissues. Pflüg. Arch. 1978; 373: 85
  • Rick R., Dörge A., Macknight A. D.C, Leaf A., Thurau K. Electron-microprobe analysis of the different epithelial cells of toad urinary bladder. J, Membrane Biol. 1978; 39: 257
  • Bulger R. E., Beeuwkes R., Saubermann A. J. Application of scanning electron microscopy to x-ray analysis of frozen-hydrated section. III. Elemental content of cells in the rat renal papillary tip. J. Cell Biol 1981; 88: 274
  • Bauer R., Rick R. A computer program for the analysis of energy dispersive x-ray spectra of thin sections of biological soft tissue. X-ray Spectrom. 1978; 7: 63
  • Rick R., Dörge A., Arnim E. V., Thurau K. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial Na transport compartment. J. Membrane Biol. 1978; 39: 313
  • Hall T. A. The microprobe assay of chemical elements. Physical Techniques in Biological Research, G. Oster. Academic Press, New York 1971; Vol. 1A: 17
  • Dörge A., Rick R., Katz U., Thurau K. Intracellular electrolyte concentrations in toad skin epithelium during salinity and osmotic adaptation. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 127
  • Rick R., Dorge A., Arnim E. V., Weigel M., Thurau K. Properties of the outer and inner barriers to transepithelial Na transport: an electron microprobe analysis. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 1: 17
  • Rick R., Dörge A., Katz U., Bauer R., Thurau K. The osmotic behaviour of toad skin epithelium (Bufo viridis). An electron micro-probe analysis. Pflüg. Arch. 1980; 385: 1
  • Beck F., Bauer R., Bauer U., Mason J., Dorge A., Rick R., Thurau K. Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int. 1980; 17: 756
  • Mason J., Beck F., Dorge A., Rick R., Thurau K. Intracellular electrolyte composition following renal ischemia. Kidney Int. 1981; 20: 61
  • Thurau K, Beck F., Mason J., Dorge A., Rick R. Inside the cell - an electron microscope analysis of the renal tubular electrolyte concentrations. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 137
  • Gupta B. L., Hall T. A., Naftalin R. J. Microprobe measurements of Na, K and Cl concentration profiles in epithelial cells and intercellular spaces in rabbit ileum. Nature (London) 1978; 272: 70
  • Gupta B. L., Hall T. A., Maddrell S. H. P., Moreton R. B. Distribution of ions in a fluid-transporting epithelium determined by electron-probe x-ray microanalysis. Nature (London) 1976; 264: 284
  • Gupta B. L., Berridge M. J., Hall T. A., Moreton R. B. Electron microprobe and ion-selective microelectrode studies of fluid secretion in the salivary glands of. Calliphora, J. Exp. Biol. 1978; 72: 261
  • Gupta B. L., Wall B. J., Oschman J. L., Hall T. A. Direct microprobe evidence of local concentration gradients and recycling of electrolytes during fluid absorption in the rectal papillae of. Calliphora, J. Exp. Biol. 1980; 88: 21
  • Civan M. M. Intracellular activities of sodium and potassium. Am. J. Physiol 1978; 234: F261
  • Khuri R. N. Electrochemistry of the nephron. Membrane Transport in Biology, G. Giebisch, D. C Tosteson, H. H. Ussing. Springer-Verlag, Berlin 1979; Vol. 4A: 47
  • Eisenman G. Glass Electrodes for Hydrogen and Other Cations. Marcel Dekker, New York 1967
  • Carter N. W., Pucacco L. R. Measurement of pH by glass microelectrodes. Methods in Pharmacology, M. Martinez-Maldanado. Plenum Press, New York 1978; Vol. 4B: 195
  • Armstrong W. McD. The use of ion-seleotive microelectrodes to measure intracellular ionic activities. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 85
  • Guggi M., Oehme M., Pretsch E., Simon W. Neutraler ionophor fur flussigmembraneelek-troden mit hoher selektivitat fur Natrium-gegenuber Kalium-ionen. Helv. Chim. Acta 1976; 58: 2417
  • Simon W., Morf W. E. Alkali cation specificity of carrier antibiotics and their behaviour in bulk membranes. Membranes, G. Eisenman. Marcel Dekker, New York 1973; Vol. 2: 329
  • Armstrong W. McD., Garcia-Diaz J. F. Ion-selective microelectrodes: theory and technique. Fed. Proc 1980; 39: 2851
  • Walker J. L., Jr. Ion-specific liquid ion exchanger microelectrodes. Anal. Chem. 1971; 43: 89A
  • Spring K. R., Kimura G. Chloride reabsorption by renal proximal tubules of. Necturus, J. Membrane Biol. 1978; 38: 233
  • Zeuthen T. How to make and use double-barrelled ion-selective micro-electrodes. Current Topics in Membranes and Transport, F. Bronner, A. Kleinzeller. Academic Press, New York 1980; Vol. 13: 31
  • Hinke J. A. M. The measurement of sodium and potassium activities in the squid axon by means of cation selective microelectrodes. J. Physiol. London 1961; 156: 314
  • Frant M. S., Ross J. W., Jr. Potassium ion specific electrode with high selectivity for potassium over sodium. Science 1970; 167: 987
  • Reuss L., Weinman S. A., Grady T. P. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. J. Gen. Physiol. 1980; 76: 33
  • Nagel W., Pope M. B., Peterson K., Civan M. M. Electrophysiologic changes associated with potassium depletion of frog skin. J. Membrane Biol. 1980; 57: 235
  • Nagel W., Garcia-Diaz J. F., Armstrong W. McD. Intracellular ionic activities in frog skin. J. Membrane Biol. 1981; 61: 127
  • DeLong J., Civan M. M. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder. J. Membrane Biol. 1978; 42: 19
  • Edelman A., Curci S., Samarzija I., Fromter E. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflug. Arch. 1978; 378: 37
  • Spring K. R., Kimura G. Intracellular ion activities in Neclurus proximal tubule. Fed. Proc 1979; 38: 2729
  • Oberleithner H., Giebisch G. Mechanism of potassium transport across distal tubular epithelium of Amphiuma. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 97
  • Palmer L. G., Civan M. M. Distribution of Na+, K+, and CI- between nucleus and cytoplasm in Chironomus salivary gland cells. J. Membrane Biol. 1977; 33: 41
  • Tjoherty J., Garcia-Diaz J. F., Armstrong W. McD. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. Science 1979; 203: 1349
  • Lewis S. A., Wills N. K. Resistive artifacts in liquid-exchanger microelectrode estimates of Na+ activity in epithelial cells. Biophys. J. 1980; 31: 127
  • Garcia-Diaz J. F., Armstrong W. McD. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder. J. Membrane Biol. 1980; 55: 213
  • Wills N. K., Lewis S. A. Intracellular Na+ activity as a function of Na+ transport rate across a tight epithelium. Biophys. J. 1980; 30: 181
  • Eaton D. C. Intracellular sodium ion activity and sodium transport in rabbit urinary bladder. J. Physiol. London 1981; 316: 527
  • Saunders J. H., Brown H. M. Liquid and solid-state Cl-sensitive microelectrodes: characteristics and application to intracellular CI- activity in Balanus photoreceptors. J. Gen. Physiol. 1977; 70: 507
  • Reuss L., Grady T. P. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. J. Membrane Biol. 1979; 51: 15
  • Odoherty J., Youmans S. J., Armstrong W. McD., Stark R. J. Calcium regulation during stimulus-secretion coupling: continuous measurement of intracellular calcium activities. Science 1980; 209: 510
  • Boron W. F., Boulpaep E. L. Intracellular pH in isolated perfused proximal tubules of amphibian kidney. Fed. Proc 1980; 39: 713
  • Leader J. P., Macknight A. D., O'Mason D. R., Armstrong W. McD. Cellular composition of Necturus gallbladder epithelial cells measured by chemical analysis and by ion-specific microelectrodes. Proc. Univ. Olago Med. Sch. 1981; 59: 82
  • Leader J. P. The construction, calibration and use of liquid ion exchanger ion-selective double-barrelled microelectrodes for measurement of intracellular ion activities. Proc. Univ. Olago Med. Sch. 1981; 59: 80
  • Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the. Zonula occludens, J. Membrane Biol 1978; 39: 219
  • Claude P., Goodenough D. A. Fracture faces of Zonnulae occludentesfrom 'tight'and 'leaky' epithelia. J. Cell Biol. 1973; 58: 390
  • Bindslev N., Tormey J. McD., Pietras R. J., Wright E. M. Electrically and osmotically induced changes in permeability and structure of toad urinary bladder. Biochim. Biophys. Acta 1974; 332: 286
  • Civan M. M., DiBona D. R. Pathways for movement of ions and water across toad urinary bladder. II. Site and mode of action of vasopressin. J. Membrane Biol 1974; 19: 195
  • Civan M. M., DiBona D. R. Pathways for movement of ions and water across toad urinary bladder, 111. Physiologic significance of the paracellular pathway. J. Membrane Biol 1978; 38: 359
  • DiBona D. R., Civan M. M. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways. J. Membrane Biol 1973; 12: 101
  • DiBona D. R. Direct visualization of epithelial morphology in the living amphibian urinary bladder. J. Membrane Biol, special issue 1978; 45
  • Wade J. B., Karnovsky M. J. Fracture faces of osmotically disrupted. Zonnulae occludentes, J. Cell Biol 1974; 62: 344
  • DiBona D. R. Direct visualization of ADH-mediated transepithelial osmotic flow. INSERM 1979; 85: 195
  • DiBona D. R., Civan M. M., Leaf A. The cellular specificity of vasopressin on toad urinary bladder. J. Membrane Biol 1969; 1: 79
  • DiBona D. R., Civan M. M., Leaf A. The anatomic site of transepithelial permeability barriers of toad bladder. J. Cell Biol 1969; 40: 1
  • Bobrycki V. A., Mills J. W., Macknight A. D.C., DiBona D. R. Structural responses to voltage-clamping in the toad urinary bladder. I. The principal role of granular cells in active transport of sodium. J. Membrane Biol 1981; 60: 21
  • DiBona D. R., Sherman B., Bobrycki V. A., Mills J. W., Macknight A. D.C. Structural responses to voltage-clamping in the toad urinary bladder. 11. Granular cells and the natriferic action of vasopressin. J. Membrane Biol 1981; 60: 35
  • Mills J. W., Ernst S. A. Localization of sodium pump sites in frog urinary bladder. Biochim. Biophys. Acta 1975; 375: 268
  • Mills J. W., Ernst S. A., DiBona D. R. Localisation of Na'-pump sites in frogskin. J. Cell Biol. 1977; 73: 88
  • Chevalier J., Bourquet J., Hugon J. S. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 1974; 152: 129
  • Kachadorian W. A., Levine S. D., Wade J. B., DiScala V. A., Hays R. M. Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J. Clin. Invest. 1977; 59: 576
  • Kachadorian W. A., Wade J. B., DiScala V. A. Vasopressin: induced structural change in toad bladder luminal membrane. Science 1975; 190: 67
  • Wade J. B., Kachadorian W. A., DiScala V. A. Freeze-fracture electron microscopy: relationships of membrane structural features to transport physiology. Am. J. Physiol. 1977; 232: F77
  • Welling L. W., Evan A. P., Welling D. J. Shape of cells and extra-cellular channels in rabbit cortical collecting ducts. Kidney Int. 1981; 20: 211
  • Welling D. J., Welling L. W. Cell shape as an indicator of volume reabsorption in proximal nephron. Fed. Proc 1979; 38: 121
  • Spring K. R. Optical techniques for the evaluation of epithelial transport processes. Am. J. Physiol. 1979; 237: F167
  • DiBona D. R., Schafer J. A., Berglindh T. A., Sachs G. The use of combined differential interference-contrast and fluorescence optics for the analysis of epithelial transport. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 1
  • Spring K. R., Hope A. Size and shape of the lateral intercellular spaces in a living epithelium. Science 1978; 200: 54
  • Spring K. R., Hope A. Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J. Gen. Physiol. 1979; 73: 287
  • Spring K. R., Persson B. E. Quantitative light microscopy and epithelial function. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 15
  • Aronson P. S., Kinsella J. L. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles. Fed. Proc 1981; 40: 2213
  • Hopfer U. Isolated membrane vesicles as tools for analysis of epithelial transport. Am. J. Physiol 1977; 233: E445
  • Hopfer U. Transport in isolated plasma membranes. Am. J. Physiol 1978; 234: F89
  • Hopfer U. Kinetic criteria for carrier-mediated transport mechanisms in membrane vesicles. Fed. Proc 1981; 40: 2480
  • Kinne R., Schwartz J. L. Isolated membrane vesicles in the evaluation of the nature, localization and regulation of renal transport processes. Kidney Int. 1978; 14: 547
  • Lever J. E. The use of membrane vesicles in transport studies. CRC Crit. Rev. Biochem. 1980; 7: 187
  • Murer H., Kinne R. The use of isolated membrane vesicles to study epithelial transport processes. J. Membrane Biol 1980; 55: 81
  • Sachs G., Jackson R. J., Rabon E.C. Use of plasma membrane vesicles. Am. J. Physiol. 1980; 238: G151
  • Sachs G., Kinne R. Isolation and characterisation of biological membranes. Physiology of Membrane Disorders, T. E. Andreoli, J. F. Hoffman, D. D. Fanestil. Plenum Medical, New York 1978; 95
  • Pretlow T. G., Weir E. E., Zettergren J. G. Problems connected with the separation of different kinds of cells. Int. Rev. Exp. Pathol 1975; 14: 91
  • Hanning K. Separation of cells and particles by continuous free-flow electrophoresis. Techniques of Biochemical and Biophysical Morphology, D. Glick, R. M. Rosenbaum. Inter-science, New York 1972; Vol. 1: 191
  • Kreisberg J. I., Sachs G., Pretlow T. G., McGuire R. A. Separation of proximal tubule cells from suspensions of rat kidney cells by free-flow electrophoresis. J. Cell Physiol 1977; 93: 169
  • Hunger M. J., Commerford S. L. Pressure homogenization of mammalian tissues. Biochim. Biophys. Acta 1961; 47: 580
  • Brunette B. M., Till J. E. A rapid method for the isolation of L-cell surface membranes using an aqueous two-phase polymer system. J. Membrane Biol 1971; 5: 215
  • Liang C. T., Saktor B. Preparation of renal cortex basal-lateral and brush border membranes. Localisation of adenylate cyclase and guanylate cyclase activities. Biochim. Biophys. Ada 1977; 466: 474
  • Saccomani G., Stewart H. B., Shaw D., Lewin M., Sachs G. Characterization of gastric mucosal membranes. IX. Fractionation and purification of K + -ATPase containing vesicles by zonal centrifugation and free-flow electrophoresis technique. Biochim. Biophys. Acta 1977; 465: 311
  • Thines-Sempoun D., Amar-Costesec A., Beaufay H., Berthet J. The association of cholesterol 5′ nucleotidase and alkaline phosphodiesterase I with a distinct group of microsomal particles. J. Cell Biol. 1969; 43: 189
  • Mircheff A. K., Wright E. M. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. J. Membrane Biol. 1976; 28: 309
  • Wallach D. H. F., Lin P. S. Critical evaluation of plasma membrane fractionation. Biochim. Biophys. Ada 1973; 300: 211
  • Aronson P. S., Saktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J. Biol. Chem. 1975; 250: 6032
  • Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membranes from rat small intestine. J. Biol. Chem. 1973; 248: 25
  • Murer H., Hopfer U. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc. Nail. Acad. Sci. U.S.A. 1974; 71: 484
  • Murer H., Hopfer U., Kinne-Saffron E., Kinne R. Glucose transport in isolated brush border and lateral-basal plasma membrane vesicles from intestinal epithelial cells. Biochim. Biophys. Acta 1974; 345: 170
  • Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 1976; 154: 597
  • Sachs G. H+ transport by a non-electrogenic gastric ATPase as a model for acid secretion. Rev. Physiol. Biochem. Pharmacol. 1977; 79: 133
  • Shamoo A. E., Tivol W. F. Criteria for the reconstitution of ion transport systems. Current Topics in Membranes and Transport, F. Broner, A. Klenizeller. Academic Press, New York 1980; Vol. 14: 57
  • Schultz S. G. Basic Principles of Membrane Transport. Cambridge University Press, Cambridge 1980
  • Hodgkin A. L. The Conduction of the Nerve Impulse. Liverpool University Press, Liverpool 1964
  • Cole K. S. Membranes, Ions and Impulses. University of California Press, Berkeley 1972
  • Finkelstein A., Mauro A. Equivalent circuits as related to ionic systems. Biophys. J. 1963; 3: 215
  • Lindemann B. The minimal information content of EaNa. INSERM 1979; 85: 241
  • Schultz S. G., Frizzell R. A., Nellans H. N. An equivalent electrical circuit model for “sodium-transporting” epithelia in the steady-state. J. Theoret. Biol. 1977; 65: 215
  • Boulpaep E. L. Electrophysiology of the kidney. Membrane Transport in Biology, G. Giebisch, D. C Tosteson, H. H. Ussing. Springer-Verlag, Berlin 1979; Vol. 4A: 97
  • Fromter E., Gebler B. Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride. Pflug, Arch. 1977; 371: 99
  • Lewis S. A., Eaton D. C., Diamond J. M. The mechanism of Na+ transport by rabbit urinary bladder. J. Membrane Biol. 1976; 28: 41
  • Lewis S. A., Eaton D. C., Clausen C, Diamond J. M. Nystatin as a probe for investigating the electrical properties of a tight epithelium. J Gen. Physiol. 1977; 70: 427
  • Clausen C, Lewis S. A., Diamond J. M. Impedance analysis of a tight epithelium using a distributed resistance model. Biophys. J. 1979; 26: 291
  • Fromter E., Suzuki K., Kottra G., Kampmann L. The paracellular shunt conductance of Necturus gallbladder epithelium: comparison of measurements made by cable analysis with measurements obtained by a new approach based on intracellular impedance analysis. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 73
  • Hodgkin A. L., Horowicz P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. London 1959; 148: 127
  • Fuchs W., Hviid Larsen E., Lindemann B. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J. Physiol. London 1977; 267: 137
  • Palmer L. G., Edelman I. S., Lindemann B. Current-voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J. Membrane Biol 1980; 57: 59
  • Wills N. K., Eaton D. C., Lewis S. A., Ifshin S. A. Current-voltage relationship of the baso-lateral membrane of a tight epithelium. Biochim. Biophys. Acta 1979; 555: 518
  • Wills N. K. Antibiotics as tools for studying the electrical properties of tight epithelia. Fed. Proc 1981; 40: 2202
  • Horowicz P., Schneider M. F., Begenisich T. Principles of electrical methods for studying membrane movements of ions. Physiology of Membrane Disorders, T. E. Andreoli, J. F. Hoffman, D. D. Fanestil. Plenum Medical, New York 1978; 185
  • Verveen A. A., DeFelice L. F. Membrane noise. Progress in Biophysics and Molecular Biology, A. J. V. Butler, D. Noble. Pergamon Press, Oxford 1974; Vol. 28: 189
  • Stevens C. F. Principles and applications of fluctuation analysis: a non-mathematical introduction. Fed. Proc 1975; 34: 1364
  • Segal J. R. Electrical fluctuations associated with active transport. Biophys. J. 1972; 12: 1371
  • Van Driessche W., Borghgraef R. Noise generated during ion transport across frog skin. Arch. Int. Physiol. Biochim. 1975; 83: 140
  • Hoshiko T. Power density spectra of frog skin potential, current and admittance functions during patch clamp. J. Membrane Biol., special issue 1978; 121
  • Lindemann B. The beginning of fluctuation analysis of epithelial ion transport. J. Membrane Biol. 1980; 54: 1
  • Gogelein H., Van Driessche W. Noise analysis of the K+ current through the apical membrane of Necturus gallbladder. J. Membrane Biol. 981; 60: 187
  • Lindemann B., Van Driessche W. Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 1977; 195: 292
  • Leaf A. Transepithelial transport and its hormonal control in toad bladder. Erg. Physiol. Biol. Chem. Exp. Pharmakol 1965; 56: 216
  • Reinach P. S., Candia O. A., Alvarez L. J. Energetic requirements of active transepithelial Na and CI transport in the isolated bullfrog cornea. Exp. Eye Res. 1979; 29: 637
  • Steinmetz P. R., Husted R. F., Mueller A., Beauwens R. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effects of inhibitors of H+ ATPase. J. Membrane Biol. 1981; 59: 27
  • Conway E. J. The biological performance of osmotic work. A redox pump. Science 1951; 113: 270
  • Mandel L. J., Balaban R. S. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol 1981; 240: F357
  • Weiner M. W., Maffly R. H. The provision of cellular metabolic energy for active ion transport. Physiology of Membrane Disorders, T. E. Andreoli, J. F. Hoffman, D. D. Fanestil. Plenum Medical, New York 1978; 287
  • Lang M. A., Caplan S. R., Essig A. Thermodynamic analysis of active sodium transport and oxidative metabolism in toad urinary bladder. J. Membrane Biol 1977; 31: 19
  • Nellans H. N., Finn A. L. Oxygen consumption and sodium transport in the toad urinary bladder. Am. J. Physiol 1974; 227: 670
  • Viera F. L., Caplan S. R., Essig A. Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption. J. Gen. Physiol 1972; 59: 77
  • Maffly R. H. A conductometric method for measuring micromolar quantities of carbon dioxide. Anal Biochem. 1968; 23: 252
  • Al-Awqati Q., Beauwens R., Leaf A. Coupling of sodium transport to respiration in the toad bladder. J. Membrane Biol 1975; 22: 91
  • Canessa M., Labarca P., Leaf A. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder. J. Membrane Biol 1976; 30: 65
  • Macknight A. D. C., McLaughlin C. W. Transepithelial sodium transport and CO2 production by the toad urinary bladder in the absence of serosal sodium. J. Physiol. London 1977; 269: 767
  • Rosenthal S. J., King J. G., Essig A. Use of mass spectrometer to measure CO2 and O2 fluxes in voltage-clamped epithelia. Am. J. Physiol 1979; 236: F413
  • Lau Y., Lang M. A., Essig A. Evaluation of the rate of basal oxygen consumption in the isolated frog skin and toad bladder. Biochim. Biophys. Acta 1979; 545: 215
  • Coplon N. S., Steele R. E., Maffly R. H. Interrelationships of sodium transport and carbon dioxide production by the toad bladder: response to changes in musocal sodium concentration to vasopressin and to availability of metabolic substrate. J. Membrane Biol 1977; 34: 289
  • McLaughlin C. W. Metabolic and transport effects of tissue culture medium on toad urinary bladder. Epithelial Ion and Water Transport, A. D. C. Macknight, J. P. Leader. Raven Press, New York 1981; 23
  • Whittam R. Active cation transport as a pacemaker of respiration. Nature (London) 1961; 191: 603
  • Chance B., Williams C. M. The respiratory chain and oxidative phosphorylation. Adv. Enz. Relat. Areas Mol Biol 1956; 17: 65
  • Jöbsis F. F., Duffield J. C. Oxidative and glycolytic recovery metabolism in muscle. J. Gen. Physiol 1967; 50: 1009
  • Balaban R. S., Mandel L. J. Coupling of aerobic metabolism to active ion transport in the kidney. J. Physiol, London. 1980; 304: 331
  • Balaban R. S., Dennis V. W., Mandel L. J. Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules. Am. J. Physiol 1981; 240: F337
  • Balaban R. S., Soltoff S. P., Slorey J. M., Mandel L. J. Improved renal cortical tubule suspension: spectrophotometric study of 02 delivery. Am. J. Physiol. 1980; 238: F50
  • Chance B., Cohen P., Jobsis F. F., Schoener B. Localised fluorometry of oxidation-reduction states of intracellular pyridine nucleotide in brain and kidney cortex of the anaesthetised rat. Science 1962; 136: 325
  • Franke H., Barlow C. H., Chance B. Oxygen delivery in perfused rat kidney: NADH fluorescence and renal functional state. Am. J. Physiol. 1976; 231: 1082
  • Van Rossum G. D. V. Relation of the oxidoreduction level of electron carriers to ion transport in slices of avian salt gland. Biochim. Biophys. Acta 1968; 153: 124
  • Handler J. S., Perkins F. M., Johnson J. P. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 1980; 238: Fl
  • Wright E. M. Transepithelial transport in cell culture. Am. J. Physiol 1981; 240: C91
  • Holley R. W., Amour R., Baldwin J. H., Brown K. D., Yeh Y.-C. Density dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors. Proc. Nail. Acad. Sci. U.S.A. 1977; 74: 5046
  • Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarised monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol 1978; 77: 853
  • Handler J. S., Steele R. E., Sahib M., Wade J. B., Preston A. J., Lawson N., Johnson J. P. Toad urinary bladder epithelial cells in culture: maintenance of epithelial structure, sodium transport and response to hormones. Proc. Natl Acad. Sci. U.S.A. 1979; 76: 4151
  • Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in culture. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1212
  • Taub M., Saier M. H. Amiloride-resistant Madin-Darby canine kidney (MDCK) cells exhibit decreased cation transport. Cell Physiol 1981; 106: 191
  • Taub M., Chuman L., Saier M. H., Sato G. H. The growth of a kidney epithelial cell line (MDCK) in hormone-supplemented serum-free media. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 3338
  • Lichtenstein N. S., Leaf A. Effect of amphotericin B on the permeability of the toad bladder. J. Clin. Invest. 1965; 44: 1328
  • Bissell D. M. Primary hepatocyte culture: substratum requirements and production of matrix components. Fed. Proc 1981; 40: 2469
  • Emerman J. T., Pitelka D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 1977; 13: 316
  • Bisbee C. A., Machen T. E., Bern H. A. Mouse mammary epithelial cells on floating collagen gels: transepithelial ion transport and effects of prolactin. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 536
  • Bisbee C. A. Prolactin effects on ion transport across cultured mouse mammary epithelium. Am. J. Physiol 1981; 240: C110
  • Willis J. S., Ellory J. C., Becker J. H. Na-K pump and Na-K-ATPase; disparity of their temperature sensitivity. Am. J. Physiol 1978; 235: C159
  • Mills J. W., Macknight A. D., O'Dayer J. M., Ausiello D. A. Localization of (3H) ouabain-sensitive Na+ pump site in cultured pig kidney cells. Am. J. Physiol 1979; 236: C157
  • Misfeldt D. S., Sanders M. J. Transepithelial transport in cell culture: D-glucose transport by a pig kidney cell line (LCC-PK. 1). J. Membrane Biol 1981; 59: 13
  • Rabito C. A., Ausiello D. A. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney. J. Membrane Biol 1980; 54: 31
  • Mills J. W., Macknight A. D.C, Jarrell J. A., Dayer J. M., Ausiello D. A. Interaction of ouabain with a Na+ pump in intact epithelial cells. J. Cell Biol 1981; 88: 637
  • Toback F. G. Induction of growth in kidney epithelial cells in culture by Na+. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 6654
  • Cereijido M., Meza I., Martinez-Palomo A. Occluding junctions in cultured epithelial monolayers. Am. J. Physiol 1981; 240: C96
  • Johnson J. P., Steele R. E., Perkins F. M., Wade J. B., Preston A. S., Green S. W., Handler J. S. Epithelial cultural organisation and hormone sensitivity of toad urinary bladder cells in culture. Am. J. Physiol 1981; 241: F129
  • Goldring S. R., Dayer J. M., Ausiello D., Krane S. M. A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or vasopressin. Biochem. Biophys. Res. Commun. 1978; 83: 434
  • Rindler M. J., Taub M., Saier M. H., Jr. Uptake of 22Na by cultured dog kidney cells (M DCK). J. Biol. Chem. 1979; 254: 11431
  • Simmons N. L. Ion transport in 'tight'epithelial monolayers of MDCK cells. J. Membrane Biol. 1981; 59: 105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.