596
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Sponge-microbial interactions: Ecological implications and bioprospecting avenues

, , &
Pages 82-90 | Received 03 Jul 2009, Accepted 08 Oct 2009, Published online: 20 Jan 2010

References

  • Alexander RD. (1974). The evolution of social behavior. Ann Rev Ecolog Syst. 5:325–383.
  • Anthoni U, Nielsen PH, Pereira M, Christophersen C. (1990). Bryozoan secondary metabolites: a chemotaxonomical challenge. Comp Biochem Physiol B. 96:431–437.
  • Arillo A, Bavestrello G, Burlando B, Sara M. (1993). Metabolic integration between symbiotic cyanobacteria and sponges—a possible mechanism. Mar Biol. 117:159–162.
  • Avila C, Paul VJ. (1997). Chemical ecology of the nudibranch Glossodoris pallida: Is the location of diet-derived metabolites important for defense? Mar. Ecol. Prog. Ser. 150: 171–180.
  • Ayling AM. (1981). The role of biological disturbance in temperate subtidal encrusting communities. Ecology. 62: 830–847.
  • Berthold RJ, Borowitzka MA, Mackay MA. (1982). The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia. 21: 327–335.
  • Bewley CA, Faulkner DJ. (1998). Lithistid sponges: star performers or hosts to the stars. Angew. Chem. Int. Ed. 37:2162–2178.
  • Bewley CA, Holland ND, Faulkner DJ. (1996). Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722.
  • Bewley CA, Holland ND, Faulkner DJ. (1996). Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia. 52:716–722.
  • Bohm M, Hentschel U, Friedrich AB, Fieseler L, Steffen R, Gamulin V, Muller IM, Muller WEG. (2001). Molecular response of the sponge Suberites domuncula to bacterial infection. Mar. Biol. 139:1037–1045.
  • Bringmann G, Lang G, Gulder TAM, Tsuruta H, Muhlbacher J, Maksimenka K, Steffens S, Schaumann K, Stohr R, Wiese J, Imhoff JF, Perovic-Ottstadt S, Boreiko O, Muller WEG. (2005). The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge-derived Penicillium chrysogenum strain. Tetrahedron. 61:7252–7265.
  • Burns E, Ifrach I, Carmeli S, Pawlik JR, Ilan M. (2003). Comparison of antipredatory sedimentary lipids? Org. Geochem. 30:1–14.
  • Chanas B, Pawlik JR. (1995). Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Mar. Ecol. Prog. Ser. 127: 195–211.
  • Crews P, Manes LV, Boehler M. (1986). Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett. 27: 2797–2800.
  • Daw MA, Falkiner FR. (1996). Bacteriocins: nature, function and structure. Micron. 27:467–479.
  • Dayton PK. (1989). Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science. 245:1484–1486.
  • Dunlap M, Pawlik JR. (1996). Video monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. Mar.Biol. 126: 117–123.
  • Elyakov GB, Kuznetsova T, Mikhailov VV, Maltsev II, Bionov VG, Fedoreyev SA. (1991). Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experintia. 47: 632–633.
  • Falk PG, Hooper LV, Midtvedt T, Gordon JI. (1998). Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 62:1157–1170.
  • Faulkner DJ, Harper MK, Salomon CE, Schmidt EW. (1999). Localisation of bioactive metabolites in marine sponges. Mem Queensl Museum. 44:167–173.
  • Feeny PP. (1991). The evoloution of chemical ecology: contributions from the study of herbivorous insects. In: Rosenthal GA, Berenbaum M (eds.) Herbivores: their interactions with secondary plant metabolites, vol 2. San Diego: Academic Press.
  • Foster JS, Apicella MA, McFall-Ngai MJ. (2000). Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226: 242–254.
  • Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U. (2001). Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38:105–113.
  • Fuerst JA, Webb RI, Garson MJ, Hardy L, Reiswig HM. (1999). Membrane-bounded nuclear bodies in a diverse range of microbial symbionts of Great Barrier Reef sponges. Mem Queensl Mus. 44:193–203.
  • Gandhimathi R, Arunkumar M, Selvin J, Thangavelu T, Sivaramakrishnan S, Seghal Kiran G, Shanmughapriya S, Natarajaseenivasan K. (2008). Antimicrobial potential of sponge associated marine actinomycetes. J Medical Mycology. 18: 16–22.
  • Gandhimathi R, Kiran GS, Hema TA, Selvin J, Raviji TR, Shanmughapriya S. (2009). Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng. Bioprocess Biosyst Eng. 32: 825–835.
  • Gilbert JJ, Allen HL. (1973). Chlorophyll and primary productivity of some green freshwater sponges. Int Rev Gesamten Hydrobiol. 58:633–658.
  • Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M. (2000). Immunolocalization of the toxin latrunculin B within the Red Sea sponge Negombata magnifica (Demospongiae, Latrunculiidae). Mar. Biotechnol. 2: 213–223.
  • Hay ME. (1991). Fish-seaweed interactions on coral reefs: effects of herbivorous fishes and adaptations of their prey. In: Sale PF (ed) The ecology of fishes on coral reefs, pp. 96–119. Academic, San Diego.
  • Hay ME. (1996). Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol. 200:103–134.
  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ. (1999). Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J. Mol. Microbiol. Biotechnol. 1:33–43.
  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M. (2003). Microbial diversity of marine sponges. Prog. Mol. Subcell. Biol. 37:59–88.
  • Hentschel U, Hopke J, Horn J, Friedrich A, Wagner M, Hacker J, Moore BS. (2002). Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Envir Microbiol. 68: 4431.
  • Hentschel U, Usher KM, Taylor MW. (2006). Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55:167–177.
  • Holler U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust HJ, Schulz B. (2000). Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol. Res. 104:1354–1365.
  • Hooper LV, Bry L, Falk PG, Gordon JI. (1998). Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays. 20:336–343.
  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. (2003). Angiogenins: a new class of microbicial proteins involved in innate immunity. Nat Immunol. 4:269–273.
  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. (2001). Molecular analysis of commensal host–microbial relationships in the intestine. Science. 291:881–884.
  • Imhoff JF, Stöhr R. (2003). Sponge-associated bacteria: General overview and special aspects of the diversity of bacteria associated with Halichondria panicea. In: Marine Molecular Biotechnology, Vol. 1 Sponges (Porifera), W.E.G. Müller (Ed.), pp. 35–57. Springer New York.
  • Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Ravji TR, Natarajaseenivasan K. (2009). Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf. B (In press).
  • Kiran GS, Shanmughapriya S, Jayalakshmi J, Selvin J, Gandhimathi R, Sivaramakrishnan S, Arunkumar M, Thangavelu T, Natarajaseenivasan K. (2008). Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess and Biosystems Engineering. 31:483–492.
  • Kitano H, Oda K. (2006). Robustness trade-offs and host–microbial symbiosis in the immune system. Molec Syst Biol. 2:E1–E10.
  • Kobayashi J, Ishibashi M. (1993). Bioactive metabolites of symbiotic marine microorganisms. Chem Rev. 93:1753–1769.
  • Krause J, Ruxton GD. (2002). Living in groups. Oxford University Press, Oxford.
  • Magnino G, Sara A, Lancioni T, Gaino E. (1999). Endobionts of the coral reef sponge Theonella swinhoei (Porifera, Demospongiae). Invertebr Biol. 118:213–220.
  • McKey D. (1974). Adaptive patterns in alkaloid physiology. Am Nat. 108:305–320.
  • Margot H, Acebal C, Toril E, Amils R, Fernandez Puentes JL. (2002). Consistent association of crenarchaeal archaea with sponges of the genus Axinella. Mar. Biol. 140:739–745.
  • McClintock JB, Baker BJ. (1997). Palatability and chemical defense of eggs, embryos and larvae of shallow-water Antarctic marine invertebrates. Mar Ecol Prog Ser. 154:121–131.
  • McFall-Ngai MJ. (1994). Animal-bacterial interactions in the early life history of marine invertebrates: The Euprymna scolopes-Vibrio fischeri symbiosis. Am. Zool. 34: 554–561.
  • Meylan AB. (1988). Spongivory in hawksbill turtles: a diet of glass. Science. 239:393–395.
  • Mohapatra BR, Banerjee UC, Bapuji M. (1998). Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J Biotechnol. 60:113–117.
  • Mohapatra BR, Bapuji M. (1997). Characterization of urethanase from Micrococcus species associated with the marine sponge (Spirastrella species). Lett Appl Microbiol. 25:393–396.
  • Mohapatra BR, Bapuji M, Sree A. (2003). Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta Biotechnol. 23:75–84.
  • Müller WEG, Zahn RK, Kurelec B, Lucu C, Muller I, Uhlenbruck G. (1981). Lectin, a possible basis for symbiosis between bacteria and sponges. J. Bacteriol. 145: 548–558.
  • Muller WEG, Zahn RK, Kurelec B, Muller I, Uhlenbruck G, Vaith P. (1979). Aggregation of sponge cells. A novel mechanism of controlled intercellular adhesion, basing on the interrelation between glycosyltransferases and glycosidases. J. Biol. Chem. 254: 1280–1287.
  • Murakami Y, Oshima Y, Yasumoto T. (1982). Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Nippon Suisan Gakkaishi. 48, 69–72.
  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M. (2006). The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science. 314:267.
  • Nevalainen TJ, Peuravuori HJ, Quinn RJ, Llewellyn LE, Benzie JAH, Fenner PJ, Winkel KD. (2004a). Phospholipase A2 in Cnidaria. Comp Biochem Physiol Part B. 139: 731–735.
  • Nevalainen TJ, Quinn RJ, Hooper JNA. (2004b). Phospholipase A2 in porifera. Comp Biochem Physiol Part B. 137: 413–420.
  • Ninawe AS, Selvin J. (2009). Probiotics in shrimp aquaculture: avenues and challenges. Crit. Rev. Microbiol 35: 43–66.
  • Pawlik JR. (1993). Marine invertebrate chemical defenses. Chem Rev. 93:1911–1922.
  • Preston CM, Wu KY, Molinski TF, DeLong EF. (1996). A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov, sp. nov. Proc. Natl. Acad. Sci. 93:6241–6246.
  • Randall JE, Hartman WD. (1968). Sponge-feeding fishes of the West Indies. Mar. Biol. 1: 216–225.
  • Rutzler K. (1988). Mangrove sponge disease induced by cyanobacterial symbionts: failure of a primitive immune system? Dis. Aquat. Org. 5:143–149.
  • Sara M, Bavestrello G, Cattaneo-Vietti R, Cerrano, C.(1998). Endosymbiosis in sponges: relevance for epigenesis and evolution. Symbiosis. 25:57–70.
  • Sara M, Liaci L. (1964). Symbiotic associations between zooxanthellae and two marine sponges of the genus Cliona. Nature. 203:321–323.
  • Savage DC. (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 31:107–133.
  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. (2000). Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel alpha proteobacterium, “Candidatus Entotheonella palauensis.” Mar. Biol. 136:969–977.
  • Selvin J. (2009). Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in host sponge Dendrilla nigra. Current Microbiology (In press). DOI: 10.1007/s00284-008-9343-1.
  • Selvin J, Shanmugha Priya S, Seghal Kiran G, Thangavelu T, Sapna Bai N. (2009a). Sponge associated marine bacteria as indicators of heavy metal pollution. Microbiol. Res. 164: 352–363. 10.1016/j.micres.2007.05.005 www.sciencedirect.com.
  • Selvin J, Shanmughapriya S, Gandhimathi R, Seghal Kiran G, Rajeetha Raviji T, Natarajaseenivasan K, Hema TA. (2009). Optimization and production of novel antimicrobial agents from sponge associated marine Actinomycetes Nocardiopsis dassonvillei MAD08. Appl. Microbiol. Biotechnol. 83: 435–445. DOI: 10.1007/s00253-009-1878-y.
  • Shanmughapriya S, Krishnaveni J, Selvin J, Gandhimathi R, Arunkumar M, Thangavelu T, Seghal Kiran G, Natarajaseenivasan K. (2008). Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter sp (MMD040). Bioprocess and Biosystems Engineering. 31:427–433.
  • Shanmughapriya S, Seghal Kiran G, Selvin J, Gandhimathi R, Bastin Baskar T, Manilal A, Sujith S. (2009). Optimization, production and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnology and Bioprocess Engineering 14: 67–75.
  • Stahl U, Lee M, Sjodahl S, Archer D, Cellini F, Ek B. (1999). Plant low-molecular-weight phospholipase A2s (PLA2s) are structurally related to the animal secretory PLA2s and are present as a family of isoformas in rice (Oryza sativa). Plant Mol Biol. 41: 481–490.
  • Stappenbeck TS, Hooper LV, Gordon JI. (2002). Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA. 99:15451–15455.
  • Steindler L, Huchon D, Avni A, Ilan M. (2005). 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl. Environ. Microbiol. 71:4127–4131.
  • Stierle AC, Cardellina JH, Singleton FL. (1988). A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia. 44: 1021.
  • Tannock GW. (1995). Normal microflora: an introduction to the microbes inhabiting the human body. New York: Chapman & Hall.
  • Thakur NL, Anil AC, Muller WEG. (2004). Culturable epibacteria of the marine sponge Ircinia fusca: temporal variations and their possible role in the epibacterial defense of the host. Aquat. Microb. Ecol. 37:295–304.
  • Thompson JE, Walker RP, Wratten SJ, Faulkner DJ. (1982). A chemical defense mechanism forthe nudibranch Cadilna luteomarginata. Tetrahedron. 38: 1865–1867.
  • Trivers RL. (1985). Social evolution. Benjamin/Cummins, Menlo Park.
  • Unson MD, Holland ND, Faulkner DJ. (1994). A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119:1–11.
  • Vacelet J, Donadey C. (1977). Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol. 30:301–314.
  • Vacelet J, Fiala-Mendoni A, Fisher CR, Boury-Esnault N. (1996). Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar. Ecol. Prog. Ser. 145:77–85.
  • Vance RR. (1979). Effects of grazing by the sea urchin Centrostephanus coronatus on prey community composition. Ecology. 60: 537–546.
  • Vincente VP. (1990). Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico. Coral Reefs. 8:199–202.
  • Webb VL, Maas EW. (2002). Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett. 207:43–47.
  • Webster NS, Hill RT. (2001). The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha proteobacterium. Mar. Biol. 138:843–851.
  • Wilkinson CR. (1978a). Microbial associations in sponges. 1. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol. 49:161–167.
  • Wilkinson CR. (1978b). Microbial association in sponges. 2. Numerical analysis of sponge and water bacterial populations. Mar Biol. 49:169–176.
  • Wilkinson CR. (1978c). Microbial associations in sponges. 3. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol. 49:177–185.
  • Wilkinson CR. (1984). Immunological evidence for the Precambrian originof bacterial symbioses in marine sponges. Proc. R. Soc. Lond. B 220:509–517.
  • Wilkinson CR. (1992). Symbiotic interactions between marine sponges and algae In W. Reisser (ed.). Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Bristol, UK: Biopress Limited.
  • Wilkinson CR, Nowak M, Austin B, Colwell RR. (1981). Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb. Ecol. 7:13–21.
  • Wilson EO. (1975). Sociobiology. Cambridge: Harvard University Press.
  • Wulff J.L. (1994). Sponge-feeding by Caribbean angelfishes, trunkfishes, and filefishes. in R. W. M. van Soest, T. M. G. van Kempen, and J.-C. Braekman, eds. Sponges in Time and Space: Biology, Chemistry, Paleontology. A.A. Balkema, Rotterdam, p. 265–271.
  • Zabriskie TM, Klocke JA, Ireland CM, Marcus AH, Molinski TF, Faulkner DJ, Xu C, Clardy JC. (1986). Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc. 108: 3123–3124.
  • Zientz E, Dandekar T, Gross R. (2004). Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol. Mol. Biol. Rev. 68:745–770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.