64
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Intracellular Roles of Microbial Aminotransferases: Overlap Enzymes Across Different Biochemical Pathways

, &
Pages 229-266 | Published online: 25 Sep 2008

References

  • Aalestad H. G., Larson A. D. Bacterial metabolism of 2-methylalanine. J. Bacteriol. 1964; 88: 1296
  • Abramsky T., Rowland L. P., Shemin D. The formation of isoleucine from β-methylaspartic acid in Escherichia coli W. J. Biol. Chem. 1962; 237: 265
  • Adams C. W., Lawther R. P., Hatfield O. W. The ilvEDA operon of Escherichia coli K.12 encodes only one valine-α-ketoglutarate transaminase activity. Biochem. Biophys. Res. Commun. 1979; 89: 650
  • Adelberg E. A., Umbarger H. E. lsoleucine and valine metabolism in Escherichia coli. J. Biol. Chem. 1953; 205: 475
  • Albritton W. L., Vogel H. J. Acetylornithine transaminase, partial purification and repression behavior. J. Bacteriol. 1972; 111: 597
  • Albritton W. L., Levin A. P. Aminotransferase from a deletion mutant in the histidine operon. J. Biochem. 1964; 239: 1872
  • Albritton W. L., Levin A. P. Histidine-2-oxoglutarate aminotransferase activity in Salmonella typhimurium. Biochem. J. 1969; 114: 662
  • Albritton W. L., Levin A. P. Some comparative kinetic data on the enzyme imidazoleacetol phosphate:L-glutamate aminotransferase derived from mutant strains of Salmonella typhimurium. J. Biol. Chem. 1970; 245: 2525
  • Araki K., Nakayama K. A biochemical characterization of histidine auxotrophs of Corynebacterium glutamicum. Agric. Biol. Chem. 1974; 38: 2219
  • Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 1976; 40: 116
  • Bailey G. B., Chotamangsa O., Vuttivel K. Control of pyridoxal phosphate enzyme reaction studied with α-dialkylamino acid transaminase. Biochemistry 1970; 9: 3243
  • Bailey G. B., Dempsey W. B. Purification and properties of an α-dialkyl amino acid transaminase. Biochemistry 1967; 6: 1526
  • Bartnik E., Weglenski P. Regulation of arginine catabolism in Aspergillus nidulans. Nature (London) 1974; 250: 590
  • Basso L. V., Rao D. R., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. II. d1-Piperideine-6-carboxylic acid and α-aminoadipic acid d-semialdehyde. J. Biol. Chem. 1962; 237: 2239
  • Bellion E., Hersh L. B. Methylamine metabolism in a Pseudomonas species. Arch. Biochem. Biophys. 1972; 153: 368
  • Billheimer J. T., Jones E. E. Inducible and repressible acetylornithine d-transaminase in Escherichia coli:different proteins. Arch. Biochem. Biophys. 1974; 161: 647
  • Blakley E. R. The catabofism of L-tyrosine by an Arthrobactersp. Can. J. Microbiol. 1977; 23: 1128
  • Bode R., Birnbaum D. Die enzyme der biosynthese aromatisher aminosäuren bei Hansenula henricii: die aminotransferasen. Biochem. Physiol. Pflanz. 1978; 173: 44
  • Brohn F., Tchen T. T. A single transaminase for 1, 4-diaminobutane and 4-aminobutyrate in a Pseudomonas species. Biochem. Biophys. Res. Commun. 1971; 45: 578
  • Broman K., Lauwers N., Stalon V., Wiame J. M. Oxygen and nitrate in utilization by Bacillus licheniformisof the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses. J. Bacteriol. 1978; 135: 920
  • Brown B. A., Lax S. R., Liang L., Oabney B. J., Spremulli L. L., Ravel J. M. Repression of the tyrosine, lysine, and methionine biosynthetic pathways in his T mutants of Salmonella typhimurium. J. Bacteriol. 1977; 129: 1168
  • Brown K. D., Somerville R. L. Repression of aromatic amino acid biosynthesis in Escherichia coli K. 12. J. Bacteriol. 1971; 108: 386
  • Bukhari A. I., Taylor A. Genetic analysis of diaminopimelic acid-and lysine-requiring mutants of Escherichia coli. J. Bacteriol. 1971; 105: 844
  • Calhoun D. H., Pierson D. L., Jensen R. A. Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa. J. Bacteriol. 1973; 113: 241
  • Calhoun D. H., Jensen R. A. Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa. J. Bacteriol. 1972; 109: 365
  • Carsiotis M., Jones R. F., Wesseling A. C. Cross-pathway regulation: histidine mediated control of histidine, tryptophan and arginine biosynthetic enzymes in Neurospora crassa. J. Biol. Chem. 1974; 119: 893
  • Chang Y., Adams E. Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida. Biochem. Biophys. Res. Commun. 1971; 45: 570
  • Chang Y. F., Adams E. D-lysine catabolic pathway in Pseduomonas putida: interrelations with L-lysine catabolism. J. Bacteriol. 1974; 117: 753
  • Chang Y. F., Adams E. Glutarate semialdehyde dehydrogenase of Pseudomonas: purification, properties and relation to L-lysine catabolism. J. Biol. Chem. 1977; 252: 7979
  • Chang Y. F., Adams E. Factors influencing growth on L-lysine by Pseudomonas. J. Biol. Chem. 1977; 252: 7987
  • Chapman L. F., Nester E. W. Common element in the repression control of enzymes of histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 1968; 96: 1658
  • Chesne S., Pelmont J. Glutamate-oxaloacetate transaminase d'Escherichia coli. I. Purification et specificite. Biochimie. 1973; 55: 237
  • Chesne S., Pelmont J. Glutamate-oxaloacetate transaminase d'Escherichia coli. Biochimie 1974; 56: 631
  • Chesne S., Montmitonnet A., Pelmont J. Transamination du L-aspartate et de la L-phenylalanine chez Escherichia coli K-12. Biochimie 1975; 57: 1029
  • Chibata I., Kakimoto T., Kato J., Shibatani T., Nishimura N. On the activation mechanism of L-aspartate β-decarboxylase from Pseudomonas dacunhae by α-ketoglutarate. 19th Symp. Enzyme Chemistry, KanaqawaJapan, April, 91968
  • Clarke S. J., Low B., Konigsberg W. H. Close linkage of the genes serC (for phosphohydroxy pyruvate transaminase) and serS(for seryl-transfer ribonucleic acid synthetase) in Escherichia coliK-12. J. Bacteriol. 1973; 113: 1091
  • Coleman M. S., Armstrong F. B. Branched-chain amino-acid aminotransferase of Salmonella typhimurium. I. Crystallization and preliminary characterization. Biochim. Biophys. Acta 1971; 227: 56
  • Coleman M. S., Soucie W. G., Armstrong F. B. Branched-chain aminotransferase of Salmonella typhimurium. II. Kinetic comparison with the enzyme from Salmonella montevideo. J. Biol. Chem. 1971; 246: 1310
  • Collier R. H., Kohlhaw G. Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli. J. Bacteriol. 1972; 112: 365
  • Collins M., Wagner R. P. Branched-chain amino-acid aminotransferases of Neurospora crassa. Arch. Biochem. Biophys. 1973; 155: 184
  • Conrad R. S., Sokatch J. R., Jensen R. A. Relationship of metabolite inhibition of growth to flow-of-carbon patterns. Life Sci. 1976; 19: 299
  • Coote J. F. M., Hassall H. The control of the enzymes degrading histidine and related imidazolyl derivatives in Pseudomonas testosteroni. Biochem. J. 1973; 132: 423
  • Coote J. G., Hassall H. The degradation of L-histidine, imidazolyl-L-acetate and imidazolypropionate by Pseudomonas testosteroni. Biochem. J. 1973; 136: 1959
  • Dainty R. H., Peel J. L. Biosynthesis of amino acids in Clostridium pasteurianum. J. Biochem. 1970; 117: 573
  • Dempsey W. B. 3-Phosphoserine transaminase mutants of Escherichia coli B. J. Bacteriol. 1969; 100: 114
  • Dempsey W. B., Itoh H. Characterization of pyridoxine auxotrophs of Escherichia coli: serine and pdx F mutants. J. Bacteriol. 1970; 104: 658
  • Dempsey W. B., Sims K. R. Isoleucine and threonine can prolong protein and ribonucleic acid synthesis in pyridoxine-starved mutants of Escherichia coli B. J. Bacteriol. 1972; 112: 726
  • deRobichon-Szulmajster H., Surdin Y., Mortimer R. K. Genetic and biochemical studies of genes controlling the synthesis of threonine and methionine in Saccharomyes. Genetics 1966; 53: 609
  • Doctor V. M., Ora J. Mechanism of non-enzymic transamination reaction between histidine and α-oxoglutaricacid. J. Biochem. 1969; 112: 691
  • Dover S., Halpern Y. S. Control of the pathway of γ-aminobutyrate breakdown in Escherichia coli K-12. J. Bacteriol. 1972; 110: 165
  • Dover S., Halpern Y. S. Genetic analysis of the γ-aminobutyric utilization pathway in Escherichia coli K-12. J. Bacteriol. 1974; 117: 494
  • Dover S., Halpern Y. S. Novel type of catabolite repression in the pathway of γ-aminobutyrate breakdown in Escherichia coli K-12. FEBS Lett. 1973; 37: 207
  • Dover S., Halpern Y. S. Utilization of γ-aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants. J. Bacteriol. 1972; 109: 835
  • Duggan D. E., Wechsler J. A. An assay for transaminase B enzyme activity in Escherichia coli K-12. Anal. Biochem. 1973; 51: 67
  • Dunathan H. C., Voet J. G. Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor. Proc. Natl. Acad. Set. U.S.A. 1974; 71: 3888
  • Dunstan P. M., Anthony C., Drabble W. T. Microbial metabolism of C., and C., compounds, the role of glyoxylate, glycollate and acetate in growth of Pseudomonas AMI on ethanol and on C., compounds. Biochem. J. 1972; 128: 107
  • Eady R. R., Large P. J. Microbial oxidation of amines: spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AM 1. Biochem. J. 1971; 123: 757
  • Eisenberg M. A., Stoner G. L. Biosynthesis of 7, 8-diaminopelargonic acid, a biotin intermediate, from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine. J. Bacteriol. 1971; 108: 1135
  • Eisenberg M. A. Mode of action of α-dehydrobiotin, a biotin analogue. J. Bacteriol. 1975; 123: 248
  • Fahien L. A., Ruoho A. E., Kmiotek E. A study of glutamate dehydrogenase aminotransferase complexes with a bifunctional imidate. J, Biol. Chem. 1978; 253: 5745
  • Falkinham J. O. III. Escherichia coli K-12 mutant with alternate requirements for vitamin B. or branched-chain amino acids and lacking transaminase C activity. J. Bacteriol. 1977; 130: 566
  • Fazel A. M., Jensen R. A. Aromatic aminotransferase in species of coryneform bacteria. J. Bacteriol. 1979; 140: 580
  • Fazel A. M., Jensen R. A. Obligatory biosynthesis of L-tyrosine via the pretyrosine branchlet in coryneform bacteria. J. Bacteriol. 1979; 138: 805
  • Feldman L. I., Gunsalus I. C. The occurrence of a wide variety of transaminases in bacteria. J. Biol. Chem. 1950; 187: 821
  • Forsythe G. W., Theil E. C., Jones E. E. Isolation and characterization of arginine-inducible acetyl-ornithine d-transaminase from Escherichia coli. J. Biol. Chem. 1970; 245: 5345
  • Friede J. D., Henderson L. M. Metabolism of 5-hydroxylysine in Pseudomonas fluorescens. J. Bacteriol. 1976; 127: 1239
  • Ganczarski A., Mikucki J., Szarapinska-Kwaszewska J., Krezeminski Z. Studies on the activity of aminotransferase in the synthesis of aspartic acid in Staphylococcus aureus sensitive and resistant to antibiotics. Exp. Med. Microbiol. 1968; 20: 331
  • Garrick-Silversmith L., Hartman P. E. Histidine-requiring mutants of Escherichia coWK-12. Genetics 1970; 55: 231
  • Gelfand D. H., Rudo N. Mapping of the aspartate and aromatic amino acid aminotransferase genes tyr B and asp C. J. Bacteriol. 1977; 130: 441
  • Gelfand D. H., Steinberg R. A. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J. Bacteriol. 1977; 130: 429
  • Gibson K. D., Matthew M., Neuberger A., Tait G. H. Biosynthesis of porphyrins and chlorophylls. Nature (London) 1961; 192: 204
  • Gilmer J. P., Kirsch F. J. Pyridoxamine-pyruvate transaminase. Temperature-jump and stopped-flow kinetic investigation of the rates and mechanism of the reaction of 5′ deoxypyridoxal with enzyme. Biochemistry 1977; 16: 5246
  • Glansdoff N., Sand G., Verhoef C. The dual control of ornithine transcarbamylase synthesis in Escherichia coli K-12. Mutant. Res. 1967; 4: 743
  • Goldschmidt E. P., Cater M. S., Matney T. S., Butler M. A., Greene A. Genetic analysis of this histidine operon in Escherichia coli K-12. Genetics 1970; 66: 219
  • Guardiola J. Requirement of the newly recognized ilv J gene for the expression of a valine transaminase activity in E. coli K-12. Mol. Gen. Genet. 1977; 158: 157
  • Hacking A. J., Hassall H. The purification and properties of L-histine-2-oxoglutarate aminotransferase from Pseudomonas testosteroni. Biochemistry 1975; 147: 327
  • Hahn J. E., Calhoun D. H. Suppressors of a genetic regulatory mutation affecting isoleucine-valine biosynthesis in Escherichia coli K-12. J. Bacteriol. 1978; 136: 117
  • Halvorson G. Utilization of single L-amino acids as sole source of carbon and nitrogen by bacteria. Can. J. Microbiol. 1972; 18: 1647
  • Harder W., Quayle J. R. Aspects of glycine and serine biosynthesis during growth of Pseudomonas AMI on C., compounds. Biochem. J. 1971; 121: 763
  • Harder W., Quayle J. R. The biosynthesis of serine and glycine in Pseudomonas AMI with special reference to growth on carbon sources other than C1 compound. Biochem. J. 1971; 121: 753
  • Harwood C. R., Baumberg S. Arginine hydroxamate resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J. Gen. Microbiol. 1977; 100: 177
  • Hasan N., Nester E. W. Purification and characterization of NADPH-dependent flavin reductase. J. Biol. Chem. 1978; 253: 209
  • Hass D., Kurer V., Leisinger T. N-acetylglutamate synthetase of Pseudomonas aeruginosa, an assay in vitro and feedback inhibition by arginine. Eur. J. Biochem. 1972; 31: 290
  • Hayaishi O., Nishizuka Y., Tatibana M., Takeshita M., Kuno S. Enzymatic studies on the metabolism of β-alanine. J. Biol. Chem. 1961; 236: 781
  • Hegeman G. S., Rosenberg S. L. The evolution of bacterial enzyme systems. Annu. Rev. Microbiol. 1970; 24: 429
  • Henderson G. B., Snell E. E. Vitamin B4-responsive histidine deficiency in mutants of Salmonella typhimurium. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 2903
  • Heptinstall J., Quayle J. R. Pathways leading to and from serine during growth of Pseudomonas AMI on C1 compounds or succinate. Biochem. J. 1970; 117: 563
  • Hirvonen A. P., Vogel H. J. M. Response of argR spheroplasts of Escherichia colito extracted arginine repressor. Biochem. Biophys. Res. Commun. 1970; 41: 1611
  • Hoch J. A., Nester E. W. Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis. J. Bacteriol 1973; 116: 59
  • Holten E., Jyssum K. Activities of some enzymes concerning pyruvate metabolism in Neisseria. Acta Pathol. Microbiol. Scand. Sect. B. 1974; 82: 843
  • Holtzclaw D. W., Chapman L. F. A new assay for transaminase C. Anal. Biochem. 1977; 83: 162
  • Honma M., Ikeda M., Shimonura T. Aminotransferase activity of α-aminoisobutyric acid decomposing enzyme. Agric. Biol. Chem. 1972; 36: 1661
  • Hopwood D. A. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol. Rev. 1967; 31: 373
  • Hotta K., Kitahara T., Okami Y. Studies on the mode of action of amiclenomycin. J. Antibiotics 1975; 28: 222
  • Ichihara A., Furiya S., Suda M. Metabolism of L-lysine by bacterial enzymes. III. Lysine racemase. J. Biochem. 1960; 48: 277
  • Ichihara A., Suda M. Metabolism of L-lysine by bacterial enzymes. IV. Aminovaleric acid-glutamic acid transaminase. J. Biochem. AS 1960; 412
  • Iijima T., Diesterhaft M. D., Freese E. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J. Bacteriol. 1977; 129: 1440
  • Ikawa M. The configuration of aspartic acid in cell walls of lactic acid bacteria and factors affecting the recemization of aspartic acid. Biochemistry 1963; 3: 594
  • Itoh H., Dempsey W. B. Purification of 3-phosphoserine α-ketoglutarate transaminase from Escherichia coli B. Life Sci. 1970; 9: 1289
  • Izumi Y., Ogata K. Some aspects of the microbial production of biotin. Applied Microbiology, D. Perlman. Academic Press, New York 1977; Vol. 22: 145
  • Izumi Y., Sato K., Tani Y., Ogata K. 7, 8-Diaminopelargonic acid aminotransferase, an enzyme involved in biotin biosynthesis by microorganisms. Agric. Biol. Chem. 1975; 39: 175
  • Izumi Y., Sato K., Tani Y., Ogata K. Purification of 7-keto-8-aminopelargonic acid-7, 8-diamino-pelargonic acid aminotransferase, an enzyme involved in biotin biosynthesis from Brevibacterium divarica-turn. Agric. Biol. Chem. 1973; 37: 2683
  • Jakoby W. B. Enzymes of γ-aminobutyrate metabolism (bacterial). Methods Enzymol. 1962; 5: 765
  • Jensen R. A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 1976; 30: 409
  • Jensen R. A., Pierson D. L. Evolutionary implications of different types of microbial enzymology for L-tyrosine biosynthesis. Nature (London) 1975; 254: 667
  • Jensen R. A., Stenmark S. L. The ancient origin of a second microbial pathway for L-tyrosine biosynthesis in prokaryotes. J. Mol. Evol. 1975; 4: 249
  • Jensen R. A., Zamir L., St Pierre M., Patel N., Pierson D. L. Isolation and preparation of pretyrosine, accumulated as a dead-end metabolite by Neurospora crassa. J. Bacteriol. 1977; 132: 896
  • Jones A., Francis M. M., Vining L. C., Westlake D. W. S. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Properties of an aminotransferase accepting p-aminophenylalanine as a substrate. Can. J. Microbiol. 1978; 24: 238
  • Kaper J. M., Veldstra H. On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochem. Biophys. Acta 1958; 30: 401
  • Karlin J. N., Bowman B. J., Davis R. H. Compartmental behavior of ornithine in Neurospora crassa. J. Biol. Chem. 1976; 251: 3948
  • Kazumi A., Kiyoshi N. A biochemical characterization of histidine auxotrophs of Corynebacterium glutamicum. Agric. Biol. Chem. 1974; 38: 2219
  • Kikuchi A., Gorini L. Similarity of genes arg Fand argl. Nature (London) 1975; 256: 621
  • Kim K. Purification and properties of a diamine-α-ketoglutarate transaminase from Escherichia coli. J. Biol. Chem. 1964; 239: 783
  • Kim K., Tchen T. T. Diamine-α-ketoglutarate aminotransferase from Escherichia coli. Methods Enzymol. 1971; 17: 812
  • Kim S. W. K., Davidson H., Pittard J. Phenylalanine and tyrosine biosynthesis in Escherichia coli K-12: mutants derepressed for 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase (phe), 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. J. Bacteriol. 1971; 108: 400
  • Kiritani K. Mutants deficient or altered in branched-chain amino-acid aminotransferase in Salmonella typhimurium. Jpn. J. Genetics 1972; 47: 91
  • Kiritani K., Inuzuka N. Mutations affecting the branched-chain amino-acid aminotransferase in Salmonella typhimurium. Jpn. J. Genetics 1970; 45: 293
  • Kishore G., Sugumaran M., Vaidyanathan C. S. Metabolism of DL-(±)-phenylalanine by Aspergillus niger. J. Bacteriol. 1976; 128: 182
  • Kline E. L., Manrose D. N., Jr., Warwick M. L. Multivalent regulation of isoleucine-valine transaminase in an Escherichia coli K-12 ilv A deletion strain. J. Bacteriol. 1977; 130: 951
  • Kobayashi K., Miyazawa S., Endo A. Isolation and inhibitory activity of gabaculine, a new potent inhibitor of γ-aminobutyrate aminotransferase produced by Streptomyces. FEBS Lett. 1977; 76: 207
  • Koide Y., Honma M., Shimomura T. L-Alanine-α-keto acid aminotransferase of Pseudomonas sp. Agric. Biol. Chem. 1977; 41: 781
  • Koide Y., Honma M., Shimomura T. Branched-chain amino-acid aminotransferase of Pseudomonas sp. Agric. Biol. Chem. 1977; 41: 1171
  • Kolb H., Cole D., Snell E. E. Molecular weight and subunit structure of pyridoxamine transaminase. Biochemistry 1968; 7: 2946
  • Koo P. H., Adams E. α-Ketoglutaric semialdehyde dehydrogenase of Pseudomonas. J. Biol. Chem. 1974; 249: 1704
  • Kosuge T., Heskett M. G., Wilson E. E. Microbial synthesis of and degradation of indole-3-acetic acid. J. Biol. Chem. 1966; 241: 3738
  • Kurtz M., Bhattacharjee J. K. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid. J. Gen. Microbiol. 1975; 86: 103
  • LaNauze J. M., Rosenberg H. The identification of 2-phosphonoacetaldehyde as an intermediate in the degradation of 2-aminoethylphosphonate by Bacillus cereus. Biochim. Biophys. Acta 1968; 165: 438
  • Leisinger T., Vogel R. H., Vogel H. J. Repression-dependent alteration of an arginine enzyme in Escherichia coli. J. Biochem. 1969; 64: 686
  • Lee-Peng F.-C., Hermodson M. A., Kohlhaw G. B. Transaminase B from Escherichia coli: quaternary structure, amino-terminal sequence, substrate specificity, and absence of a separate valine-α-ketoglutarate activity. J. Bacteriol. 1979; 139: 339
  • Lewis E. B. Pseudoallelism and gene evolution. Cold Spring Harbor Symp. Quant. Biol. 1951; 16: 159
  • Lindstedt S., Lindstedt G., Mitoma C. Studies on the metabolism of lysine and 5-hydroxylysine. Arch. Biochem. Biophys. 1967; 119: 336
  • Lipscomb E. L., Horton H. R., Armstrong F. B. Molecular weight, subunit structure, and amino acid composition of the branched-chain amino-acid aminotransferase of Salmonella typhimurium. J. Biochem. 1974; 13: 2070
  • Loginova N. V., Trotsenko Yu. A. Enzymes of the methanol and methylamine metabolism in Pseudomonas methylica. Mikrobiologija 1974; 43: 979
  • Magasanik B. Regulation of bacterial nitrogen assimilation by glutamine synthetase. Trends Biomed. Sci. 1977; 2: 9
  • Mallavia L. P., Weiss E. Catabolic activities of Neisseria meningitidis: utilization of glutamate. J. Bacteriol. 1970; 101: 127
  • Marcotte P., Walsh C. Active site-directed inactivation of cystathionine γ-synthetase and glutamic pyruvic transaminase by propargylglycine. Biochem. Biophys. Res. Commun. 1975; 62: 677
  • Marinus M. G., Loutit J. S. Regulation of isoleucine-valine biosynthesis in Pseudomonas aeruginosa. I. Characterization and mapping of mutants. Genetics 1969; 63: 547
  • Marshall V. D., Sokatch J. R. Regulation of valine catabolism in Pseudomonas putida. J. Bacteriol. 1972; 110: 1073
  • Martin R. G. Imidazolylacetol phosphate:L-glutamate aminotransferase mechanism of action. Arch. Biochem. Biophys. 1970; 138: 239
  • Martin R. G., Goldberger R. F. Imidazolylacetol phosphate:L-glutamate aminotransferase. J. Biol. Chem. 1967; 242: 1168
  • Martin R. G., Voll M., Appella E. Imidazolyacetol phosphate:L-glutamate aminotransferase. J. Biol. Chem. 1967; 242: 1175
  • Martin R. R., Marshall V. D., Sokatch J. R., Linger L. Common enzymes of branched-chain amino-acid catabolism in Pseudomonas putida. J. Bacteriol. 1973; 115: 198
  • Martinez-Carrion M., Jenkins W. T. D-Alanine-D-glutamate aminotransferase. I. Purification and characterization. J. Biol. Chem. 1965; 240: 3538
  • Martinez-Carrion M., Jenkins W. T. D-Alanine-D-glutamate aminotransferase (Bacillus subtilis). Methods Enzymol. 1970; 17: 167
  • Massay L. K., Conrad R. S., Sokatch J. R. Regulation of leucine catabolism in Pseudomonas putida. J. Bacteriol. 1974; 118: 112
  • Massay L. K., Sokatch J. R., Conrad R. S. Branched-chain amino-acid catabolism in bacteria. Bacteriol. Rev. 1976; 40: 42
  • Matchett W. H. The utilization of tryptophan by Neurospora. Biochim. Biophys. Acta 1965; 107: 222
  • Matsuda M., Ogur M. Separation and specificity of the yeast glutamate-o-ketoadipate transaminase. J. Biol. Chem. 1969; 244: 3352
  • Matsuhashi M., Strominger J. L. Thymidine diphosphate 4-acetamido-4, 6-dideoxyhexoses. J. Biol. Chem. 1966; 241: 4738
  • Mavrides C., Comerton M. Aminotransferases for aromatic amino acids and aspartate in Bacillus subtilis. Biochim. Biophys. Acta 1978; 524: 60
  • Mavrides C., Orr W. Multiple forms of plurispecific aromatic:2-oxoglutarate (oxaloacetate) aminotransferase (transaminase A) in Escherichia coli and selective repression by L-tyrosine. Biochim. Biophys. Acta 1974; 336: 70
  • Mavrides C., Orr W. Multispecific aspartate and aromatic amino acid aminotransferase in Escherichia coli. J. Biol. Chcm. 1973; 250: 4128
  • McGilvrary D., Umbarger H. E. Regulation of transaminase C synthesis in Escherichia coli: conditional leucine auxotrophy. J. Bacteriol. 1974; 120: 715
  • Meister A. Transamination. Adv. Enzymol. 1953; 16: 185
  • Metzer E., Levitz R., Halpern Y. S. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of γ-aminobutyrate. J. Bacteriol. 1979; 137: 1111
  • Michaels R., Kim K. Comparative studies of putrescine degradation by microorganisms. Biochim. Biophys. Acta 1966; 115: 59
  • Middlehaven W. J. Induction and repression of arginine and ornithine aminotransferase in Baker's Yeast. Antonie van Leeuwenhoek J. Microbiol Serol. 1970; 36: 1
  • Mikucki J. Studies on transamination reactions in Staphylococcus aureus. II. Transamination in donor-alpha-ketoglutarate systems. Exp. Med. Microbiol. 1971; 23: 91
  • Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida, catabolism of lysine by cyclic and acyclic intermediates. J. Biol. Chem. 1971; 246: 2758
  • Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida, intermediates in L-arginine catabolism. J. Biol. Chem. 1971; 246: 5053
  • Misono H., Soda K. L-lysine-α-ketoglutarate ε-aminotransferase: properties of the bound pyridoxal 5-phosphate. J. Biochem. 1977; 82: 535
  • Monnier N., Montmitonnet A., Chesne S., Pelmont J. Transaminase B d'Escherichia coli. I. Purification et premieres properietes. Biochimie 1976; 58: 663
  • Moriguchi M., Soda K. Transamination reaction catalyzed by kynureninase and control of the enzyme activity. Biochemistry 1973; 12: 2974
  • Moriguchi M., Yamamoto T., Soda K. Properties of crystalline kynureninase from Pseudomonas marginalis. Biochemistry 1973; 12: 2969
  • Munkres K. D. Allosteric and multifunctional properties of Neurospora mitochondrial malate dehydrogenase. Biochim. Biophys. Acta 1970; 220: 149
  • Munkres K. D. Physicochemical identity of Neurospora malate dehydrogenase and aspartate aminotransferase. Arch. Biochem. Biophys. 1965; 112: 347
  • Munkres D. Simultaneous genetic alteration of Neurospora malate dehydrogenase and aspartate aminotransferase. Arch. Biochem. Biophys. 1965; 112: 340
  • Munkres K. D. Structure of Neurospora malate dehydrogenase. II. Isolation and partial characterization of polypeptide subunits. Biochemistry 1965; 4: 2186
  • Nagasaki T., Sugita M., Fukawa H. Studies on DOPA transaminase of Alcaligenes faecalis. Agric. Biol. Chem. 1973; 37: 1701
  • Nakano T., Tokunaga H., Kitaoka S. Two ω-amino acid transaminases from Bacillus cereus. J. Biochem. 1977; 81: 1375
  • Nester E. W., Dale B., Montoya A., Void B. Cross pathway regulation of tyrosine and histidine synthesis in Bacillus subtilis. Biochim. Biophys. Acta 1974; 361: 59
  • Nester E. W., Montoya A. L. An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 1976; 126: 699
  • Neuberger A., Turner J. M. γ, d-dioxovalerate aminotransferase activity in Rhodopseudomonas spheroides. Biochim. Biophys. Acta 1963; 67: 342
  • Norton J. E., Sokatch J. R. Purification and partial characterization of the branched-chain amino-acid transaminase of Pseudomonas aeruginosa. Biochim. Biophys. Acta 1970; 206: 261
  • Novogrodsky A., Meister A. Control of aspartate β-decarboxylase activity by transamination. J. Biol. Chem. 1964; 329: 879
  • Novogrodsky A., Nishimura J. S., Meister A. Transamination and β-decarboxylation of aspartate catalyzed by the same pyridoxal-phosphate enzyme. J. Biol. Chem. 1963; 238: PC1903
  • Numa S., Ishimura Y., Nakazawa T., Okazaki T., Hayaishi O. Enzymic studies on the metabolism of glutarate in Pseudomonas. J. Biol. Chem. 1964; 239: 3915
  • O'Neil S. R., de Moss R. D. Tryptophan transaminase from Clostridium sporogenes. Arch. Biochem. Biophys. 1968; 127: 361
  • Pai C. H. Biosynthesis of biotin: synthesis of 7, 8-diaminopelargonic acid in cell-free extracts of Escherichia coli. J. Bacteriol. 1971; 105: 793
  • Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J. Biol. Chem. 1977; 252: 5839
  • Patel N., Stenmark-Cox S. L., Jensen R. A. Enzymological basis of reluctant auxotrophy for phenylalanine and tyrosine in Pseudomonas aeruginosa. J. Biol. Chem. 1978; 253: 2972
  • Peterkofsky B., Gilvarg C. N-auccinyl-L-diaminopimelic-glutamic transaminase. J. Biol. Chem. 1961; 236: 1432
  • Phillips A. T., Nuss J. I., Moosic J., Foshay C. Alternate pathway for isoleucine biosynthesis in Escherichia coli. J. Bacteriol. 1972; 109: 714
  • Pierson D. L., Jensen R. A. Metabolic interlock: control of an interconvertible prephenate dehydratase by hydrophobic amino acids in Bacillus subtilis. J. Mol. Biol. 1974; 90: 563
  • Pong S. S., Loomis W. F., Jr. Enzymes of amino acid metabolism in Dictyostelium discoideum. J. Biol. Chem. 1971; 246: 4412
  • Powell J. R., Morrison J. F. The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli. Eur. J. Biochem. 1978; 87: 391
  • Powell J. T., Morrison J. F. Role of the Escherichia coli aromatic amino acid aminotransferase in leucine biosynthesis. J. Bacteriol 1978; 136: 1
  • Prakash O., Eisenberg M. A. In vitro synthesis and regulation of the biotin enzymes of Escherichia coli K-12. J. Bacteriol. 1978; 134: 1002
  • Puukka M., Lönnberg H., Nurmikko V. Regulation of branched-chain amino acid transaminase formation during the growth of Pseudomonas fluorescens UK-1. Acta Chem. Scand. 1972; 26: 1271
  • Ramakrishnan T., Adelberg E. A. Regulatory mechanisms in the biosynthesis of isoleucine and valine. II. Identification of two operator genes. J. Bacteriol. 1965; 89: 654
  • Rando R. R. Mechanisms of action of naturally occurring irreversible enzyme inhibitors. Ace. Chem. Res. 1975; 8: 281
  • Rao D. R., Hariharan K., Vijaylakshmi K. R. A study of the metabolism of L-αγ-diaminobutyric acid in a Xanthomonasspecies. Biochem. J. 1969; 114: 107
  • Rao D. R., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. I. α-Aminoadipic and glutamic acids. J. Biol. Chem. 1962; 237: 2232
  • Rechler M. M., Bruni C. Properties of a fused protein formed by genetic manipulation. J. Biol. Chem. 1971; 246: 1806
  • Reed D. E., Lukens L. N. Observations on the conversion of N-acetyl-glutamate to proline in extracts of Escherichia coli. J. Biol. Chem. 1966; 241: 264
  • Reitz M. S., Rodwell V. W. δ-Aminovaleramidase of Pseudomonasputida. J. Biol. Chem. 1970; 245: 3091
  • Riley M., Anilionis A. Evolution of the bacterial genome. Annu. Rev. Microbiol. 1978; 32: 519
  • Riley M., Solomon L., Zipkas D. Relationship between gene function and gene location in Escherichia coli. J. Mol. Evol. 1978; 11: 47
  • Rolfe B., Eisenberg M. A. Genetic and biochemical analysis of the biotin loci of Escherichia coli K-12. J. Bacteriol. 1968; 96: 515
  • Rosenqvist H., Kasula H., Reunanen O., Nurmikko V. The 4-aminobutyrate pathway and 2-oxo-glutarate dehydrogenase in Escherichia coli. Acta Chem. Scand. 1973; 27: 3091
  • Roth C. W., Nester E. W. Coordinate control of tryptophan, histidine, and tyrosine enzymes in Bacillus subtilis. J. Mol. Biol. 1971; 62: 577
  • Rubenstein P. A., Stominger J. L. Enzymatic synthesis of cytidine diphosphate 3, 6-dideoxyhexoses. J. Biol. Chem. 1974; 249: 3776
  • Rudman D., Meister A. Transamination in Escherichia coli. J. Biol. Chem. 1953; 200: 591
  • Ryan E., Bodley F., Fottrell P. F. Purification and characterization of aspartate aminotransferases from soybean root nodules and Rhizobium japonicum. Phytochemistry 1972; 11: 957
  • Ryan E., Fottrell P. F. Interactions between an unusual aspartate aminotransferase from Rhizobium japonicum and pyridoxal-5′-phosphate studied by affinity chromatography. FEBS Lett. 1972; 23: 73
  • Sanderson K. E., Hartman P. E. Linkagemap of Salmonella typhimurium. Microbiol. Rev. 1978; 42: 471
  • Scher W. I., Jr., Vogel H. J. Occurrence of ornithine d-transaminase: a dichotomy. Proc. Natl. Acad. Set. U.S.A. 1957; 43: 796
  • Schmidt L. S., Sojka G. A. Enzymes of serine biosynthesis in Rhodopseudomonas capsulata. Arch. Biochem. Biophys. 1973; 159: 475
  • Shimizu S., Dempsey W. B. 3-Hydroxypyruvate substitutes for pyridoxine in serC mutants of Escherichia K-12. J. Bacteriol. 1978; 134: 944
  • Silbert D. F., Jorgensen S. E., Lin E. C. C. Repression of transaminase A by tyrosine in Escherichia coli. Biochim. Biophys. Acta 1963; 73: 232
  • Soda K., Misono H., Yamato T. L-lysine-α-ketoglutarate aminotransferase. I. Identification of a product, d-piperdeine-6-carboxylic acid. Biochemistry 1968; 7: 4102
  • Soda K., Misono H., Yamato T. L-lysine-α-ketoglutatrate aminotransferase. 11. Purification, crystallization, and properties. Biochemistry 1968; 7: 4110
  • Sojka G. A., Garner H. R. The serine biosynthetic pathway in Neurospora crassa. Biochim. Biophys. Acta 1967; 148: 42
  • Soper T. S., Jones W. M., Lerner B., Trop M., Manning J. M. Inactivation of bacterial D-amino acid transaminase by β-chloro-D-alanine. J. Biol. Chem. 1977; 252: 3170
  • Soper T. S., Jones W. M., Lerner B., Trop M., Manning J. M. Inactivation of bacterial D-amino acid transaminases by the olefinic amino acid D-vinylglycine. J. Biol. Chem. 1977; 252: 1371
  • Speedie M. K., Hornemann U., Floss H. G. Isolation and characterization of tryptophan transaminase and indolepyruvate C-methyltransferase, enzymes involved in indolmycin biosynthesis in Streptomyces griseus. J. Biol. Chem. 1975; 250: 7819
  • Stadtman T. β-Lysine transaminase. Adv. Enzymol. 1973; 38: 437
  • Stenmark S. L., Pierson D. L., Jensen R. A. Blue-green bacteria synthesize L-tyrosine by the pretyrosine pathway. Nature (London) 1974; 247: 290
  • Stevens L., Heaton A. Induction, partial purification, and properties of ornithine transaminase from Aspergillus nidulans. Biochem. Soc. Trans. 1973; 1: 751
  • Stoner G. L., Eisenberg M. A. Purification and properties of 7, 8-diaminopelargonic acid aminotransferase. J. Biol. Chem. 1975; 250: 4029
  • Sudi J., Denes O. Mechanism of arginine biosynthesis in Chlamydomonas reinhardti. Biochim. Biophys. Acta 1967; 2: 291
  • Tachiki T., Tatsurokuro T. Further characterization of L-leucine-pyruvate transaminase from Acetbacter suboxydans. Biochim. Biophys. Acta 1975; 397: 342
  • Tachiki T., Moriguchi M., Tochikura T. Purification and some properties of L-leucine-pyruvate transaminase from Acetobacter suboxydans. Agric. Biol. Chem. 1975; 39: 43
  • Tanaka H., Toyama S., Tsukahara H., Soda K. Transamination of hypotaurine by taurine:α-keto-glutarateaminotransferase. FEBS Lett. 1974; 45: 111
  • Tani Y., Ukita M., Ogata K. Studies on vitamin B4 metabolism in microorganisms. Part X. Further purification and characterization of pyridoxamine 5′-phosphate-a-ketoglutarate transaminase from Clostridium kainantoi. Agric. Biol. Chem. 1972; 36: 181
  • Tate S. S., Meister A. Regulation and subunit structure of aspartate β-decarboxylase. Studies on the enzymes from Alcaligenes faecalis and Pseudomonas dacunhae. Biochemistry 1970; 9: 2626
  • Toyama S., Miyasato K., Yasuda M., Soda K. Occurrence of taurine-pyruvate aminotransferase in bacterial extract. Agric. Biol. Chem. 1973; 37: 2939
  • Turner J. M., Neuberger A. L-alanine:4, 5-dioxovalerate aminotransferase (Rhodopseudomonas spheroides). Methods Enzymol. 1970; 17: 188
  • Udaka S. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J. Bacteriol. 1966; 91: 617
  • Umbarger H. E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 1978; 47: 533
  • Umbarger H. E., Magasanik B. Isoleucine and valine metabolsim in Escherichia coli. IV. Competitive interactions in the transamination reactions of isoleucine and valine. J. Am. Chem. Soc. 1952; 74: 4256
  • Umbarger H. E., Mueller J. H. Isoleucine and valine metabolism of Escherichia coli. I. Growth studies on amino acid-deficient mutants. J. Biol. Chem. 1951; 189: 277
  • Urm E., Leisinger T., Vogel H. J. Magnesium sensitivity of L-aspartate: 2-oxoglutarate aminotransferase in Escherichia coli. Biochim. Biophys. Acta 1973; 302: 249
  • Voellmy R., Leisinger T. Dual role for N'-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J. Bacteriol. 1975; 122: 799
  • Voellmy R., Leisinger T. Involvement of 4-aminotransferase in arginine biosynthesis and putrescine catabolism of Pseudomonas aeruginosa. Experientia 1977; 33: 139
  • Voellmy R., Leisinger T. Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J. Bacteriol. 1976; 128: 722
  • Vogel H. J., Bacon D. F. Gene aggregation: evidence for a coming together of functionally related, not closely linked genes. Proc. Natl. Acad. Sci. U.S.A. 1966; 55: 1456
  • Vogel H. J., Bacon D. F., Baich A. Induction of acetylornithine d-transaminase during pathway-wide repression. Informational Macromolecules, H. J. Vogel, V. Bryson, J. O. Lampen. Academic Press, New York 1963; 293
  • Vogel H. J., Jones E. E. Acetylornithine δ-aminotransferase (Escherichia cold. Methods Enzymol. 1970; 17: 260
  • Vogel H. J., Vogel R. H. Enzymes of arginine biosynthesis and their repressive control. Adv. Enzymol. 1974; 40: 65
  • Wada H., Snell E. E. Enzymatic transamination of pyridoxamine. II. Crystalline pyridoxamine-pyruvate transaminase. J. Biol. Chem. 1962; 237: 133
  • Walker J. B. Biosynthesis of the monoguanidinate inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. J. Biol. Chem. 1974; 249: 2397
  • Wallace B. J., Pittard J. Regulator gene controlling enzymes concerned in tyrosine biosynthesis in E. coli. J. Bacteriol. 1969; 97: 1234
  • Ward B. J., Zahler S. A. Genetic studies on leucine biosynthesis in Bacillus subtilis. J. Bacteriol. 1973; 116: 719
  • Weigent D. A., Nester B. W. Purification and properties of two aromatic aminotransferases in Bacillus subtilis. J. Biol. Chem. 1976; 251: 6974
  • Weigent D. A., Nester E. W. Regulation of histidinol phosphate aminotransferase synthesis by tryptophan in Bacillus subtilis. J. Bacteriol. 1976; 128: 202
  • Wickramasinghe R. H. Repressible histidine transamination in Escherichia coli and its retroinhibition. Enzymologica 1969; 37: 91
  • Wightman F., Forest J. C. Properties of plant aminotransferases. Phytochemistry 1978; 17: 1455
  • Wixom R. L., Heinemann M. A., Semeraro F. J., Joseph A. A. Studies in valine biosynthesis. IX. The enzymes in photosynthetic and autotrophic bacteria. Biochim. Biophys. Acta 1971; 50: 532
  • Wozny M. E., Carnevale H. N., Jones E. E. Alteration of regulation of arginine biosynthesis in Escherichia coli W by mutation to rifampin resistance. Biochim. Biophys. Acta 1975; 383: 106
  • Wozny M. E., Wetyer F. W., Jones E. E. Inhibition of transcription and translation of arginine-induced and rifampin-induced acetylornithine d-transaminase of Escherichia coli. Arch. Biochem. Biophys. 1973; 159: 224
  • Yagi T., Toyosato M., Soda K. Crystalline aspartate aminotransferase from Pseudomonas striata. FEBS Lett. 1975; 61: 34
  • Yamada T., Araya S. The role of transamination in ammonium assimilation in Streptococcus sanguis. Arch. Oral Biol. 1975; 20: 445
  • Yonaha K., Toyama S., Yasuda M., Soda K. Properties of crystalline ω-amino acid: pyruvate aminotransferase of Pseudomonas sp. F-126. Agric. Biol. Chem. 1977; 41: 1701
  • Yonaha K., Toyama S., Yasuda M., Soda K. Purification and crystallization of bacteriol ω-amino acid-pyruvate aminotransferase. FEBS Lett. 1976; 71: 21
  • Yorifuji T. Arginine racemase of Pseudomonas graveolcns. J. Biol. Chem. 1971; 246: 5093
  • Yorifuji T., Misono H., Soda K. Arginine racemase of Pseudomonas graveolens. II. Racemization and transamination of catalyzed by arginine racemase. J. Biol. Chem. 1971; 246: 5093
  • Young F. E., Wilson O. A. Genetics of Bacillus subtilis and other Gram-Positive Sporulating Bacilli, Spores V. American Society for Microbiology, Ann Arbor 1972; 77
  • Zipkas D., Riley M. Proposal concerning mechanism of evolution of the genome of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 1354
  • Aalestad H. O., Larson A. D. Bacterial metabolism of 2-methylalanine. J. Bacteriol. 1964; 88: 1296
  • Adams C. W., Lawther R. P., Hatfield O. W. The ilvEDA operon of Escherichia coli K-12 encodes only one valine-α-ketoglutanate transaminase activity. Biochem. Biophys. Res. Commun. 1979; 89: 650
  • Adelberg E. A., Umbarger H. E. Isoleucine and valine metabolism in Escherichia coli. J. Biol. Chem. 1953; 205: 475
  • Albritton W. L., Levin A. P. Histidine-2-oxoglutarate aminotransferase activity in Salmonella typhimurium. Biochem. J. 1969; 114: 662
  • Albritton W. L., Levin A. P. Some comparative kinetic data on the enzyme imidazoleacetol phosphate:L-glutamate aminotransferase derived from mutant strains of Salmonella typhimurium. J. Biol. Chem. 1970; 245: 2525
  • Araki K., Nakayama K. A biochemical characterization of histidine auxotrophs of Corynebacterium glutamicum. Agric. Biol. Chem. 1974; 38: 2219
  • Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 1976; 40: 116
  • Bailey O. B., Chotamangsa O., Vuttivej K. Control of pyridoxal phosphate enzyme reaction studied with α-dialkylamino acid transaminase. Biochemistry 1970; 9: 3243
  • Bailey O. B., Dempsey W. B. Purification and properties of an α-diaikyl amino acid transaminase. Biochemistry 1967; 6: 1526
  • Basso L. V., Rao D. R., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. II. Δ1-Piperideine-6-carboxylic acid and α-aminoadipic acid δ-semialdehyde. J. Biol. Chem. 1962; 237: 2239
  • Bellion E., Hersh L. B. Methylamine metabolism in a Pseudomonas species. Arch. Biochem. Biophys. 1972; 153: 368
  • Billheirner J. T., Jones E. E. Inducible and repressible acetylornithine δ-transaminase in Escherichia coli: different proteins. Arch. Biochem. Biophys. 1974; 161: 647
  • Bode R., Birnbaum D. Die enzyme der biosynthese aromatisher aminoüuren bei Hansenula Aenricii: die aminotransferasen. Biochem. Physiol. Pflan. 1978; 173: 44
  • Brohn F., Tchen T. T. A single transaminase for 1, 4-diaminobutane and 4-aminobutyrate in a Pseudomonasspecies. Biochem. Biophys. Res. Commun. 1971; 45: 578
  • Broman K., Lauwers N., Stalon V., Wiame J. M. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses. J. Bacteriol. 1978; 135: 920
  • Bukhari A. I., Taylor A. Genetic analysis of diaminopimelic acid-and lysine-requiring mutants of Escherichia coli. J. Bacteriol. 1971; 105: 844
  • Calhoun D. H., Pierson D. L., Jensen R. A. Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa. J. Bacteriol. 1973; 113: 241
  • Calhoun D. H., Jensen R. A. Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa. J. Bacteriol. 1972; 109: 365
  • Chang Y., Adams E. Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida. Biochem. Biophys. Res. Commun. 1971; 45: 570
  • Chang Y. F., Adams E. D-lysine catabolic pathway in Pseduomonas putida: interrelations with L-lysine catabolism. J. Bacteriol. 1974; 117: 753
  • Chapman L. F., Nester E. W. Common element in the repression control of enzymes of histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 1968; 96: 1658
  • Chesne S., Pelraont J. Glutamate-oxaloacetate transaminase d'Escherichia coli. I. Purification et specificite. Biochimie 1973; 55: 237
  • Chesne S., Montmitonnet A., Pelmont J. Transamination du L-aspartate et de la L-phenylalanine chez Escherichia coliK-12. Biochimie 1975; 57: 1029
  • Collins M., Wagner R. P. Branched-chain ami no-acid aminotransferases of Neurospora crassa. Arch. Biochem. Biophys. 1973; 155: 184
  • Coote J. F. M., Hassall H. The control of the enzymes degrading histidine and related imidazolyl derivatives in Pseudomonas lestosteroni. Biochem. J. 1973; 132: 423
  • Coote J. G., Hassall H. The degradation of L-histidine, imidazolyl-L-acetate and imidazolypropionate by Pseudomonas testosteroni. Biochem. J. 1973; 136: 1959
  • Dempsey W. B. 3-Phosphoserine transaminase mutants of Escherichia coli B. J. Bacteriol. 1969; 100: 114
  • Dempsey W. B., Sims K. R. Isoleucine and threonine can prolong protein and ribonucleic acid synthesis in pyridoxine-starved mutants of Escherichia coli B. J. Bacteriol. 1972; 112: 726
  • DeRobichon-Szulmajster H., Surdin Y., Mortimer R. K. Genetic and biochemical studies of genes controlling the synthesis of threonine and methionine in Saccharomyes. Genetics 1966; 53: 609
  • Dover S., Halpern Y. S. Control of the pathway of γ-aminobutyrate breakdown in Escherichia coli K-12. J. Bacteriol. 1972; 110: 165
  • Dover S., Halpern Y. S. Genetic analysis of the γ-aminobutyric utilization pathway in Escherichia co/j'K-12. J. Bacteriol. 1974; 117: 494
  • Dunathan H. C., Voet J. G. Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 3888
  • Eisenberg M. A., Stoner G. L. Biosynthesis of 7, 8-diaminopelargonic acid, a biotin intermediate, from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine. J. Bacteriol. 1971; 108: 1135
  • Fahien L. A., Ruoho A. E., Kmiotek E. A study of glutamate dehydrogenase aminotransferase complexes with a Afunctional imidate. J. Biol. Chem. 1978; 253: 5745
  • Falkinham J. O. III. Escherichia coli K-12 mutant with alternate requirements for vitamin B., or branched-chain amino acids and lacking transaminase C activity. J. Bacteriol. 1977; 130: 566
  • Fazel A. M., Jensen R. A. Aromatic aminotransferase in species of coryneform bacteria. J. Bacteriol. 1979; 140: 580
  • Fazel A. M., Jensen R. A. Obligatory biosynthesis of L-tyrosine via the pretyrosine branchlet in coryneform bacteria. J. Bacteriol. 1979; 138: 805
  • Feldman L. I., Gunsalus I. C. The occurrence of a wide variety of transaminases in bacteria. J. Biol. Chem. 1950; 187: 821
  • Friede J. D., Henderson L. M. Metabolism of 5-hydroxylysine in Pseudomonas fluorescens. J. Bacteriol. 1976; 127: 1239
  • Garrick-Silversmith L., Hartman P. E. Histidine-requiring mutants of Escherichia coli K-12. Genetics 1970; 55: 231
  • Gelfand D. H., Rudo N. Mapping of the aspartate and aromatic amino acid aminotransferase genes tyr Band asp C. J. Bacteriol. 1977; 130: 441
  • Gelfand D. H., Steinberg R. A. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J. Bacteriol. 1977; 130: 429
  • Glansdoff N., Sand G., Verhoef C. The dual control of ornithine transcarbamylase synthesis in Escherichia coli K-12. Mutat. Res., A 1967; 743
  • Goldschmidt E. P., Cater M. S., Matney T. S., Butler M. A., Greene A. Genetic analysis of this histidine operon in Escherichia coli K-12. Genetics 1970; 66: 219
  • Guardiola J. Requirement of the newly recognized ilv J gene for the expression of a valine transaminase activity in E. coli K-12. Mol. Gen. Genet. 1977; 158: 157
  • Hacking A. J., Hassall H. The purification and properties of L-histine-2-oxoglutarate aminotransferase from Pseudomonas testosteroni. Biochemistry 1975; 147: 327
  • Halvorson G. Utilization of single L-amino acids as sole source of carbon and nitrogen by bacteria. Can. J. Microbiol. 1972; 18: 1647
  • Harder W., Quayle J. R. Aspects of glycine and serine biosynthesis during growth of Pseudomonas AMI on C1 compounds. Biochem. J. 1971; 121: 763
  • Harder W., Quayle J. R. The biosynthesis of serine and glycine in Pseudomonas AMI with special reference to growth on carbon sources other than C, compounds. Biochem. J. 1971; 121: 753
  • Harwood C. R., Baumberg S. Arginine hydroxamate resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J. Gen. Microbiol. 1977; 100: 177
  • Hayaishi O., Nishizuka Y., Tatibana M., Takeshita M., Kuno S. Enzymatic studies on the metabolism of β-alanine. J. Biol. Chem. 1961; 236: 781
  • Hegeman G. S., Rosenberg S. L. The evolution of bacterial enzyme systems. Annu. Rev. Microbiol. 1970; 24: 429
  • Hoch J. A., Nester E. W. Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis. J. Bacteriol. 1973; 116: 59
  • Honma M., Ikeda M., Shimonura T. Aminotransferase activity of α-aminoisobutyric acid decomposing enzyme. Agric. Biol. Chem. 1972; 36: 1661
  • Hopwood D. A. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol. Rev. 1967; 31: 373
  • Ichihara A., Furiya S., Suda M. Metabolism of L-lysine by bacterial enzymes. III. Lysine racemase. J. Biochem. 1960; 48: 277
  • Iijima T., Diesterhaft M. D., Freese E. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J. Bacteriol. 1977; 129: 1440
  • Izumi Y., Sato K., Tani Y., Ogata K. 7, 8-Diaminopelargonic acid aminotransferase, an enzyme involved in biotin biosynthesis by microorganisms. Agric. Biol. Chem. 1975; 39: 175
  • Jakoby W. B. Enzymes of γ-aminobutyrate metabolism (bacterial). Methods Enzymol. 1962; 5: 765
  • Jensen R. A. Enzyme recruitment in evolution of new function, Annu. Rev. Microbiol. 1976; 30: 409
  • Jensen R. A., Pierson D. L. Evolutionary implications of different types of microbial enzymology for L-tyrosine biosynthesis. Nature (London) 1975; 254: 667
  • Jensen R. A., Stenmark S. L. The ancient origin of a second microbial pathway for L-tyrosine biosynthesis in prokaryotes. J. Mol. Evol. 1975; 4: 249
  • Jensen R. A., Zamir L., St Pierre M., Patel N., Pierson D. L. Isolation and preparation of pretyrosine, accumulated as a dead-end metabolite by Neurospora crassa. J. Bacteriol. 1977; 132: 896
  • Jones A., Francis M. M., Vining L. C., Westlake D. W. S. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Properties of an aminotransferase accepting p-aminophenylalanine as a substrate. Can. J. Microbiol. 1978; 24: 238
  • Kaper J. M., Veldstra H. On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochim. Biophys. Acta 1958; 30: 401
  • Karlin J. N., Bowman B. J., Davis R. H. Compartmental behavior of ornithine in Neurospora crassa. J. Biol. Chem. 1976; 251: 3948
  • Kikuchi A., Gorini L. Similarity of genes argF and argI. Nature (London) 1975; 256: 621
  • Kim K. Purification and properties of a diamine-α-ketoglutarate transaminase from Escherichia coli. J. Biol. Chem. 1964; 239: 783
  • Kiritani K. Mutants deficient or altered in branched-chain amino-acid aminotransferase in Salmonella typhimurium. Jpn. J. Genetics 1972; 47: 91
  • Koo P. H., Adams E. α-Ketoglutaric semialdehyde dehydrogenase of Pseudomonas. J. Biol. Chem. 1974; 249: 1704
  • Kosuge T., Heskett M. G., Wilson E. E. Microbial synthesis of and degradation of indole-3-aceticacid. J. Biol. Chem. 1966; 241: 3738
  • LaNauze J. M., Rosenberg H. The identification of 2-phosphonoacetaldehyde as an intermediate in the degradation of 2-aminoethylphosphonate by Bacillus cereus. Biochim. Biophys. Acta 1968; 163: 438
  • Lee-Peng F.-C., Hermodson M. A., Kohlhaw O. B. Transaminase B from Escherichia coli: quaternary structure, amino-lerminal sequence, substrate specificity, and absence of a separate va-line-α-ketoglutarate activity. J. Bacterid. 1979; 139: 339
  • Lewis E. B. Pseudoallelism and gene evolution. Cold Spring Harbor Symp. Quant. Biol. 1951; 16: 1S9
  • Loginova N. V., Trotsenko Yu. A. Enzymes of the methanol and methylamine metabolism in Pseudomonas methylica. Mikrobiologija 1974; 43: 979
  • Magasanik B. Regulation of bacterial nitrogen assimilation by glutamine synthetase. Trends Biomed. Sci. 1977; 2: 9
  • Marinus M. O., Loutit J. S. Regulation of isoleucine-valine biosynthesis in Pseudomonas aeruginosa. I. Characterization and mapping of mutants. Genetics 1969; 63: 547
  • Marshall V. D., Sokatch J. R. Regulation of valine catabolism in Pseudomonas putida. J. Bacteriol. 1972; 110: 1073
  • Martin R. O., Voll M., Appella E. Imidazolyacetolphosphate:L-glutamate aminotransferase. J. Biol. Chem. 1967; 242: 1175
  • Martin R. R., Marshall V. D., Sokatch J. R., Unger L. Common enzymes of branched-chain amino-acid catabolism in Pseudomonas putida. J. Bacteriol. 1973; 115: 198
  • Martinez-Carrion M., Jenkins W. T. D-Alanine-D-glutamate aminotransferase. I. Purification and characterization. J. Biol. Chem. 1965; 240: 3538
  • Massay L. K., Sokatch J. R., Conrad R. S. Branched-chain amino-acid catabolism in bacteria. Bacteriol. Rev. 1976; 40: 42
  • Matchett W. H. The utilization of tryptophan by Neurospora. Biochim. Biophys. Acta 1965; 107: 222
  • Matsuda M., Ogur M. Separation and specificity of the yeast glutamate-α-ketoadipate transaminase. J. Biol. Chem. 1969; 244: 3352
  • Matsuhashi M., Strominger J. L. Thymidine diphosphate 4-acetamido-4, 6-dideoxyhexoses. J. Biol. Chem. 1966; 241: 4738
  • Mavrides C., Comerton M. Aminotransferases for aromatic amino acids and aspartate in Bacillus subtilis. Biochim. Biophys. Acta 1978; 524: 60
  • McGilvrary D., Umbarger H. E. Regulation of transaminase C synthesis in Escherichia coli: conditional leucine auxotrophy. J. Bacteriol. 1974; 120: 715
  • Metzer E., Levitz R., Halpern Y. S. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of γ-aminobutyrate. J. Bacteriol. 1979; 137: 1111
  • Michaels R., Kim K. Comparative studies of putrescine degradation by microorganisms. Biochim. Biophys, Acta. 1966; 115: 59
  • Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida, intermediates in L-arginine catabolism. J. Biol. Chem. 1971; 246: 5053
  • Monnier N., Montmitonnet A., Chesne S., Pelmont J. Transaminase B d'Escherichia coli. I. Purification et premieres properietes. Biochimie 1976; 58: 663
  • Moriguchi M., Soda K. Transamination reaction catalyzed by kynureninase and control of the enzyme activity. Biochemistry 1973; 12: 2974
  • Moriguchi M., Yamamoto T., Soda K. Properties of crystalline kynureninase from Pseudomonas marginalis. Biochemistry 1973; 12: 2969
  • Munkres K. D. Allosteric and multifunctional properties of Neurospora mitochondrial malate dehydrogenase. Biochim. Biophys. Acta 1970; 220: 149
  • Munkres K. D. Physicochemical identity of Neurospora malate dehydrogenase and aspartate aminotransferase. Arch. Biochem. Biophys. 1965; 112: 347
  • Munkres K. D. Simultaneous genetic alteration of Neurospora malate dehydrogenase and aspartate aminotransferase. Arch. Biochem. Biophys. 1965; 112: 340
  • Munkres K. D. Structure of Neurospora malate dehydrogenase. II. Isolation and partial characterization of polypeptide subunits. Biochemistry 1965; 4: 2186
  • Nagasaki T., Sugita M., Fukawa H. Studies on DOPA transaminase of Alcaligenes faecalis. Agric. Biol. Chem. 1973; 37: 1701
  • Nakano T., Tokunaga H., Kitaoka S. Two ω-amino acid transaminases from Bacillus cereus. J. Biochem. 1977; 81: 1375
  • Nester E. W., Dale B., Montoya A., Void B. Cross pathway regulation of tyrosine and histidine synthesis in Bacillus subtilis. Biochim. Biophys., Acta 1974; 361: 59
  • Nester E. W., Montoya A. L. An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 1976; 126: 699
  • Neuberger A., Turner J. M. γ, δ-dioxovalerate aminotransferase activity in Rhodopseudomonas spheroides. Biochim. Biophys. Acta 1963; 67: 342
  • Novogrodsky A., Nishimura J. S., Meister A. Transamination and β-decarboxylation of aspartate catalyzed by the same pyridoxal-phosphate enzyme. J. Biol. Chem. 1963; 238: PC1903
  • O'Neil S. R., DeMoss R. D. Tryptophan transaminase from Clostridium sporogenes. Arch. Biochem. Biophys. 1968; 127: 361
  • Pai C. H. Biosynthesis of biotin: synthesis of 7, 8-diaminopelargonic acid in cell-free extracts of Escherichia coli. J. Bacteriol. 1971; 105: 793
  • Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J. Biol. Chem. 1977; 252: 5839
  • Patel N., Stenmark-Cox S. L., Jensen R. A. Enzymological basis of reluctant auxotrophy for phenylalanine and tyrosine in Pseudomonas aeruginosa. J. Biol. Chem. 1978; 253: 2972
  • Peterkofsky B., Gilvarg C. N-auccinyl-L-diaminopimelic-glutamic transaminase. J. Biol. Chem. 1961; 236: 1432
  • Phillips A. T., Nuss J. I., Moosic J., Foshay C. Alternate pathway for isoleucine biosynthesis in Escherichia coli. J. Bacteriol. 1972; 109: 714
  • Pierson D. L., Jensen R. A. Metabolic interlock: control of an interconvertible prephenate dehydratase by hydrophobic amino acids in Bacillus subtilis. J. Mol. Biol. 1974; 90: 563
  • Powell J. T., Morrison J. F. Role of the Escherichia coli aromatic amino acid aminotransferase in leucine biosynthesis. J. Bacteriol 1978; 136: 1
  • Puukka M., Lönnberg H., Nurmikko V. Regulation of branched-chain amino acid transaminase formation during the growth of Pseudomonas fluorescensUK-1. Acfa Chem. Scand. 1972; 26: 1271
  • Ramakrishnan T., Adelberg E. A. Regulatory mechanisms in the biosynthesis of isoleucine and valine. II. Identification of two operator genes. J. Bacteriol. 1965; 89: 654
  • Rao D. R., Hariharan K., Vijaylakshmi K. R. A study of the metabolism of L-αγ-diamino-butyric acid in a Xanthomonasspecies. Biochem. J. 1969; 114: 107
  • Reed D. E., Lukens L. N. Observations on the conversion of N-acetyl-glutamate to proline in extracts of Escherichia coli. J. Biol. Chem. 1966; 241: 264
  • Riley M., Anilionis A. Evolution of the bacterial genome. Annu. Rev. Microbiol. 1978; 32: 519
  • Riley M., Solomon L., Zipkas D. Relationship between gene function and gene location in Escherichia coli. J. Mol. Evol. 1978; 11: 47
  • Rolfe B., Eisenberg M. A. Genetic and biochemical analysis of the biotin loci of Escherichia coli K-12. J. Bacteriol. 1968; 96: 515
  • Rudman D., Meister A. Transamination in Escherichia coli. J, Biol. Chem. 1953; 200: 591
  • Ryan E., Bodley F., Fottrell P. F. Purification and characterization of aspartate aminotransferases from soybean root nodules and Rhizobium japonicum. Phytochemistry 1972; 11: 957
  • Ryan E., Fottrell P. F. Interactions between an unusual aspartate aminotransferase from Rhizobium japonicum and pyridoxal-5′phosphate studied by affinity chromatography. FEBS Lett. 1972; 23: 73
  • Schmidt L. S., Sojka G. A. Enzymes of serine biosynthesis in Rhodopseudomonas capsulata. Arch. Biochem. Biophys. 1973; 159: 475
  • Shimizu S., Dempsey W. B. 3-Hydroxypyruvate substitutes for pyridoxine in serC mutants of Escherichia K-12. J. Bacteriol. 1978; 134: 944
  • Soda K., Misono H., Yamato T. L-Lysine-α-ketoglutarate aminotransferase. I. Identification of a product, Δ1-piperdeine-6-carboxyIic acid. Biochemistry 1968; 7: 4102
  • Soda K., Misono H., Yamato T. L-Lysine-α-ketoglutrate aminotransferase. II. Purification, crystallization, and properties. Biochemistry 1968; 7: 4110
  • Sojka G. A., Garner H. R. The serine biosynthetic pathway in Neurospora crassa. Biochim. Biophys. Acta 1967; 148: 42
  • Speedie M. K., Hornemann U., Floss H. G. Isolation and characterization of tryptophan transaminase and indolepyruvate C-methyltransferase, enzymes involved in indolmycin biosynthesis in Streptomyces griseus. J. Biol. Chem. 1975; 250: 7819
  • Stevens L., Heaton A. Induction, partial purification, and properties of ornithine transaminase from Aspergillus nidulans. Biochem. Soc. Trans. 1973; 1: 751
  • Stoner G. L., Eisenberg M. A. Purification and properties of 7, 8-diaminopelargonic acid aminotransferase. J. Biol. Chem. 1975; 250: 4029
  • Tachild T., Tatsurokuro T. Further characterization of L-leucine-pyruvate transaminase from Acetobacter soboxydans. Biochim. Biophys. Acta 1975; 397: 342
  • Tanaka H., Toyama S., Tsukahara H., Soda K. Transamination of hypotaurine by taurine:α-ketoglutarate aminotransferase. FEBS Lett. 1974; 45: 111
  • Tani V., Ukita M., Ogata K. Studies on vitamin B, metabolism in microorganisms. Part X. Further purification and characterization of pyridoxamine 5′-phosphate-α-ketoglutarate transaminase from Clostridium kainantoi. Agric. Biol. Chem. 1972; 36: 181
  • Tate S. S., Meister A. Regulation and subunit structure of aspartate β-decarboxylase. Studies on the enzymes from Alcaligenes faecalis and Pseudomonas daconhae. Biochemistry 1970; 9: 2626
  • Toyama S., Miyasato K., Yasuda M., Soda K. Occurrence of taurine-pyruvate aminotransferase in bacterial extract. Agric. Biol. Chem. 1973; 37: 2939
  • Turner J. M., Neuberger A. L-alanine:4, 5-dioxovalerate aminotransferase (Rhodopseudomonas spheroides.). Methods Enzymol 1970; 17: 188
  • Umbarger H. E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 1978; 47: 533
  • Umbarger H. E., Magasanik B. Isoleucine and valine metabolism in Escherichia coli. IV. Competitive interactions in the transamination reactions of isoleucine and valine. J. Am. Chem. Soc 1952; 74: 4256
  • Umbarger H. E., Mueller H. J. Isoleucine and valine metabolism of Escherichia coli. I. Growth studies on amino acid-deficient mutants. J. Biol. Chem. 1951; 189: 277
  • Voellmy R., Leisinger T. Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J. Bacteriol. 1976; 128: 722
  • Vogel H. J., Bacon D. F. Gene aggregation: evidence for a coming together of functionally related, not closely linked genes. Proc., Natl. Acad. Sci. U.S.A. 1966; 55: 1456
  • Vogel H. J., Bacon D. F., Baich A. Induction of acetylornithine d-transaminase during pathway-wide repression. Informational Macromolecules, H. J. Vogel, V. Bryson, J. O. Lampen. Academic Press, New York 1963; 293
  • Walker J. B. Biosynthesis of the monoguanidinate inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. J. Biol. Chem. 1974; 249: 2397
  • Ward B. J., Zahler S. A. Genetic studies on leucine biosynthesis in Bacillus subtilis. J. Bacteriol. 1973; 116: 719
  • Weigent D. A., Nester E. W. Purification and properties of two aromatic aminotransferases in Bacillus subtilis. J. Biol. Chem. 1976; 251: 6974
  • Weigent D. A., Nester E. W. Regulation of histidinol phosphate aminotransferase synthesis by tryptophan in Bacillus subtilis. J. Bacteriol. 1976; 128: 202
  • Yonaha K., Toyama S., Yasuda M., Soda K. Properties of crystalline a-amino acid: pyruvate aminotransferase of Pseudomonassp. F-126. Agric. Biol. Chem. 1977; 41: 1701
  • Yorifuji T. Arginine racemase of Pseudomonas graveolens. J. Biol. Chem. 1971; 246: 5093
  • Yorifuji T., Misono H., Soda K. Arginine racemase of Pseudomonas graveolens. II. Racemization and transamination of catalyzed by arginine racemase. J. Biol. Chem. 1971; 246: 5093
  • Zipkas D., Riley M. Proposal concerning mechanism of evolution of the genome of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 1354
  • Falkenham J. O. 1979, III, personal communication
  • Calhoun D. H. 1979, unpublished observations
  • Solomon L., Riley M. 1979, personal communication
  • Brown M. A., DeFuria E., Bowen J. A., Jensen R. A. 1979, unpublished material

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.