64
Views
55
CrossRef citations to date
0
Altmetric
Research Article

Microbial Ecology and Activities in the Rumen: Part II

, &
Pages 253-320 | Published online: 25 Sep 2008

References

  • Phillipson A. T. The role of the microflora of the alimentary tract of herbivores with special reference to ruminants. 3. Fermentation in the alimentary tract and metabolism of the derived fatty acids. Nutr. Abstr. Rev. 1947; 17: 12
  • Elsden S. R., Hitchcock M. W. S., Marshall R. A., Phillipson A. T. Volatile acids in the digesta of ruminants and other animals. J. Exp. Biol. 1945; 22: 191
  • Hungate R. E. The Rumen and Its Microbes. Academic Press, New York 1966
  • Hobson P. N., Howard B. H. Microbial transformation, chap. 3. Handbueh der Tierernahrung. Erster Band, Paul Parey, Hamburg 1969
  • Hobson P. N. Rumen microbiology. Prog. Ind. Microbiol. 1971; 9: 41
  • Hobson P. N., Bousfield S., Summers R. The anaerobic digestion of organic matter. Crit. Rev. Environ. Control 1974; 4: 131
  • Bryant M. P. Microbiology of the rumen. Duke's Physiology of Domestic Animals9th ed., M. J. Stevenson. Cornell University Press, Ithaca, N.Y. 1977
  • Bauchop T. Stomach microbiology of primates. Ann. Rev. Microbiol. 1971; 25: 429
  • McRae J. C. The use of intestinal markers to measure digestive function in ruminants. Proc. Nutr. Soc. 1974; 33: 147
  • Corbett J. L., Greenhalgh J. F. D., McDonald J., Florence E. Excretion of chromium sesquioxide administered as a component of paper to sheep. Br. J. Nutr. 1960; 14: 289
  • Faichney G. J. Measurement in sheep of the quantity and composition of rumen digesta and of the fractional outflow rates of digesta constituents. Aust. J. Agric. Res. 1980; 31: 1129
  • Hobson P. N. Physiological characteristics of rumen microbes and relation to diet and fermentation patterns. Proc. Nutr. Soc. 1972; 31: 135
  • Hobson P. N., Mann S. O., Summers R. Rumen microorganisms in Red deer, hill sheep, and reindeer in the Scottish Highlands. Proc. R. Soc. Edinburgh (B) 1975/76; 75: 171
  • Sutherland T. M., Ellis W. C., Reid R. S., Murray M. G. A method for circulating and sampling the rumen contents of sheep fed on ground, pelleted foods. Br. J. Nutr. 1962; 16: 603
  • Minato H., Endo A., Higushi M., Ootomo Y., Uemura T. Ecological treatise on the rumen fermentation. 1. The fractionation of bacteria attached to the rumen digesta solids. J. Gen. Appl. Microbiol. 1966; 12: 39
  • Bryant M. P., Burkey L. A. Numbers and some predominant groups of bacteria in the rumen of cows fed different rations. J. Dairy Sci. 1953; 36: 218
  • Eadie J. M., Hobson P. N. Effect of the presence or absence of rumen ciliate protozoa on the total rumen bacterial count in lambs. Nature (London). 1962; 193: 503
  • Warner A. C. I. Enumeration of rumen microorganisms. J. Gen. Microbiol. 1962; 28: 119
  • Hobson P. N., Mann S. O. Applications of the Coulter Counter in microbiology. Automation, Mechanization and Data-handling in Microbiology, A. Baillie, R. J. Gilbert. Academic Press, New York 1970; 91
  • Boyne A. W., Eadie J. M., Raitt K. The development and testing of a method for counting rumen ciliate protozoa. J. Gen. Microbiol. 1957; 17: 414
  • Kurihara Y., Eadie J. M., Hobson P. N., Mann S. O. Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol. 1968; 51: 267
  • Gutierrez J. Experiments on the culture and physiology of holotrichs from the bovine rumen. Biochem. J. 1955; 60: 516
  • Eadie J. M., Hyldgaard-Jensen J., Mann S. O., Reid R. S., Whitelaw F. C. Observations on the microbiology and biochemistry of the rumen in cattle given different quantities of a pelleted barley ration. Br. J. Nutr. 1970; 24: 157
  • Leedle J. A., Hespell R. B. Differential carbohydrate media and anaerobic replica-plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl. Environ. Microbiol. 1980; 39: 709
  • Hungate R. E. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 1950; 14: 1
  • Hungate R. E. A roll-tube method for cultivation of strict anaerobes. Methods in Microbiology, J. R. Norris, D. W. Ribbons. Academic Press, New York 1969; 3B: 117
  • Smith P. H., Hungate R. E. Isolation and characterization of Methanobacterium ruminantium n sp. J. Bacteriol. 1958; 75: 713
  • Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: re-evaluation of a unique biological group. Microbiol. Rev. 1979; 43: 260
  • Draser B. S. Cultivation of anaerobic intestinal bacteria. J. Pathol. Bacteriol. 1967; 94: 417
  • Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl. Microbiol. 1966; 14: 794
  • Zehnder A. J. B., Wuhrmann K. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 1976; 194: 1165
  • Jones G. A., Pickard M. D. Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria. Appl. Environ. Microbiol. 1980; 39: 1144
  • Brock T. D., O'Dea K. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl. Environ. Microbiol. 1977; 33: 254
  • Hume I. D., Moir R. J., Somers M. Synthesis of microbial protein in the rumen. I. Influence of the level of nitrogen intake. Aust. J. Agric. Res. 1970; 21: 283
  • McDonald I. W. The extent of conversion of food protein to microbial protein in the sheep. Biochem. J. 1954; 56: 120
  • Blackburn T. H., Hobson P. N. The degradation of protein in the sheep and redistribution of the protein nitrogen after feeding. Br. J. Nutr. 1960; 14: 445
  • Work E. A new naturally occurring amino acid. Biochem. J. 1950; 46: V
  • Work E., Dewey D. L. The distribution of α, 2,6,diaminopimelic acid among various microorganisms. J. Gen. Microbiol. 1953; 9: 394
  • Synge R. L. M. Note on the occurrence of diaminopimelic acid in some intestinal microorganisms from farm animals. J. Gen. Microbiol. 1953; 9: 407
  • Weller R. A., Gray F. V., Pilgrim A. F. The conversion of plant nitrogen to microbial nitrogen in the rumen of sheep. Br. J. Nutr. 1958; 12: 421
  • Horiguchi M., Kandatsu M. Ciliatine: a new aminophosphonic acid contained in rumen ciliate protozoa. Bull. Agric. Chem. Soc. Jpn. 1960; 24: 565
  • Ibrahim E. A., Ingalls J. R. Microbial protein biosynthesis in the rumen. J. Dairy Sci. 1972; 55: 971
  • Czerkawski J. W. Methods for determining 2,6,diaminopimelic acid and 2-aminoethylphosphonic acid in gut contents. J. Sci. Food Agric. 1974; 25: 45
  • Ling J. R., Buttery P. J. The simultaneous use of ribonucleic acid, 35S, 2–6 diaminopimelic acid and 2-aminoethylphosphonic acid as markers of microbial nitrogen entering the duodenum of sheep. Br. J. Nutr. 1978; 39: 165
  • Gausseres B., Fauconneau G. Evaluation quantitative, a l'aide de la teneur en acides nucleiques de la population microbienne du tube digestif des ruminants. I. Annates de Biologie animate. Biochim. Biophys. 1965; 5: 5
  • Smith R. H. Nitrogen metabolism and the rumen. J. Dairy Res. 1969; 36: 313
  • Smith R. H., McAllan A. B. Nucleic acid metabolism in the ruminant. 2. Formation of microbial nucleic acids in the rumen in relation to the digestion of food nitrogen and the fate of dietary nucleic acids. Br. J. Nutr. 1970; 24: 545
  • Smith R. H., McAllan A. B. Nucleic acid metabolism in the ruminant. 3. Amounts of nucleic acids and total and ammonia nitrogen in digesta from the rumen, duodenum, and ileum of calves. Br. J. Nutr. 1971; 25: 181
  • Tempest D. W., Dicks J. W. Interrelationships between potassium, magnesium, phosphorus, and ribonucleic acid in the growth of Aerobacter aerogenes in a chemostat. Microbial Physiology and Continuous Culture, E. O. Powell, et al. Her Majesty's Stationery Office, London 1967; 140
  • Wolstrup J., Jensen K. Adenosine triphosphate and deoxyribonucleic acid in the alimentary tract of cattle fed different nitrogen sources. J. Appl. Bacteriol. 1978; 45: 49
  • Slyter L. L., Nelson W. O., Wolin M. J. Modifications of a device for maintenance of the rumen microbial population in continuous culture. Appl. Microbiol. 1964; 12: 374
  • Evans R. A., Axford R. F. E., Offer N. W. A method for estimating the quantities of microbial and dietary proteins flowing in the duodenal digesta of ruminants. Proc. Nutr. Soc. 1975; 34: 65A
  • Temler-Kucharski A., Gausseres B. Evaluation quantitative, a l'aide de la teneur en acides nucleiques de la population microbienne du tube digestif des ruminants. 2. Annales de biologie animate. Biochim. Biophys. 1965; 5: 207
  • Ely D. G., Little C. O., Woolfolk P. G., Mitchell G. E. Estimation of the extent of conversion of dietary zein to microbial protein in the rumen of lambs. Br. J. Nutr. 1967; 91: 314
  • Henderickx H. The incorporation of sulfate in the ruminal proteins. Arch. Int. Physiol. Biochim. 1961; 69: 449
  • Emery R. S., Smith C. K., Huffman C. F. Utilization of inorganic sulfate by rumen microorganisms, 1. Incorporation of inorganic sulfate into amino acids. Appl. Microbiol., 5, 1957; 360
  • Walker D. J., Nader C. J. Method for measuring microbial growth in rumen content. Appl. Microbiol. 1968; 16: 1124
  • Nader C. J., Walker D. J. Metabolic fate of cysteine and methionine in rumen digesta. Appl. Microbiol. 1970; 20: 677
  • Prins R. A. Biochemical activities of gut microorganisms. Microbial Ecology of the Gut, R. T. J. Clarke, T. Bauchop. Academic Press, New York 1977; 73
  • Harmeyer J., Martens H., Holler H. Incorporation of 35S by rumen microorganisms in vitro at various microbial growth rates. Tracer Studies on Nonprotein Nitrogen for Ruminants II. Int. Atomic Energy Agency, Vienna 1975; 7
  • Leibholz J. Nitrogen metabolism in sheep 11. The flow of amino acids into the duodenum from dietary & microbial sources. Aust. J. Agric. Res. 1972; 23: 1073
  • Harrison D. G., Beever D. E., Thomson D. J. Estimation of food and microbial protein in duodenal ingesta. Proc. Nutr. Soc. 1972; 31: 60A
  • Hume I. D. The proportion of dietary protein escaping degradation in the rumen of sheep fed on various protein concentrates. Aust. J. Agric. Res. 1974; 25: 155
  • McDonald I. W., Hall R. J. The conversion of casein into microbial proteins in the rumen. Biochem. J. 1957; 67: 400
  • Singh U. B., Varma A., Verma N. D., Lai M., Ranjhon S. K. In vivo measurements of the production rates of bacteria in the rumen. J. Agric. Sci., Cambridge. 1973; 81: 349
  • Singh U. B., Verma D. N., Varma A., Ranjhon S. K. Measurement of the rate of production of bacteria in the rumen of buffalo calves. J. Agric. Sci., Cambridge 1974; 83: 13
  • Verma D. N., Singh U. B., Srivastava S. K., Srivastava R. V. N. Comparison of the production rate of bacteria in the rumen of buffalo calves estimated by using labeled Streptococcus bovis and mixed ruminal bacterial cells. J. Agric. Sci., Cambridge 1976; 87: 661
  • Singh U. B., Varma A., Verma D. M., Ranjhon S. K. Measurements in vivo of the rate of production of protozoa in the rumen. J. Dairy Res. 1974; 41: 299
  • Bucholtz H. F., Bergen W. G. Microbial phospholipid synthesis as a marker for microbial protein synthesis in the rumen. Appl. Microbiol. 1973; 25: 504
  • Van Nevel C. J., Demeyer D. I. Determination of rumen microbial growth in vitro from 32P-labeled phosphate incorporation. Br. J. Nutr. 1977; 38: 101
  • Pilgrim A. F., Gray F. V., Weller R. A., Belling C. B. Synthesis of microbial protein from ammonia in the sheep's rumen and the proportion of dietary nitrogen converted into microbial nitrogen. Br. J. Nutr. 1970; 24: 589
  • Mathison G. W., Milligan L. P. Nitrogen metabolism in sheep. Br. J, Nutr. 1971; 25: 351
  • Nolan J. V., Leng R. A. Dynamic aspects of ammonia and urea metabolism in sheep. Br. J. Nutr. 1972; 27: 177
  • Siddons R. C., Beever D. E., Nolan J. V., McAllan A. B., McCrae J. C. Estimation of microbial protein in duodenal ingesta. Ann. Recher. Vet. 1979; 10: 286
  • Carroll E. J., Hungate R. E. The magnitude of the microbial fermentation in the bovine rumen. Appl. Microbiol. 1954; 2: 205
  • El Shazly K., Hungate R. E. Fermentation capacity as a measure of net growth of rumen microorganisms. Appl. Microbiol. 1965; 13: 62
  • Hobson P. N., Mann S. O., Summers R., Staines B. W. Rumen function in Red deer, hill sheep, and reindeer in the Scottish Highlands. Proc. R. Soc. Edinburgh (B). 1975/76; 75: 181
  • Walker D. J., Forrest W. W. The application of calorimetry to the study of rumen fermentation in vitro. Aust. J. Agric. Res. 1964; 15: 299
  • Forrest W. W. A calorimeter for the continuous study of heat production of microbial systems. J. Sci. Instrum. 1961; 38: 143
  • Hobson P. N., Summers R. ATP pool and growth yield in Selenomonas ruminantium. J. Gen. Microbiol. 1972; 70: 351
  • Wolstrup J., Jensen K. Adenosine triphosphate and deoxyribonucleic acid in the alimentary tract of cattle fed different nitrogen sources. J. Appl. Bacteriol. 1978; 45: 49
  • Forsberg C. W., Lam K. Use of adenosine 5-triphosphate as an indicator of the microbiota biomass in rumen contents. Appl Environ. Microbiol. 1977; 33: 528
  • Wolstrup J., Jensen K., Just A. ATP and DNA as microbial parameters in the alimentary tract. Ann. Rech. Vet. 1979; 10: 283
  • Tiwari A. D., Bryant M. P., Wolfe R. S. Simple method for isolation of Selenomonas ruminantium and some nutritional characteristics of the species. J. Dairy Sci. 1969; 52: 2054
  • Cheng K.-J., Costerton J. W. Alkaline phosphatase activity of rumen bacteria. Appl. Environ. Microbiol. 1977; 34: 586
  • Hobson P. N., McKay E. S. M., Mann S. O. The use of fluorescent antibody in the identification of rumen bacteria in situ. Res. Correspond. 1955; 8: 30
  • Hobson P. N., Mann S. O. Some studies on the identification of rumen bacteria with fluorescent antibodies. J. Gen. Microbiol. 1957; 16: 463
  • Hobson P. N., Mann S. O., Oxford A. E. Some studies on the occurrence and properties of a large Gram negative coccus from the rumen. J. Gen. Microbiol. 1958; 19: 462
  • Jarvis B. D. W. Antigenic relations of cellulolytic cocci in the sheep rumen. J. Gen. Microbiol. 1967; 47: 309
  • Jarvis B. D. W., Williams V. J., Annison E. F. Enumeration of cellulolytic cocci in sheep rumen by using a fluorescent antibody technique. J. Gen. Microbiol. 1967; 48: 161
  • Hobson P. N., Mann S. O., Smith W. Serological tests of a relationship between rumen seleno-monads in vitro and in vivo. J. Gen. Microbiol. 1962; 29: 265
  • Dehority B. A. Hemicellulose digestion by rumen bacteria. Fed. Proc. 1973; 32: 1819
  • Hobson P. N. Polysaccharide degradation in the rumen. Microbial Polysaccharides and Poly-saccharoses, R. C. W. Berkeley, et al. Academic Press, New York 1979; 377
  • Hungate R. E. Microorganisms in the rumen of cattle fed a constant ration. Can. J. Microbiol. 1957; 3: 289
  • Maluszynska G. M., Janota-Bassalik L. A cellulolytic rumen bacterium, Micromonospora ruminantium sp. nov. J. Gen. Microbiol. 1974; 82: 57
  • Leatherwood J. M., Sharma M. P. A novel anaerobic cellulolytic bacterium. J. Bacteriol. 1972; 110: 751
  • Ziolecki A. Isolation and characterization of large treponemes from the bovine rumen. Appl. Environ. Microbiol. 1979; 37: 131
  • Ziolecki A., Wojcieehowicz M. Small pectinolytic spirochetes from the rumen. Appl. Environ. Microbiol. 1980; 39: 919
  • Waite R., Gorrod A. R. N. The comprehensive analysis of grasses. J. Sci. Food Agric. 1959; 10: 317
  • Bailey R. W. Pasture quality and ruminant nutrition. 1. Carbohydrate composition of ryegrass varieties grown as sheep pastures. N.Z. J. Agric. Res. 1964; 7: 496
  • Bacon J. S. D. What is straw decay. Straw Decay and Us Effect in Disposal and Utilization, E. Grosbard. John Wiley & Sons, Chichester 1979; 227
  • Bateman D. F. Plant cell wall hydrolysis by pathogens. Biochemical Aspects of Plant-Parasite Relationships, J. Friend, D. R. Threlfall. Academic Press, New York 1976; 79
  • Coleman G. S., Sandford D. C., Beachon S. The degradation of polygalacturonic acid by rumen ciliate protozoa. J. Gen. Microbiol. 1980; 120: 295
  • Gradel C. M., Dehority B. A. Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria. Appl. Microbiol. 1972; 23: 332
  • Akkada Abou A. R., Howard B. H. The biochemistry of rumen protozoa. 4. Decomposition of pectic substances. Biochem. J. 1961; 78: 512
  • Coen J. A., Dehority B. A. The degradation and utilization of hemicellulose from intact forages by pure cultures of rumen bacteria. Appl. Microbiol. 1970; 20: 362
  • Forrest I. S., Wainwright T. The mode of binding of β-glucans and pentosans in barley endosperm cell walls. J. Inst. Brewing 1977; 83: 279
  • Stafford H. A. Histochemical and biochemical differences between lignin-like materials.in Phleum pratense L. Plant Physiol 1962; 37: 643
  • Morrison I. M. Structural investigations on the lignin-carbohydrate complexes of Lolium perenne. Biochem. J. 1974; 139: 197
  • Gaillard B. D. E., Richards G. N. Presence of soluble lignin-carbohydrate complexes in the bovine rumen. Carbohydr. Res. 1975; 42: 135
  • Conchie J., private communication
  • Cymbaluk N. F., Gordon A. J., Neudoerffer T. S. The effect of the chemical composition of maize plant lignin on the digestibility of maize stalk in the rumen of cattle. Br. J. Nutr. 1973; 29: 1
  • Smith L. W., Goering H. K., Gordon C. H. Relationships of forage compositions with rates of cell wall digestion and indigestibility of cell walls. J. Dairy Sci. 1972; 55: 1140
  • Akin D. E. Attack on lignified grass cell walls by a facultatively anaerobic bacterium. Appl. Environ. Microbiol. 1980; 40: 809
  • Cheng K-J., Dinsdale D., Stewart C. S. Maceration of clover and grass leaves by Lachnospira multiparus. Appl. Environ. Microbiol. 1979; 38: 723
  • Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 1978; 35: 156
  • Latham M. J. Quantitative aspects of the adhesion of Ruminococcus flavefaciens to plant cell walls. Proc. Soc. Gen. Microbiol. 1978; 5: 108
  • Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of ryegrass (Lolium perenne). Appl. Environ. Microbiol. 1978; 35: 1166
  • Hungate R. E. Studies on cellulose fermentation. III. The culture and isolation of cellulose-decomposing bacteria from the rumen of cattle. J. Bacteriol. 1947; 53: 631
  • Morris E. J., van Gylswyck N. O. Comparison of the action of rumen bacteria in cell walls from Eragostris teff. J. Agric. Sci. 1980; 95: 313
  • van Gylswyck N. O. Fusobacterium polysaccharolyticum sp, nov.a Gram negative rod from the rumen that produces butyrate and ferments cellulose and starch. J. Gen. Microbiol. 1980; 116: 157
  • Baker F., Nasr H., Morrice F., Bruce J. Bacterial breakdown of structural starches and starch products in the digestive tract of ruminant and nonruminant animals. J. Pathol. Bacteriol. 1951; 62: 617
  • Dehority B. A., Johnson R. R. Effect of particle size upon the in vitro cellulose digestibility of forages by rumen bacteria. J. Dairy Sci. 1961; 44: 2242
  • Cheng K-J., Fay J. P., Coleman R. N., Milligan L. P., Costerton J. W. Formation of bacterial microcolonies on feed particles in the rumen. Appl. Environ. Microbiol. 1981; 41: 298
  • Akin D. E. Ultrastructure of rumen bacterial attachment to forage cell walls. Appl. Environ. Microbiol. 1976; 31: 562
  • Latham M. J., Sharpe E. M., Sutton D. J. The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. J. Appl. Bacteriol. 1971; 34: 425
  • Stewart C. S., Paniagua C., Dinsdale D., Cheng K-J., Garrow S. H. Selective isolation and characteristics of Bacteroides succinogenes from the rumen of a cow. Appl. Environ. Microbiol. 1981; 41: 504
  • Cheng K-T., Hungate R. E. Effect of alfalfa fibre substrate on culture counts of rumen bacteria. Appl. Environ. Microbiol. 1976; 32: 649
  • Dinsdale D., Morris E. J., Bacon J. S. D. Electron microscopy of the microbial populations present and their modes of attack on various cellulosic substrates undergoing digestion in the sheep rumen. Appl. Environ. Microbiol. 1978; 36: 160
  • Minato H., Suto T. Technique for fractionation of bacteria in the rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 1978; 24: 1
  • Hobson P. N. Techniques of counting rumen organisms. Digestive Physiology and Nutrition of Ruminant, D. Lewis. Butterworths, London 1960; 107
  • Abe M., Iriki T., Tobe N., Shibui H. Sequestration of holotrich protozoa in the reticulorumen of cattle. Appl. Environ. Microbiol. 1981; 41: 758
  • Aafjes J. H., Nijhof J. K. A simple artificial rumen giving good production of volatile fatty acids. Br. Vet. J. 1967; 123: 436
  • Gray F. V., Weller A. F., Pilgrim A. F., Jones G. B. A stringent test for the artificial rumen. Aust. J. Agric. Res. 1962; 13: 343
  • Czerkawski J. W., Breckenridge G. Design and development of a long-term rumen simulation technique (Rusitec). Br. J. Nutr. 1977; 38: 371
  • Nakamura F., Kurihara Y. Maintenance of a certain rumen protozoal population in a continuous in vitro fermentation system. Appl. Environ. Microbiol. 1978; 35: 500
  • Bauchop T., Clarke R. T. J. Attachment of the ciliate Epidinium Crawley to plant fragments in the sheep rumen. Appl. Environ. Microbiol. 1976; 32: 417
  • Bauchop T. The rumen ciliate Epidinium in primary degradation of plant tissues. Appl. Environ. Microbiol. 1979; 37: 1217
  • Akin D. E., Amos H. E. Mode of attack on orchard grass leaves by rumen protozoa. Appl. Environ. Microbiol. 1979; 37: 332
  • Bauchop T. Scanning electron microscopy in the study of microbial digestion of plant fragments in the gut. Contemporary Microbial Ecology, D. C. Ellwood, et al. Academic Press, New York 1980; 305
  • Orpin C. G., Letcher A. J. Some factors controlling the attachment of the rumen holotrich protozoa Isotricha intestinalis and I. prostoma to plant particles in vitro. J. Gen. Microbiol. 1978; 106: 33
  • Thomas G. J. Metabolism of the soluble carbohydrates of grasses in the rumen of the sheep. J. Agric. Sci., Cambridge 1960; 54: 360
  • Orpin C. G. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 1975; 94: 249
  • Orpin C. G. Studies on the rumen flagellate Sphaeromonas communis. J. Gen. Microbiol. 1976; 94: 270
  • Orpin C. G. The rumen flagellate Piromonas communis: its life history and invasion of plant material in the rumen. J. Gen. Microbiol. 1977; 99: 107
  • Orpin C. G. On the induction of zoosporogenesis in the rumen phycomycetes Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J. Gen. Microbiol. 1977; 101: 181
  • Orpin C. G. Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis. J. Gen. Microbiol. 1978; 104: 113
  • Bauchop T. Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 1979; 38: 148
  • Morrison I. M. The degradation and utilization of straw in the rumen. Straw Decay and its Effect on Disposal and Utilization, E. Grossbard. John Wiley & Sons, Chichester 1979; 237
  • Evans P. J. Chemical and physical aspects of the interaction of sodium hydroxide with the cell wall components of straw. Straw Decay and its Effects on Disposal and Utilization, E. Grossbard. John Wiley & Sons, Chichester 1979; 187
  • Latham M. J., Hobos D. G., Harris P. J. Adhesion of rumen bacteria to alkali-treated plant stems. Ann. Rech. Vet. 1979; 10: 244
  • Stewart C. S., Dinsdale D., Chens K-J., Paniagua C. The digestion of straw in the rumen. Straw Decay and its Effect on Disposal and Utilization, E. Grossbard. John Wiley & Sons, Chichester 1979; 123
  • Prins R. A. Biochemical activities of gut microorganisms. Microbial Ecology of the Gut, R. T. J. Clarke, T. Bauchop. Academic Press, New York 1977; 73
  • Pettipher G. L., Latham M. J. Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J. Gen. Microbiol. 1979; 110: 29
  • Francis G. L., Gawthorne J. M., Storerer G. B. Factors affecting the activity of cellulases isolated from the rumen digesta of sheep. Appl. Environ. Microbiol. 1978; 36: 643
  • Stewart C. S. Factors affecting the cellulolytic activity of rumen contents. Appl. Environ. Microbiol. 1977; 33: 497
  • Henderson C., Hodgkiss W. An electron microscope study of Anaerovibrio lipolytica (strain 5S) and its lipolytic enzyme. J. Gen. Microbiol. 1973; 76: 389
  • Wood T. M., McCrae S. I. Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydr. Res. 1977; 57: 117
  • Wood T. M. Aspects of the degradation of plant cell-wall carbohydrate in the rumen. Degradation of Plant Cell-Wall Material. Agric. Res. Council, London 1981
  • Halliwell G., Bryant M. P. The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J. Gen. Microbiol. 1963; 32: 441
  • Yu I., Hungate R. E. The extracellular cellulases of Ruminococcus albus. Ann. Rech. Vet. 1979; 10: 251
  • Wojciechowicz M., Heinrichova K., Ziolecki A. A polygalacturonate lyase produced by Lachnospira muhiparus isolated from the bovine rumen. J. Gen. Microbiol. 1980; 117: 193
  • Wojciechowicz M., Ziolecki A. Pectinolytic enzymes of large rumen treponemes. Appl. Environ. Microbiol. 1979; 37: 136
  • Wojciechowicz M., Tomerska H. Pectic enzymes in some pectinolytic rumen bacteria. Acta Microbiol. Pol. Ser. A. 1971; 3: 57
  • Coleman G. S., Sandford D. C., Beahon S. The degradation of polygalacturonic acid by rumen ciliate protozoa. J. Gen. Microbiol. 1980; 120: 295
  • Williams A. G., Withers S. E. Hemicellulose-degrading enzymes of rumen bacterial isolates grown on various carbon sources. Soc. Gen. Microbiol. Q. 1981; 8: 143
  • Howard B. H., Jones G., Purdom M. R. The pentosanases of some rumen bacteria. Biochem. J. 1960; 74: 173
  • Clarke R. T. J. Protozoa in the rumen ecosystem. Microbial Ecology of the Gut. Academic Press, New York 1977; 251
  • Coleman G. S. Rumen ciliate protozoa. Adv. Parasitol. 1980; 18: 121
  • Gruby D., Delafond O. Recherches sur les animalcules se developanl en grand nombre dans l'estomac et dans les intestines pendant la digestion des animaux herbivores et carnivores. C. R. Acad. Sci. Paris 1843; 17: 1304
  • Becker E. R., Talbott M. The protozoan fauna of the rumen and reticulum of American cattle. Iowa Stale Coll. J. Sci. 1926–27; 1: 345
  • Dogiel V. La faune d'infusoires habitant l'estomac du buffle et du dromadaire. Ann. Parasitol. 1928; 6: 323
  • Margolin S. Methods for the cultivation of cattle ciliates. Biol. Bull. Woods Hole 1930; 59: 301
  • Becker E. R. Methods for rendering the rumen and reticulum of ruminants free from their normal infusorian fauna. Proc. Nat. Acad. Sci. 1929; 15: 435
  • Wright D. E., Curtis M. V. Bloat in cattle XLII. The action of surface-active chemicals on ciliated protozoa. N.Z. J. Agric. Res. 1976; 19: 19
  • Orpin C. G. Studies on the defaunation of the ovine rumen using dioctyl sodium sulfosuccinate. J. Appl. Bacteriol. 1977; 43: 309
  • Eadie J. M., Shand W. J. The effect of synperonic NP9 upon ciliate-free and faunated sheep. Proc. Nutr. Soc. 1981, in press
  • Mann S. O. Some observations on the airborne dissemination of rumen bacteria. J. Gen. Microbiol. 1963; 33: IX
  • Eadie J. M., Hobson P. N., Mann S. O. A note on some comparisons between the rumen content of barley-fed steers and that of young calves also fed on a high concentrate ration. Anim. Prod. 1967; 9: 247
  • Kurihara Y., Takechi T., Shibata F. Relationship between bacteria and ciliate protozoa in the rumen of sheep fed on a purified diet. J. Agric. Sci., Cambridge 1978; 90: 373
  • Eadie J. M., Hobson P. N. Effect of the presence or absence of rumen ciliate protozoa on the total rumen bacterial count in lambs. Nature (London) 1962; 193: 503
  • Becker E. R., Everett R. C. Comparative growths of normal and infusoria-free lambs. Am. J. Hyg. 1930; 11: 362
  • Christiansen W. C., Kawashima R., Burroughs W. Influence of protozoa upon rumen acid production and liveweight gains in lambs. J. Anim. Sci. 1965; 24: 730
  • Akkada Abou A. R., El Shazly K. Effect of absence of ciliate protozoa from the rumen on microbial activity and growth of lambs. Appl. Microbiol. 1964; 12: 384
  • Hungate R. E., Reichl J., Prins R. Parameters of rumen fermentation in a continuously fed sheep: evidence of a microbial rumination pool. Appl. Microbiol. 1971; 22: 1104
  • McNaught M. L., Owen E. C., Henry K. M., Kon S. K. The utilization of nonprotein nitrogen in the bovine rumen. 8. The nutritive value of the proteins of preparations of dried rumen bacteria, ruman protozoa and brewers' yeast for ra's. Biochem. J. 1954; 56: 151
  • Weller R. A. The amino acid composition of hydrolysates of microbial preparations from the rumen of sheep. Aust. J. Biol. Sci. 1957; 10: 384
  • Czerkawski J. W. Chemical composition of microbial matter in the rumen. J. Sci. Food Agric. 1976; 27: 621
  • Weller R. A., Pilgrim A. F. Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system. Br. J. Nutr. 1974; 32: 341
  • Bird S., Baigent D. R., Dixon R., Leng R. A. Ruminal protozoa and growth of lambs. Proc. Aust. Soc. Anim. Prod. 1978; 12: 137
  • Bird S. H., Hill M. K., Leng R. A. The effects of defaunation of the rumen on the growth of lambs on low-protein high-energy diets. Br. J. Nutr. 1979; 42: 81
  • Bird S. H., Leng R. A. The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. Br. J. Nutr. 1978; 40: 163
  • Harrison D. G., Beever D. E., Osbourn D. F. The contribution of protozoa to the protein entering the duodenum of sheep. Br. J. Nutr. 1979; 41: 521
  • Males J. R., Purser D. B. Relationships between rumen ammonia levels and the microbial population and volatile fatty acid proportions in faunated and defaunated sheep. Appl. Microbiol. 1970; 19: 485
  • Klopfenstein T. J., Purser D. B., Tyznik W. J. Effects of defaunation on feed digestibility, rumen metabolism and blood metabolites. J. Anim. Sci. 1966; 25: 765
  • Luther R., Trenkle A., Burroughs W. Influence of rumen protozoa on volatile acid production and ration digestibility in lambs. J. Anim. Sci. 1966; 25: 1116
  • Akkada Abou A. R., El Shazly K. Effect of presence or absence of rumen ciliate protozoa on some blood components, nitrogen retention, and digestibility of food constituents in lambs. J. Agric. Sci. 1965; 64: 251
  • Akkada Abou A. R., Howard B. H. The biochemistry of rumen protozoa. 5. The nitrogen metabolism of Entodinium. Biochem. J. 1962; 82: 313
  • Onodera R., Kandatsu M. Amino acids and protein metabolism of rumen ciliate protozoa. VI. Endogenous nitrogen compounds of rumen ciliates. Jpn. J. Zootech. Sci. 1970; 41: 349
  • Onodera R., Kandatsu M. Amino acids and protein metabolism of rumen ciliate protozoa. IV. Metabolism of casein. Jpn. J. Zootech. Sci. 1970; 41: 307
  • Akkada Abou A. R., El Shazly K. Effect of absence of ciliate protozoa from the rumen on microbial activity and growth of lambs. Appl. Microbiol. 1964; 12: 384
  • Christiensen W. C., Kawashima R., Burroughs W. Influence of protozoa upon rumen acid production and liveweight gains in lambs. J. Anim. Sci. 1965; 24: 730
  • Wright D. E. Hydrogenation of lipids by rumen protozoa. Nature (London). 1959; 184: 875
  • Van der Wath J. G., Myburgh S. J. Studies on the alimentary tract of Merino sheep in S. Africa. VI. The role of infusoria in rumen digestion with some remarks on rumen bacteria. Ondersterpoort J. Vet. Sci. 1941; 17: 61
  • Hungate R. E. Further experiments on cellulose digestion by protozoa in the rumen of cattle. Biol. Bull. Woods Hole. 1943; 83: 303
  • Coleman G. S. The metabolism of cellulose, glucose and starch by the rumen ciliate protozoon Eudiplodinium maggii. J. Gen. Microbiol. 1978; 107: 359
  • Gutierrez J. Observations on bacterial feeding by the rumen ciliate Isotricha prostoma. J. Protozoal. 1958; 5: 122
  • Gutierrez J., Hungate R. E. Interrelationship between certain bacteria and the rumen ciliate Dasytricha ruminantium. Science 1957; 126: 511
  • Gutierrez J., Davis R. E. Bacterial ingestion by the rumen ciliates Entodinium and Diplodinium. J. Protozool. 1959; 6: 222
  • Gutierrez J., Davies R. E. Culture and metabolism of the rumen ciliate Epidinium ecaudatum Crawley. Appl. Microbiol. 1962; 10: 305
  • Mah R. A. Factors influencing the in vitro culture of the rumen ciliate Ophryoscolex purkynei Stein. J. Protozool. 1964; 11: 546
  • Coleman G. S. The metabolism of the amino acids of Escherichia coli and other bacteria by the rumen ciliate Eniodinium caudalum. J. Gen. Microbiol. 1967; 47: 449
  • Coleman G. S., Hall F. J. Fine structural studies on the digestion of bacterial species in the rumen ciliate Eniodinium caudalum. Tissue Cell 1972; 4: 37
  • Hino T., Kametaka M. Gnotobiotic and axenic culture of a rumen protozoon Eniodinium caudalum. J. Gen. Appl. Microbiol. 1977; 23: 37
  • Coleman G. S. The metabolism of Escherichia coli and other bacteria by Eniodinium caudalum. J. Gen. Microbiol. 1964; 37: 209
  • Coleman G. S., Sandford D. C. The engulf men t and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in vivo. J. Agric. Sci., Cambridge. 1979; 92: 729
  • Owen R. W., Coleman G. S. The uptake and utilization of bacteria, amino acids, and carbohydrates by the rumen ciliate Entodinium longinucleatum in relation to the sources of amino acids for protein synthesis. J. Appl. Bacteriol. 1977; 43: 67
  • Coleman G. S., Laurie J. I. The metabolism of starch, glucose, amino acids, purines, pyrimidines, and bacteria by the rumen ciliate Polyplastron multivesiculatum. J. Gen. Microbiol. 1977; 98: 29
  • Onodera R., Kandatsu M. Amino acids and protein metabolism of rumen ciliate protozoa III. Ingestion of particulate substances by ciliates. Jpn. J. Zootech. Sci. 1970; 40: 14
  • Coleman G. S., Hall F. J. Electron microscopy of the rumen ciliate Entodinium caudalum. with special reference to the engulfment of bacteria and other particulate matter. Tissue Cell 1969; 1: 607
  • Onodera R., Henderson C. Growth factors of bacterial origin for the culture of the rumen oligotrich protozoon. Eniodinium caudalum, J. Appl. Bacteriol. 1980; 48: 125
  • Wallis O. C., Coleman G. S. Incorporation of 14C-labeled components of Escherichia coli and of amino acids by Isotricha intestinalis and J. prosioma from the sheep rumen. J. Gen. Microbiol. 1967; 49: 315
  • Kurihara Y., Eadie J. M., Hobson P. N., Mann S. O. Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol. 1968; 51: 267
  • Kurihara Y., Takechi T., Shibata F. Relationship between bacteria and ciliate protozoa in the rumen of sheep fed on a purified diet. J. Agric. Sci. Cambridge 1978; 90: 373
  • Whitelaw F. G., Hyldgaard-Jensen J., Reid R. S., Kay M. G. Volatile fatty acid production in the rumen of cattle given an all concentrate diet. Br. J. Nutr. 1970; 24: 179
  • Bryant M. P., Small N. Observations on the ruminal microorganisms of isolated and inoculated calves. J. Dairy Sci. 1960; 43: 654
  • Yoder R. D., Trenkle A., Burroughs W. Influence of rumen protozoa and bacteria upon cellulose digestion in vitro. J. Anim. Sci. 1966; 25: 609
  • White R. W. Viable bacteria inside the rumen ciliate Entodinium caudatum. J. Gen. Microbiol. 1969; 56: 403
  • Coleman G. S., Hall F. J. The metabolism of Epidinium ecaudatum caudatum and Entodinium caudatum as shown by autoradiography in the electron microscope. J. Gen. Microbiol. 1974; 85: 265
  • Imai S., Ogimoto K. Scanning electron and fluorescent microscopic studies on the attachment of spherical bacteria to ciliate protozoa in the ovine rumen. Jpn. J. Vet. Sci. 1978; 40: 9
  • Vogels G. D., Hoppe W. F., Stumm C. K. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 1980; 40: 608
  • Eadie J. M. Interrelationships between certain rumen ciliate protozoa. J. Gen. Microbiol. 1962; 29: 579
  • Coleman G. S., Davies G. I., Cash M. A. The cultivation of the rumen ciliates Epidinium ecaudatum caudatum and Polyplastron multivesiculatum in vitro. J. Gen. Microbiol. 1972; 73: 509
  • Coleman G. S., Laurie J. L., Bailey J. E. The cultivation of the rumen ciliate Entodinium bursa in the presence of E. caudatum. J. Gen. Microbiol. 1977; 101: 253
  • Eadie J. M. The development of rumen microbial populations in lambs and calves under various conditions of management. J. Gen. Microbiol. 1962; 29: 563
  • Eadie J. M. A study of variation in size in the rumen ciliate protozoa Polyplastron multivesiculatum (Dogiel and Fedorowa) and Eudiplodinium maggii (Fiorentini). Protistologica 1979; 15: 293
  • Gunsalus I. C., Shuster C. W. Energy-yielding metabolism in bacteria. The Bacteria, I. C. Gunsalus, R. Y. Stanier. Academic Press, New York 1961; Vol. II: 1
  • Senez J. C. Some considerations on the energetics of bacterial growth. Bacteriol. Rev. 1962; 26: 95
  • Forrest W. W., Walker D. J. Generation and utilization of energy during growth. Adv. Microb. Physiol. 1971; 5: 213
  • Stouthamer A. H. A theoretical study of the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek J. 1973; 39: 545
  • Rittenberg S. C., Hespell R. B. Energy efficiency of intraperiplasmic growth of Bdellovibrio baaeriovorus. J. Bacteriol. 1975; 121: 1158
  • Stouthamer A. H. The search for correlation between theoretical and experimental growth yields. Int. Rev. Biochem. 1979; 21: 1
  • Hespell R. B., Bryant M. P. Efficiency of rumen microbial growth: influence of some theoretical and experimental factors on YATP. J. Anim. Sci. 1979; 49: 1640
  • Bauchop T., Elsden S. R. The growth of microorganisms in relation to their energy supply. J. Gen. Microbiol. 1960; 23: 457
  • Stouthamer A. H. Determination and significance of molar growth yields. Methods in Microbiology, J. R. Norris, D. W. Ribbons. Academic Press, New York 1969; Vol. I: 630
  • Payne W. J. Energy yields and growth of heterotrophs. Ann. Rev. Microbiol. 1970; 24: 17
  • Stouthamer A. H. Energetic aspects of the growth of microorganisms. Symp. Soc. Gen. Microbiol. 1977; 28: 285
  • Stouthamer A. H., Bettenhaussen C. Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 1973; 301: 53
  • Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc, B. 1965; 163: 224
  • Neijssel O. M., Tempest D. W. Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Arch. Microbiol. 1976; 107: 215
  • Harrison D. E. F. Growth, oxygen and respiration. Critical Reviews in Microbiology, A. Laskin, H. Lechevalier. CRC Press, Boca Raton, Fl. 1972; Vol. 2: 185
  • Neijssel O. M., Tempest D. W. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Arch. Microbiol. 1975; 106: 251
  • Stouthamer A. H., Bettenhaussen C. W. Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes. Arch. Microbiol. 1975; 10: 187
  • Hungate R. E. Polysaccharide storage and growth efficiency in Ruminococcus albus. J. Bacteriol. 1963; 86: 848
  • Hobson P. N. Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. J. Gen. Microbiol. 1965; 38: 167
  • Dawson K. A., Preziosi M. C., Caldwell D. R. Some effects of uncouplers and inhibitors on growth and electron transport in rumen bacteria. J. Bacteriol. 1979; 139: 384
  • Hobson P. N., Summers R. The continuous culture of anaerobic bacteria. J. Gen. Microbiol. 1967; 47: 53
  • Jenkinson H. F., Woodbine M. Growth and energy production in Bacteroides amylophilus. Arch. Microbiol. 1979; 120: 275
  • Russell J. B., Baldwin R. L. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture. Appl. Environ. Microbiol. 1979; 37: 537
  • Henderson C. The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium. J. Gen. Microbiol. 1980; 119: 485
  • Howlett M. H., Mounrford D. O., Turner K. W., Roberton A. M. Metabolism and growth yields in Bacteroides ruminicola strain B1 4. Appl. Environ. Microbiol. 1976; 32: 274
  • Turner K. W., Roberton A. M. Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola. Appl. Environ. Microbiol. 1979; 38: 7
  • Hayashi T., Kozaki M. Growth yield of an orange-coloured Streptococcus bovis No. 148. J. Gen. Appl. Microbiol. 1980; 26: 245
  • DeVries W., Kapteijn W. M. C., Van der Beek E. G., Stouthamer A. H. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J. Gen. Microbiol. 1970; 63: 333
  • Macy J., Probst I., Gottschalk G. Evidence for cytochrome involvement in fumarate reduction and adenosine 5′-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J. Bacterid. 1975; 123: 436
  • Neijssel O. M., Tempest D. W. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostate culture. Arch. Microbiol. 1976; 110: 305
  • Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977; 41: 100
  • Gottschalk G., Andreeson J. R. Energy metabolism in anaerobes. Int. Rev. Biochem. 1979; 21: 85
  • Kroger A., Dorrer E., Winkler E. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim. Biophys. Acta 1980; 589: 118
  • Kroger A. The electron transport-coupled phosphorylation of the anaerobic bacterium Vibrio succinogenes. Electron Transfer Chains and Oxidative Phosphorylation, E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, H. Siliprandi. North-Holland, Amsterdam 1975; 265
  • Brockman H. L., Wood W. A. Electron-transferring flavoprotein of Peptrostreptococcus elsdenii that functions in the reduction of acrylylcoenzyme A. J. Bacteriol. 1975; 124: 1447
  • Baldwin R. L., Milligan L. A. Electron transport in Peptostreptococcus elsdenii. Biochim. Biophys. Acta. 1964; 92: 421
  • Mayhew S. G., Massey V. Purification and characterisation of flavodoxin from Peptostreptococcus elsdenii. J. Biol. Chem. 1969; 244: 794
  • Mayhew S. G., Peel J. L. Rubredoxin from Peptoslreptococcus elsdenii. Biochem. J. 1966; 100: 80P
  • Mayhew S. G., Whitfield C. D., Ghisla S., Schuman-Jorus M. Identification and properties of new flavins in electron-transferring flavoprotein from Peptostreptococcus elsdenii and pig liver glycolate oxidase. Eur. J. Biochem. 1974; 44: 579
  • Ghisla S., Mayhew S. G. Identification and structure of a novel flavin prosthetic group associated with reduced nicotinamide adenine dinucleotide dehydrogenase from Peptoslreptococcus elsdenii. J. Biol. Chem. 1973; 248: 6568
  • Baldwin R. L., Wood W. A., Emery R. S. Lactate metabolism by Peptostreptococcus elsdenii: evidence for lactyl Co A dehydrase. Biochim. Biophys. Acta 1965; 97: 202
  • White D. C., Bryant M. P., Caldwell D. R. Cytochrome-linked fermentation in Bacteroides ruminicola. J. Bacteriol. 1962; 84: 822
  • Mountfort D. O., Roberton A. M. The role of menaquinone and b-type cytochrome in anaerobic reduction of fumarate by NADH in membrane preparations from Bacteroides ruminicola strain B14. J. Gen. Microbiol. 1977; 100: 309
  • De Vries W., van Wijck-Kapteyn W. M. C., Oosterhuis S. K. H. The presence and function of cytochromes in Selenomonas ruminantium Anaerovibrio lipolytica and Veillonella alcalescens. J. Gen. Microbiol. 1974; 81: 69
  • Caldwell D. R., White D. C., Bryant M. P., Doetsch R. N. Specificity of the heme requirement for growth of Bacteroides ruminicola. J. Bacteriol. 1965; 90: 1645
  • McCall D. R., Caldwell D. R. Tetrapyrrole utilization by Bacteroides ruminicola. J. Bacteriol. 1977; 131: 809
  • Neijssel O. M. The effect of 2,4-dinitrophenol on the growth of Klebsiella aerogenes in aerobic chemostat cultures. FEMS Microbiol. Lett. 1977; 1: 47
  • Paynter M. J. B., Elsden S. R. Mechanism of propionate formation by Selenomonas ruminantium a rumen microorganism. J. Gen. Microbiol. 1970; 61: 1
  • Michels P. A. M., Michels J. P. J., Boonstra J., Konings W. N. Generation of an electrochemical gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol. Lett. 1979; 5: 357
  • Otto R., Sonnenberg A. S. M., Veldkamp H., Konings W. N. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc. Nat. Acad. Sci. U.S.A. 1980; 77: 5502
  • Otto R., Hugenholtz J., Konings W. N., Veldkamp H. Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stutzeri in mixed culture. FEMS Microbiol. Lett. 1980; 9: 85
  • Cheng K.-J., Brown R. G., Costerton J. W. Characterization of a cytoplasmic reserve glucan from Ruminococcus albus. Appl. Environ. Microbiol. 1977; 33: 718
  • Cheng K.-J., Hironaka R., Roberts D. W. A., Costerton J. W. Cytoplasmic glycogen inclusions in cells of anaerobic Gram negative rumen bacteria. Can. J. Microbiol. 1973; 19: 1501
  • Brown R. G., Lindberg B., Cheng K.-J. Characterization of a reserve glucan from Megasphaera elsdenii. Can. J. Microbiol. 1975; 21: 1657
  • Doetsch R. N., Howard B. N., Mann S. O., Oxford A. E. Physiological factors in the production of an iodophilic polysaccharide from pentose by a sheep rumen bacterium. J. Gen. Microbiol. 1957; 16: 156
  • Orpin C. G. The culture of the rumen organism Eadie's Oval in vitro. J. Gen. Microbiol. 1972; 70: 321
  • Wallace R. J. Cytoplasmic reserve polysaccharide of Selenomonas ruminantium. Appl. Environ. Microbiol. 1980; 39: 630
  • Hobson P. N., Mann S. O. Some factors affecting the formation of iodophilic polysaccharide in group D streptococci from the rumen. J. Gen. Microbiol. 1955; 13: 420
  • Cheng K.-J., Hironaka R., Jones G. A., Nicas T., Costerton J. W. Frothy feedlot bloat in cattle: production of extracellular polysaccharides and development of viscosity in cultures of Streptococcus bovis. Can. J. Microbiol. 1976; 22: 450
  • Costerton J. W., Damgaard H. N., Cheng K-J. Cell envelope morphology of rumen bacteria. J. Bacteriol. 1974; 118: 1132
  • Cheng K-J., Costerton J. W. Ultrastructure of Butyrivibrio fibrisolvens — a Gram positive bacterium?. J. Bacteriol. 1977; 129: 1506
  • Patterson H., Irvin R., Costerton J. W., Cheng K-J. Ultrastructure and adhesion properties of Ruminococcus albus. J. Bacteriol. 1975; 122: 278
  • Hobson P. N., MacPherson M. J. Some serological and chemical studies on materials extracted from an amylolytic streptococcus from the rumen of the sheep. Biochem. J. 1954; 57: 145
  • Cheng K-J., Akin D. E., Costerton J. W. Rumen bacteria: interaction with particulate dietary components and response to dietary variation. Fed. Proc. 1977; 36: 193
  • Cheng K-J., Costerton J. W. Adherent rumen bacteria — their role in the digestion of plant material, urea, and epithelial cells. Digestive Physiology and Metabolism in Ruminants, Y. Ruckebusch, P. Thivend. MTP Press, LancasterEngl. 1980; 227
  • Isaacson H. R., Hinds F. C., Bryant M. P., Owens F. N. Efficiency of energy utilization by mixed rumen bacteria in continuous culture. J. Dairy Sci. 1975; 58: 1645
  • Scheifinger C. C., Latham M. J., Wolin M. J. Relationship of lactic dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl Microbiol. 1975; 30: 916
  • Wallace R. J. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. J. Gen. Microbiol. 1978; 107: 45
  • Mountfort D. O., Roberton A. M. Origins of fermentation products formed during growth of Bacleroides ruminicola on glucose. J. Gen. Microbiol. 1978; 106: 353
  • Van Gylswyck N. O. Some aspects of the metabolism of Butyrivibrio fibrisolvens. J. Gen. Microbiol. 1976; 97: 105
  • Jarvis B. W., Henderson C., Asmundson R. V. The role of carbonate in the metabolism of glucose by Butyrivibrio fibrisolvens. J. Gen. Microbiol. 1978; 105: 287
  • Hobson P. N., McDougall E. I., Summers R. The nitrogen sources of Bacteroides amylophilus. J. Gen. Microbiol. 1968; 50: i
  • Henderson C., Hobson P. N., Summers R. The production of amylase, protease, and lipolytic enzymes by two species of anaerobic rumen bacteria, in Continuous Cultivation of Microorganisms. Proc. 4th Symp., Prague, June, 17 to 211968, 189
  • Harrison D. G., McAllan A. B. Factors affecting microbial growth yields in the reticulo-rumen. Digestive Physiology and Metabolism in Ruminants, Y. Ruckebusch, P. Thivend. MTP Press Ltd., LancasterEngl. 1980; 205
  • Stern M. D., Hoover W. H. Methods for determining and factors affecting rumen microbial protein synthesis: a review. J. Anim. Sci. 1979; 49: 1590
  • Czerkawski J. W. Reassessment of efficiency of synthesis of microbial matter in the rumen. J. Dairy Sci. 1978; 61: 1261
  • Demeyer D. I., Van Nevel C. J. Methanogenesis, an integrated part of carbohydrate fermentation and its control. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale, Aust. 1975; 336
  • Demeyer D. I., Van Nevel C. J. Rumen fermentation pattern and efficiency of microbial growth. Misc. Pap. Landbrouwhogeschool Wageningen II. 1975; 31
  • Dawson K. A., Allison M. J., Hartman P. A. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl. Environ. Microbiol. 1980; 40: 833
  • Crawford R. J., Hoover W. H., Knowlton P. H. Effects of solids and liquid flows on fermentation in continuous cultures. 1. Dry matter and fiber digestion, VFA production and protozoa numbers. J. Anim. Sci. 1980; 51: 975
  • Harrison D. G., Beever D. E., Thomson D. J., Osbourn D. F. Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen. J. Agric. Sci. 1975; 85: 93
  • Harrison D. C., Beever D. E., Thomson D. J., Osbourn D. F. Manipulation of fermentation in the rumen. J. Sci. Food Agric. 1976; 27: 617
  • Kennedy P. M., Christopherson R. G., Milligan L. P. The effect of cold exposure of sheep on digestion, rumen turnover, and efficiency of microbial synthesis. Br. J. Nutr. 1976; 36: 231
  • Kennedy P. M., Milligan L. P. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep. Br. J. Nutr. 1978; 39: 105
  • Hodgson J. C., Thomas P. C. A relationship between the molar proportion of propionic acid and the clearance rate of the liquid phase in the rumen of the sheep. Br. J. Nutr. 1975; 33: 447
  • Hodgson J. C., Thomas P. C., Wilson A. G. The influence of the level of feeding on fermentation in the rumen of sheep receiving a diet of ground barley, ground hay, and flaked maize. J. Agric. Sci. 1976; 87: 297
  • Crawford R. J., Hoover W. H., Junkins L. L. Effects of solids and liquid flows on fermentation in continuous cultures. II. Nitrogen partition and efficiency of microbial synthesis. J. Anim. Sci. 1980; 51: 986
  • Van Nevel C. J., Demeyer D. I. Stoichiometry of carbohydrate fermentation and microbial growth efficiency in a continuous culture of mixed rumen bacteria. Eur. J. Appl. Microbiol. 1979; 7: 111
  • Watson T. G. Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J. Gen. Microbiol. 1970; 64: 91
  • Mainzer S. E., Hempfling W. P. Effects of growth temperature on yield and maintenance during glucose-limited continuous culture of Escherichia coli. J. Bacteriol. 1976; 126: 251
  • Hempfling W. P., Mainzer S. E. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J. Bacteriol. 1975; 123: 1076
  • Farmer I. S., Jones C. W. The effect of temperature on the molar growth yield and maintenance requirement of Escherichia coli W during aerobic growth in continuous culture. FEBS Lett. 1976; 67: 359
  • Holms W. H., Hunter I. S., Wallace R. J. Maintenance energy of Escherichia coli during aerobic growth in continuously fed batch and chemostate cultures. J. Gen. Microbiol.
  • Schaefer D. M., Davis C. L., Bryant M. P. Ammonia saturation constants for predominant species of rumen bacteria. J. Dairy Sci. 1980; 63: 1248
  • Durand M., Kawashima R. Influence of minerals in rumen microbial digestion. Digestive Physiology and Metabolism in Ruminants, Y. Ruckebusch, P. Thivend. MTP Press Ltd., LancasterEngl. 1980; 375
  • Hoogenraad N. J., Hird F. J. R. Electron microscopic investigation of the flora of sheep alimentary tract. Aust. J. Biol. Sci. 1970; 23: 793
  • Hoogenraad N. J., Hird F. J. R., White R. G., Leng R. A. Utilization of 14C-labeled Bacillus subtilis and Escherichia coli by sheep. Br. J. Nutr. 1970; 24: 129
  • Jarvis B. D. W. Lysis of viable rumen bacteria in bovine rumen fluid. Appl. Microbiol. 1968; 16: 714
  • Lindsay J. R., Hogan J. P. Digestion of two legumes and rumen bacterial growth in defaunated sheep. Aust. J. Agric. Res. 1972; 23: 321
  • Demeyer D. I., Van Nevel C. J. Effect of defaunation on the metabolism of rumen microorganisms. Br. J. Nutr. 1979; 42: 515
  • Hoogenraad N. J., Hird F. J. R. Factors concerned in the lysis of bacteria in the alimentary tract of sheep. J. Gen. Microbiol. 1970; 62: 261
  • Adams J. C., Gazaway J. A., Brailsford M. D., Hartman P. A., Jacobson N. L. Isolation of bacteriophages from the bovine rumen. Experientia 1966; 32: 717
  • Hoogenraad N. J., Hird F. J. R., Holmes I., Millis N. F. Bacteriophages in rumen contents of sheep. J. Gen. Virol 1967; 1: 575
  • Paynter M. J. B., Ewert D. L., Chalupa W. Some morphological types of bacteriophages in bovine rumen contents. Appl. Microbiol. 1969; 18: 942
  • Orpin C. G., Munn E. A. The occurrence of bacteriophages in the rumen and their influence on rumen bacterial populations. Experientia 1974; 30: 1018
  • White R. W., Kemp P. Sheep rumen bacterial isolates which biohydrogenate unsaturated dietary fatty acids. J. Gen. Microbiol. 1971; 68: vi
  • Robinson J. P., Hungate R. E. Acholeplasma bactoclasticum sp.n., an anaerobic mycoplasma from the bovine rumen. Int. J. Syst. Bacteriol 1973; 23: 171
  • Hungate R. E. Interrelationships in the rumen microbiota. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, NewcastleEngl. 1970; 292
  • Blackburn T. H. Nitrogen metabolism in the rumen, in Physiology of Digestion in the Ruminant. 2nd Int. Symp. Physiology Digestion in Ruminant. 1965; 322–334
  • Allison M. J. Nitrogen metabolism of ruminal microorganisms. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, NewcastleEngl. 1970; 456
  • Chalupa W. Metabolic aspects of nonprotein nitrogen utilization in ruminant animals. Fed. Proc. 1972; 31: 1152
  • Smith R. H. Nitrogen metabolism in the rumen and the composition and nutritive value of nitrogen compounds entering the duodenum. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale, Aust. 1975; 399
  • Nolan J. V. Quantitative models of nitrogen metabolism in sheep. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ. Armidale, Aust. 1975; 416
  • Chalupa W. Rumen bypass and protection of proteins and amino acids. J. Dairy Sci. 1975; 58: 1198
  • Chalupa W., Scott G. C. Protein nutrition of growing cattle. Tracer studies on nonprotein nitrogen for ruminants. III. Int. At. Energy Agency, Vienna 1976; 13
  • Blackburn T. H., Hobson P. N. Proteolysis in the sheep rumen by whole and fractionated rumen contents. J. Gen. Microbiol. 1960; 22: 272
  • Wright D. E. Metabolism of peptides by rumen microorganisms. Appl. Microbiol. 1967; 15: 547
  • Nugent J. H. A., Mangan J. L. Characteristics of the rumen proteolysis of fraction 1(18S) leaf protein lucerne (Medicago sativa L.). Br. J. Nutr. 1981; 46: 39
  • Henderickx H., Martin J. In vitro study of the nitrogen metabolism in the rumen, Compte Rendu de Recherches. Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et 1′Agriculture, Bruxelles Jan. 31, 1963
  • Ørskov E. R., McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci., Cambridge 1979; 92: 499
  • Annison E. F. Nitrogen metabolism in the sheep. Biochem. J. 1956; 64: 705
  • Mangan J. L. Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids. Br. J. Nutr. 1972; 27: 261
  • Nugent J. H. A., Mangan J. L. Rumen proteolysis of fraction 1 leaf protein, casein, and bovine serum albumin. Proc. Nutr. Soc. 1978; 37: 48A
  • Mahadevan S., Erfle J. D., Sauer F. D. A colorimetric method for the determination of proteolytic degradation of feed proteins by rumen microorganisms. J. Anim. Sci. 1979; 48: 947
  • Wallace R. J., Unpublished observations
  • Mahadevan S., Erfle J. D., Sauer F. D. Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. J. Anim. Sci. 1980; 50: 723
  • Marshall R. D., Neuberger A. Hen's egg albumin. Glycoproteins2nd ed., A. Gottschalk. Elsevier, Amsterdam 1972; 732, part B
  • Lamport D. T. A. Hydroxyproline-O-glycosidic linkage of the plant cell wall glycoprotein extensin. Nature 1967; 216: 1322
  • Lamport D. T. A., Northcote D. H. Hydroxyproline in primary cell walls of higher plants. Nature 1960; 188: 665
  • Dougall D. K., Shimbayaski K. Factors affecting growth of tobacco callus tissue and its incorporation of tyrosine. Plant Physiol. 1960; 35: 396
  • Foster J. A., Rubin L., Kagan H. M., Franzblau C. Isolation and characterization of cross-linked peptides from elastin. J. Biol. Chem. 1974; 249: 6191
  • Guay M., Lamy F. The troublesome cross-links of elastin. Trends Biochem. Sci. 1979; 4: 160
  • Lamport D. T. A. The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochemistry 1969; 8: 1155
  • Lichtenwalner R. E., Ellis E. B., Rooney L. W. Effect of incremental dosages of the waxy gene of sorghum on digestibility. J. Anim. Sci. 1978; 46: 1113
  • Tamminga S. Protein degradation in the forestomachs of ruminants. J. Anim. Sci. 1979; 49: 1615
  • Chalupa W. Manipulating rumen fermentation. J. Anim. Sci. 1977; 45: 585
  • Chalupa W. Chemical control of rumen microbial metabolism. Digestive Physiology and Metabolism in Ruminants, Y. Ruckebusch, P. Thivend. MTP Press, LancasterEngl. 1980
  • Van Nevel C. J., Demeyer D. I. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 1977; 34: 251
  • Horton G. M. J. Ruminal effects of a deaminase inhibitor and monensin. Ann. Rech. Vet. 1979; 10: 335
  • Wallace R. J., Czerkawski J. W., Breckenridge G. Effect of monensin on the fermentation of basal rations in the Rumen Simulation Technique (RUSITEC). Br. J. Nutr. 1981; 46: 131
  • Ørskov E. R., Fraser C., McDonald I., Smart R. I. Digestion of concentrates in sheep. 5. The effect of adding fishmeal and urea together on protein digestion and utilization by young sheep. Br. J. Nutr. 1974; 31: 89
  • Nikolic J. A., Filipovic R. Degradation of maize protein in rumen contents. Influence of ammonia concentration. Br. J. Nutr. 1981; 45: 111
  • Appleby J. C. The isolation and classification of proteolytic bacteria from the rumen of sheep. J. Gen. Microbiol. 1955; 12: 526
  • Blackburn T. H., Hobson P. N. Isolation of proteolytic bacteria from the sheep rumen. J. Gen. Microbiol. 1960; 22: 282
  • Blackburn T. H., Hobson P. N. Breakdown of protein and proteolytic activity in the sheep rumen at different times after feeding. J. Gen. Microbiol. 1960; 22: 290
  • Cheng K-J., McCowan R. P., Costerton J. W. Adherent epithelial bacteria in ruminants and their roles in digestive tract function. Am. J. Clin. Nutr. 1979; 32: 139
  • McCowan R. P., Cheng K-J., Bailey C. B. M., Costerton J. W. Adhesion of bacteria to epithelial surfaces within the reticulorumen of cattle. Appl Environ. Microbiol. 1978; 35: 149
  • Wallace R. J., Cheng K-J., Dinsdale D., Ørskov E. R. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature (London) 1979; 279: 424
  • Dinsdale D., Cheng K-J., Wallace R. J., Goodlad R. A. Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep. Appl. Environ. Microbiol. 1980; 39: 1059
  • Blackburn T. H., Hobson P. N. Further studies on the isolation of proteolytic bacteria from the sheep rumen. J. Gen. Microbiol. 1962; 29: 69
  • Akkada Abou A. R., Blackburn T. H. Some observations on the nitrogen metabolism of rumen proteolytic bacteria. J. Gen. Microbiol. 1963; 31: 461
  • Fulghum R. S., Moore W. E. C. Isolation, enumeration and characteristics of proteolytic ruminal bacteria. J. Bacteriol. 1963; 85: 808
  • Hazlewood G. P., Nugent J. H. A. Leaf fraction 1 protein as a nitrogen source for the growth of a proteolytic rumen bacterium. J. Gen. Microbiol. 1978; 106: 369
  • Hazlewood G. P., Jones G. A., Mangan J. L. Hydrolysis of leaf fraction 1 protein by the proteolytic rumen bacterium Bacteroides ruminicola R8/4. J. Gen. Microbiol. 1981; 123: 223
  • Blackburn T. H. Protease production by Bacteroides amylophilus strain H18. J. Gen. Microbiol. 1968; 53: 27
  • Blackburn T. H., Hullah W. A. The cell-bound protease of Bacteroides amylophilus H18. Can. J. Microbiol. 1974; 20: 435
  • Lesk E. M., Blackburn T. H. Purification of Bacteroides amylophilus protease. J. Bacteriol. 1971; 106: 394
  • Blackburn T. H. The protease liberated from Bacteroides amylophilus strain H18 by mechanical disintegration. J. Gen. Microbiol. 1968; 53: 37
  • Mandelstam J. Protein turnover and its function in the economy of the cell. Ann. N. Y. Acad. Sci. 1963; 102: 621
  • Pine M. J. Turnover of intracellular proteins. Ann. Rev. Microbiol. 1972; 26: 103
  • Heald P. J., Oxford A. E. Fermentation of soluble sugars by anaerobic holotrich ciliate protozoa of the genera Isotricha and Dasytricha. Biochem. J. 1953; 53: 506
  • Owen R. W., Coleman G. S. The uptake and utilization of bacteria, amino acids and carbohydrates by the rumen ciliate Entodinium longinucleatum in relation to the sources of amino acids for protein synthesis. J. Appl. Bacteriol. 1977; 43: 67
  • Naga M. A., El Shazly K. The metabolic characterization of the ciliate protozoon Eudiplodinium medium from the rumen of buffalo. J. Gen Microbiol. 1968; 53: 305
  • Williams P. P., Davis R. E., Doetsch R. N., Guttierrez J. Physiological studies of the rumen ciliate Ophryoscolex caudatus Eberlein. Appl Microbiol. 1961; 9: 405
  • Mah R. A., Hungate R. E. Physiological studies on the rumen ciliate, Ophryoscolex purkynei (Stein). J. Protozool. 1965; 12: 131
  • Harmeyer J. Der Aminosäurenstoffwechsel isolierter Pansenprotozoenarten (Isotricha prostoma and J. intestinalis). 2. Mitteilung. Exkretion von Aminosauren. Z. Tierphysiol., Tiernahr. Futtermitielkunde 1971; 28: 75
  • Allison M. J. Biosynthesis of amino acids by ruminal microorganisms. J. Anim. Sci. 1969; 29: 797
  • Pittman K. A., Bryant M. P. Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol. 1964; 88: 401
  • Lev M. Glutamine-stimulated amino acid and peptide incorporation in Bacteroides melaninogenicus. J. Bacteriol. 1980; 143: 753
  • Pittman K. A., Lakshmanan S., Bryant M. P. Oligopeptide uptake by Bacteroides ruminicola. J. Bacteriol. 1967; 93: 1499
  • Stevenson R. M. W. Amino acid uptake systems in Bacteroides ruminicola. Can. J. Microbiol. 1979; 25: 1161
  • Robinson I. M., Allison M. J. Isoleucine biosynthesis from 2-methyl butyric acid by anaerobic bacteria from the rumen. J. Bacteriol. 1969; 97: 1220
  • Mathison G. W., Milligan L. P. Nitrogen metabolism in sheep. Br. J. Nutr. 1971; 25: 351
  • Chalupa W. Degradation of amino acids by the mixed rumen microbial population. J. Anim. Sci. 1976; 43: 828
  • Al-Rabbat M. F., Baldwin R. L., Weir W. C. In vitro nitrogen tracer technique for some kinetic measurements of ruminal ammonia. J. Dairy Sci. 1971; 54: 1150
  • Nolan J. V., Norton B. W., Leng R. A. Further studies on the dynamics of nitrogen metabolism in sheep. Br. J. Nutr. 1976; 35: 127
  • Broderick G. A., Balthrop J. E. Chemical inhibition of amino acid deamination by ruminal microbes in vitro. J. Anim. Sci. 1979; 49: 1101
  • Lewis D., Elsden S. R. The fermentation of l-threonine, l-serine, l-cysteine, and acrylic acid by a Gram negative coccus. Biochem. J. 1955; 60: 683
  • Bladen H. A., Bryant M. P., Doetsch R. N. A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Appl. Microbiol. 1961; 9: 175
  • Scheifinger C., Russell N., Chalupa W. Degradation of amino acids by pure cultures of rumen bacteria. J. Anim. Sci. 1976; 43: 821
  • Bryant M. P. Factors necessary for the growth of Bacteroides succinogenes in the volatile acid fraction of rumen fluid. J. Dairy Sci. 1955; 38: 340
  • Allison M. J., Bryant M. P., Doetsch R. N. Volatile fatty acid growth factor for cellulolytic cocci of bovine rumen. Science 1958; 128: 474
  • Bryant M. P., Robinson I. M. Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol. 1962; 84: 605
  • Dehority B. A., Scott H. W., Kowaluk P. Volatile fatty acid requirements of cellulolytic rumen bacteria. J. Bacteriol. 1967; 94: 537
  • Menahan L. A., Schultz L. H. Metabolism of leucine and valine within the rumen. J. Dairy Sci. 1964; 47: 1080
  • Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl. Microbiol. 1966; 14: 794
  • Allison M. J. Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl. Environ. Microbiol. 1978; 35: 872
  • Zelenak I., Varady J., Boda K., Havassy I. Relationship between ammonia and volatile fatty acid levels in the rumen of fasting sheep. Physiol Bohemosl. 1972; 21: 531
  • Lewis D. The interrelationships of individual proteins and carbohydrates during fermentation in the rumen of the sheep. J. Agric. Sci., Cambridge 1962; 58: 73
  • Wright D. E., Hungate R. E. Amino acid concentrations in rumen fluid. Appl. Microbiol. 1967; 15: 148
  • Wallace R. J. Effect of ammonia concentration on the composition, hydrolytic activity, and nitrogen metabolism of the microbial flora of the rumen. J. Appl Bacteriol. 1979; 47: 443
  • Lewis T. R., Emery R. S. Relative deamination rates of amino acids by rumen microorganisms. J. Dairy Sci. 1962; 45: 765
  • Nisman B. The Stickland reaction. Bacteriol Rev. 1954; 18: 16
  • El Shazly K. Degradation of protein in the rumen of the sheep. 2. The action of rumen microorganisms on amino acids. Biochem. J. 1952; 51: 647
  • Annison E. F., Lewis D. Metabolism in the Rumen. Methuen, London 1959
  • Ferguson K. A. The protection of dietary proteins and amino acids against microbial fermentation in the rumen. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale, Aust. 1975; 448
  • Clark J. H. Nitrogen metabolism in ruminants: protein solubility and rumen bypass of protein and amino acids. Protein Nutritional Quality of Foods and Feeds, M. Frideman. Marcel Dekker, New York 1975; Vol. I, part II261
  • Bryant M. P. Nutritional requirement of the predominant rumen cellulolytic bacteria. Fed. Proc. 1973; 32: 1809
  • Bryant M. P. Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. Am. J. Clin. Nutr. 1974; 27: 1313
  • Hullah W. A., Blackburn T. H. Uptake and incorporation of amino acids and peptides by Bacteroides amylophilus. J. Gen. Microbiol. 1971; 21: 187
  • Hume I. D. Synthesis of microbial protein in the rumen. II. Response to higher volatile fatty acids. Aust. J. Agric. Res. 1970; 21: 297
  • Hume I. D. Synthesis of microbial protein in the rumen. III. The effect of dietary protein. Aust. J. Agric. Res. 1970; 21: 305
  • Amos H. E., Evans J. Supplementary protein for low quality Bermuda grass diets and microbial protein synthesis. J. Anim. Sci. 1976; 43: 861
  • Teather R. M., Erfle J. D., Boila R. J., Sauer F. D. Effect of dietary nitrogen on the rumen microbial population in lactating dairy cattle. J. Appl. Bacteriol. 1980; 49: 231
  • Maeng W. J., Van Nevel C. J., Baldwin R. L., Morris J. C. Rumen microbial growth rates and yields: effects of amino acids and proteins. J. Dairy Sci. 1976; 59: 68
  • Maeng W. J., Baldwin R. L. Factors influencing rumen microbial growth rates and yields: effect of amino acid additions to a purified diet with nitrogen from urea. J. Dairy Sci. 1976; 59: 648
  • Van Horn H. H., Foreman C. F., Rodriguez J. E. Effect of high urea supplementation on feed intake and milk production of dairy cows. J. Dairy Sci. 1967; 50: 709
  • Van Horn H. H., Jacobsen D. R. Response of lactating cows to added increments of dietary protein and nonprotein nitrogen. J. Dairy Sci. 1971; 54: 379
  • Bakker I. T., Veen W. A. G. The protein-saving effects of urea starea and 1,1-diureidoisobutane when used in concentrates for high productive dairy cows. Z. Tierphysiol. Tieranahrung Futtermitt. 1977; 38: 261
  • Erfle J. D., Mahadevan S., Sauer F. D. Urea as a supplemental nitrogen source for lactating cows. Can. J. Anim. Sci. 1978; 58: 77
  • Huber J. T. Protein and nonprotein nitrogen utilization in practical dairy rations. J. Anim. Sci. 1975; 41: 934
  • Wohlt J. E., Clark J. W. Nutritional value of urea vs. preformed protein for ruminants. I. Lactation of dairy cows fed corn based diets containing supplemental nitrogen from urea and/or soybean meal. J. Dairy Sci. 1978; 51: 902
  • Sauer F. D., Erfle J. D., Mahadevan S., Lessard J. R. Urea in corn silage as a supplemental nitrogen source for lactating cows. Can. J. Anim. Sci. 1979; 59: 403
  • Pitzen D. F. Quantitative Microbial Protein Synthesis in the Bovine Rumen. Ph.D. thesis, Iowa State University, Ames 1974
  • Kropp J. R., Johnson R. R., Males J. R., Owens F. N. Microbial protein synthesis with low quality roughage rations: isonitrogenous substitution of urea for soybean meal. J. Anim. Sci. 1977; 46: 837
  • Virtanen A. I. Milk production of cows on protein-free feed. Science 1966; 153: 1603
  • Stevenson R., Silver S. Methylammonium uptake by Escherichia coli: evidence for a bacterial NH4+ transport system. Biochem. Biophys. Res. Commun. 1977; 75: 1133
  • Hackette S. L., Skye G. E., Burton C., Segel I. H. Characterization of an ammonium transport system in filamentous fungi with methyl ammonium 14C as the substrate. J. Biol. Chem. 1970; 245: 4241
  • Chalupa W., Clark J., Opliger P., Lavker R. Ammonia metabolism in rumen bacteria and mucosa from sheep fed soy protein or urea. J. Nutr. 1970; 100: 161
  • Niederman R. A., Wolin M. J. Arginine biosynthesis by Streptococcus bovis. J. Bacteriol. 1967; 94: 1002
  • Brown C. M., Macdonald-Brown D. S., Meers J. L. Physiological aspects of microbial inorganic nitrogen metabolism. Adv. Microb. Physiol. 1974; 11: 1
  • Dalton H. Utilization of inorganic nitrogen by microbial cells. Int. Rev. Biochem. 1979; 21: 227
  • Umbarger H. E. Regulation of amino acid metabolism. Ann. Rev. Biochem. 1969; 38: 323
  • Erfle J. D., Sauer F. D., Mahadevan S. Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J. Dairy Sci. 1977; 60: 1064
  • Smith C. J., Bryant M. P. Introduction to metabolic activities of intestinal bacteria. Am. J. Clin. Nutr. 1979; 32: 149
  • Hoshino S., Skatsuhara K., Morimotu K. Ammonia anabolism in ruminants. J. Dairy Sci. 1966; 49: 1523
  • Palmquist D. L., Baldwin R. L. Enzymatic techniques for the study of pathways of carbohydrate utilization in the rumen. Appl. Microbiol. 1966; 14: 60
  • Bhatia S. K., Pradhan K., Singh R. Ammonia anabolizing enzymes in cattle and buffalo fed varied nonprotein nitrogen and carbohydrates. J. Dairy Sci. 1980; 63: 1104
  • Bhatia S. K., Pradhan K., Singh R. Microbial transaminase activities and their relationship with bovine rumen metabolites. J. Dairy Sci. 1979; 62: 441
  • Shimbayashi K., Obara Y., Yonemura T. Pattern of free amino acids in rumen content and blood of sheep fed diets containing urea. Jpn. J. Zoolech. Sci. 1975; 46: 146
  • Shimbayashi K., Obara Y., Yonemura T. Changes of free amino acids during rumen fermentation and incorporation of urea-15N into microorganisms in vitro. Jpn. J. Zootech. Sci. 1975; 46: 243
  • Blake J. S., Salter D. N., Smith R. H. Synthesis of alanine from ammonia by rumen bacteria. Proc. Nutr. Soc. 1981; 40: 4A
  • Burchall J. J., Niederman R. A., Wolin M. J. Amino group formation and glutamate synthesis in Streptococcus bovis. J. Bacteriol. 1964; 88: 1038
  • Joyner A. E., Baldwin R. L. Enzymatic studies of pure cultures of rumen microorganisms. J. Bacteriol. 1966; 92: 1321
  • Griffith C. J., Carlsson J. Mechanism of ammonia assimilation in Streptococci. J. Gen. Microbiol. 1974; 82: 253
  • Wallace R. J., Henderson C. Ammonia assimilation by rumen microorganisms. Proc. Soc. Gen. Microbiol. 1978; 5: 102
  • Jenkinson H. F., Buttery P. J., Lewis D. Assimilation of ammonia by Bacteroides amylophilus in chemostat cultures. J. Gen. Microbiol. 1979; 113: 305
  • Smith C. J., Heaped R. B., Bryant M. P. Ammonia assimilation and glutamate formation in the anaerobic Selenomonas ruminantium. J. Bacteriol. 1980; 141: 593
  • Burchall J. J., Reichelt E. C., Wolin M. J. Purification and properties of the asparagine synthetase of Streptococcus bovis. J. Biol. Chem. 1964; 239: 1794
  • Satter L. D., Slyter L. L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974; 32: 199
  • Henderickx H. K. Quantitative aspects of the use of nonprotein nitrogen in ruminant feeding. Cuban J. Agric. Sci. 1976; 10: 1
  • Roffler R. E., Satter L. D. Relationship between ruminal ammonia and nonprotein nitrogen utilization by ruminants. I. Development of a model for predicting nonprotein nitrogen utilization by cattle. J. Dairy Sci. 1975; 58: 1880
  • Roffler R. E., Satter L. D. Relationship between ruminal ammonia and nonprotein nitrogen by ruminants. II. Application of published evidence to the development of a theoretical model for predicting nonprotein nitrogen utilization. J. Dairy Sci. 1975; 58: 1889
  • Satter L. D., Roffler R. E. Calculating requirements for protein and nonprotein nitrogen by ruminants. Proc. 2nd Int. Symp. Protein Metabolism and Nutrition. Center for Agricultural Publishing and Documentation, WageningenHolland 1977; 133
  • Allen S. A., Miller E. L. Determination of nitrogen requirement for microbial growth from the effect of urea supplementation of a low N diet on abomasal N flow and N recycling in wethers and lambs. Br. J. Nutr. 1976; 36: 353
  • Mehrez A. Z., Ørskov E. R., McDonald I. Rates of rumen fermentation in relation to ammonia concentration. Br. J. Nutr. 1977; 38: 437
  • Slyter L. L., Satter L. D., Dinius D. A. Effect of ruminal ammonia concentration on nitrogen utilization by steers. J. Anim. Sci. 1979; 48: 906
  • Ortega M. E., Stern M. D., Satter L. D. The effect of rumen ammonia concentration on dry matter disappearance in situ. J. Dairy Sci. 1979; 62: 76, Suppl., (Abstr.)
  • Oltjen R. R., Slyter L. L., Williams E. E., Kern D. L. Influence of the branched-chain volatile fatty acids and phenylacetate on ruminal microorganisms and nitrogen utilization by steers fed urea and isolated soy protein. J. Nutr. 1971; 101: 101
  • Miura H., Horiguchi M., Matsumoto T. Nutritional interdependence among rumen bacteria Bacteroides amylophilus, Megasphaera elsdenii and Ruminococcus albus. Appl. Environ. Microbiol. 1980; 40: 294
  • Bryant M. P., Wolin M. J. Rumen bacteria and their metabolic interactions. Proc. 1st Intersect. Cong. Int. Assoc. Microbiol. Soc, T. Hasegawa. Science Council of Jpn., Tokyo 1975; Vol. 2
  • Allison M. J., Robinson I. M. Biosynthesis of α-ketoglutarate by the reductive carboxylation of succinate in Bacteroides ruminicola. J. Bacteriol. 1970; 104: 50
  • Allison M. J., Robinson I. M., Baetz A. L. Synthesis of α-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonas and Bacteroides. J. Bacteriol. 1979; 140: 980
  • Milligan L. P. Carbon dioxide fixing pathways of glutamic acid synthesis in the rumen. Can. J. Biochem. 1970; 48: 463
  • Emmanuel B., Milligan L. P. Enzymes of the conversion of succinate to glutamate in extracts of rumen microorganisms. Can. J. Biochem. 1972; 50: 1
  • Allison M. J., Bucklin J. A., Robinson I. M. Importance of isovalerate carboxylation pathways of leucine biosynthesis in the rumen. Appl. Microbiol. 1966; 14: 807
  • Somerville H. J., Peel J. L. Tracer studies on the biosynthesis of amino acids from lactate by Peptostreptococcus elsdenii. Biochem. J. 1967; 105: 299
  • Sauer F. D., Erfle J. D., Mahadevan S. Amino acid biosynthesis in mixed rumen cultures. Biochem. J. 1975; 150: 357
  • Allison M. J. Phenylalanine biosynthesis from phenylacetic acid by anaerobic bacteria from the rumen. Biochem. Biophys. Res., Commun. 1965; 18: 30
  • Allison M. J., Robinson I. M. Tryptophan biosynthesis from indole-3-acetic acid by anaerobic bacteria from the rumen. Biochem. J. 1967; 102: 36P
  • Allison M. J., Peel J. L. The synthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola. Biochem. J. 1971; 121: 431
  • Allison M. J., Bryant M. P. Biosynthesis of branched-chain amino acids from branched-chain fatty acids by rumen bacteria. Arch. Biochem. Biophys. 1963; 101: 269
  • Allison M. J., Bryant M. P., Doetsch R. N. Studies on the metabolic function of branched-chain, volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine. J. Bacteriol 1962; 83: 523
  • Houpt T. R., Houpt K. A. Transfer of urea nitrogen across the rumen wall. Am. J. Physiol. 1968; 214: 1296
  • Boda K., Varady J., Havassey I. Utilization of urea-nitrogen-15 in ruminants. Tracer Studies on Nonprotein Nitrogen for Ruminants, III. Int. At. Energy Agency, Vienna 1976; 1
  • Houpt T. R. Transfer of urea and ammonia to the rumen. Physiology and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, NewcastleEng. 1970; 119
  • Chalmers M., Grant I., White F. Nitrogen passage through the wall of the ruminant digestive tract. Protein Metabolism and Nutrition, D. J. A. Cole, et al. Butterworths, London 1976; 159
  • von Engelhardt W., Hinderer S., Wipper E. Factors affecting the endogenous urea-N secretion and utilization in the gastrointestinal tract. Ruminant Digestion and Feed Evaluation, D. F. Osbourn, D. E. Beever, D. J. Thomson. ARC, London 1978; 4.1
  • Kennedy P. M. The effects of dietary sucrose and the concentrations of plasma urea and rumen ammonia on the degradation of urea in the gastrointestinal tract of cattle. Br. J. Nutr. 1980; 43: 125
  • Kennedy P. M., Milligan L. P. The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Can. J. Anim. Sci. 1980; 60: 205
  • Clarke R. T. J., Hungate R. E. Culture of the rumen holotrich ciliate Dasytricha ruminantium Schuberg. Appl. Microbiol. 1966; 14: 340
  • Farlin S. D., Brown R. E., Garrigus U. S. In vivo metabolism of biuret and urea by sheep. J. Anim. Sci. 1968; 27: 771
  • Cook A. R. Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J. Gen. Microbiol. 1976; 92: 32
  • Makkar H. P. S., Sharma O. P., Dawra R. K., Negi S. S. Effect of acetohydroxamic acid on rumen urease activity in vitro. J. Dairy Sci. 1981; 64: 643
  • Brent B. E., Adepoju A., Portela F. In vitro inhibition of rumen urease with acetohydroxamic acid. J. Anim. Sci. 1971; 32: 794
  • Brookes I. M., Owens F. N., Isaacs J., Brown R. E., Garrigus U. S. Urea and sodium bicarbonate metabolism by ruminants and by ruminal microorganisms. J. Anim. Sci. 1972; 35: 877
  • Mahadevan S., Sauer F., Erfle J. D. Studies on bovine rumen bacterial urease. J. Anim. Sci. 1976; 42: 745
  • Makkar H. P. S., Sharma O. P., Pal R. N., Negi S. S. In vitro inhibition of rumen urease by melon (Cucumis melo) seed urease inhibitor. J. Dairy Sci. 1980; 63: 785
  • Jones G. A., MacLeod R. A., Blackwood A. C. Ureolytic rumen bacteria II. Effect of inorganic ions on urease activity. Can. J. Microbiol. 1964; 10: 379
  • Fishbein W. N., Smith M. J., Nagarajan K., Scurzi W. The first natural nickel metalloenzyme. Fed. Proc. 1976; 35: 1680, (Abstr.)
  • Spears J. W., Smith C. J., Hatfield E. E. Rumen bacterial urease requirement for nickel. J. Dairy Sci. 1977; 60: 1073
  • Spears J. W., Hatfield E. E. Nickel for ruminants. I. Influence of dietary nickel on ruminal urease activity. J. Anim. Sci. 1978; 47: 1345
  • Jones G. A. Influence of acetohydroxamic acid on some activities in vitro of the mixed rumen biota. Can. J. Microbiol. 1968; 14: 409
  • Merino H., Raun N. S. Effect of chlortetracyline and urea on ruminal urease activity in sheep. J. Anim. Sci. 1964; 23: 884, (Abstr.)
  • Caffrey P. J., Hatfield E. E., Norton H. W., Garrigus U. S. Nitrogen metabolism in the ovine. I. Adjustment to a urea-rich diet. J. Anim. Sci. 1967; 26: 595
  • Gibbons R. J., McCarthy R. D. Obligately anaerobic urea-hydrolyzing bacteria in the bovine rumen. Univ. Maryland, Agric. Exp. Sin. Misc. Publ. 1957; 291: 12
  • Jones G. A., MacLeod R. A., Blackwood A. C. Ureolytic rumen bacteria: characteristics of the microflora from a urea-fed sheep. Can. J. Microbiol. 1964; 10: 371
  • Mann S. O., Masson F. M., Oxford A. E. Facultative anaerobic bacteria from the sheep's rumen. J. Gen. Microbiol. 1954; 10: 142
  • Mann S. O., Oxford A. E. Relationships between viable saccharolytic bacteria in rumen and abomasum of the young calf and kid. J. Gen. Microbiol. 1955; 12: 140
  • Muhrer M. E., Carroll E. J. Urea utilizing microorganisms in the rumen. J. Anim. Sci. 1964; 23: 885
  • Wyk L., Steyn P. L. Ureolytic bacteria in sheep rumen. J. Gen. Microbiol. 1975; 91: 225
  • Cook A. R. The elimination of urease activity in Streptococcus faecium as evidence for a plasmid-coded urease. J. Gen. Microbiol. 1976; 92: 49
  • Kennedy P. M., Clarke R. T. J., Milligan L. P. Influence of dietary sucrose and urea on transfer of endogenous urea to the rumen of sheep and numbers of epithelial bacteria. Br. J. Nutr. 1981; 46: 533
  • Mead L. J., Jones G. A. Isolation and identification of adherent bacteria (” epimural” bacteria) from the ovine rumen wall. Appl Environ. Microbiol. 1981; 41: 1020
  • Cheng K-J., Wallace R. J. The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. Br. J. Nutr. 1979; 42: 553
  • Gibbons R. J., Doetscb R. N. Physiological study of an obligately anaerobic ureolytic bacterium. J. Bacteriol. 1959; 77: 417
  • Elias A. The Rumen Bacteria of Animals Fed on a High-Molasses-Urea Diet. Ph.D. thesis, University of Aberdeen. 1971
  • Slyter L. L., Oltjen R. R., Kern D. L., Weaver J. M. Microbial species including ureolytic bacteria from the rumen of cattle fed purified diets. J. Nutr. 1968; 94: 185
  • John A., Isaacson H. R., Bryant M. P. Isolation and characteristics of a ureolytic strain of Selenomonas ruminantium. J. Dairy Sci. 1974; 57: 1003
  • Wozny M. A., Bryant M. P., Holdeman L. V., Moore W. E. C. Urease assay and urease-producing species of anaerobes in the bovine rumen and human faeces. Appl Environ. Microbiol. 1977; 33: 1097
  • Cook A. R. A chemically defined medium for the growth of a ureolytic strain of Streptococcus faecium. J. Gen. Microbiol. 1976; 97: 235
  • Barr M. E. J., Mann S. O., Richardson A. J., Stewart C. S., Wallace R. J. Establishment of ureolytic staphylococci in the rumen of gnotobiotic lambs. J. Appl Bacteriol. 1980; 49: 325
  • Coelho da Silva J. F., Seeley R. C., Beever D. E., Prescott J. H. D., Armstrong D. G. The effect in sheep of physical form and stage of growth on the sites of digestion of a dried grass. Br. J. Nutr. 1972; 28: 357
  • McAllan A. B., Smith R. H. Degradation of nucleic acids in the rumen. Br. J. Nutr. 1973; 29: 331
  • McAllan A. B., Smith R. H. Degradation of nucleic acid derivatives by rumen bacteria in vitro. Br. J. Nutr. 1973; 29: 467
  • Milham P. J., Awad A. S., Paull R. E., Bull J. H. Analysis of plants, soils, and waters for nitrate using an ion-selective electrode. Analyst 1970; 95: 751
  • Lewis D. The metabolism of nitrate and nitrite in the sheep. Biochem. J. 1951; 48: 175
  • Holtenius P. Nitrite poisoning in sheep, with special reference to she detoxification of nitrite in the rumen. Acta Agric. Scand. 1957; 7: 113
  • Jamieson N. D. Nitrate reduction in the rumen of the grazing sheep. N. Z. J. Agric. Res. 1959; 2: 96
  • Wang L. C., Garcia-Rivera J., Burris R. H. Metabolism of nitrate by cattle. Biochem. J. 1961; 81: 237
  • Jones G. A. Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol. 1972; 18: 1783
  • Nikolic J. A., Pavlicevic A., Zeremski D., Negovanovic D. Adaptation to diets containing significant amounts of nonprotein nitrogen. Physiology of Digestion and Metabolism in Ruminants, Y. Ruckebusch, P. Thivend. MTP Press Ltd., LancasterEngl 1980; 603
  • Oltjen R. R., Slyter L. L., Kozak A. S., Williams E. E. Evaluation of urea, biuret, urea phosphate, and uric acid as NPN sources for cattle. J. Nutr. 1968; 94: 193
  • Hill K. J., Mangan J. L. The formation and distribution of methylamine in the ruminant digestive tract. Biochem. J. 1964; 93: 39
  • Neill A. R., Grime D. W., Dawson R. M. C. Conversion of choline methyl groups through methylamine to methane in the rumen. Biochem. J. 1978; 170: 529
  • Itabashi H., Kandatsu M. Formation of methylamine by rumen microorganisms. Jpn. J. Zootech. Sci. 1978; 49: 110
  • Dawson R. M. C., Hemington N. Digestion of grass lipids and pigments in the sheep rumen. Br. J. Nutr. 1974; 32: 327
  • Broad T. E., Dawson R. M. C. Role of choline in the nutrition of the rumen protozoon Entodinium caudatum. J. Gen. Microbiol. 1976; 92: 391
  • Patterson J. A., Hespeli R. B. Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Curr. Microbiol. 1979; 3: 79
  • Moisio R., Kreula M., Virtanen A. E. Experiments on nitrogen fixation in cow's rumen. Suomen Kemistilehti B 1969; 42: 432
  • Hardy R. W. F., Holstein R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for nitrogen fixation: laboratory and field evaluation. Plant Physiol. 1968; 43: 1185
  • Granhall U., Ciszuk P. Nitrogen fixation in rumen contents indicated by the acetylene reduction test. J. Gen. Microbiol. 1971; 65: 91
  • Elleway R. F., Sabine J. R., Nicholas D. J. D. Acetylene reduction by rumen microflora. Arch. Mikrobiol. 1971; 76: 277
  • Hobson P. N., Summers R., Postgate J. R., Ware D. A. Nitrogen fixation in the rumen of a living sheep. J. Gen. Microbiol. 1973; 77: 225
  • Jones K., Thomas J. G. Nitrogen fixation by rumen contents of sheep. J. Gen. Microbiol. 1974; 85: 97
  • Carton G. A. The digestion and absorption of lipids in ruminant animals. World Rev. Nutr. Diet. 1967; 7: 225
  • Viviani R. Metabolism of long-chain fatty acids in the rumen. Adv. Lipid Res. 1970; 8: 267
  • Lough A. K. Aspects of lipid digestion in the ruminant. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, NewcastleEngl. 1970; 519
  • Dawson R. M. C., Kemp P. Biohydrogenation of dietary fats in ruminants. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, NewcastleEngl. 1970; 504
  • Keeney M. Lipid metabolism in the rumen. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, NewcastleEngl. 1970; 489
  • Garton G. A. Fatty acid metabolism in ruminants. International Review of Biochemistry of Lipids II, T. W. Goodwin. University Park Press, Baltimore 1977; Vol. 14: 337
  • Harfoot C. G. Lipid metabolism in the rumen. Prog. Lipid Res. 1978; 17: 21
  • Weenink R. O. Acetone-soluble lipids of grasses and other forage plants. I. Galactolipids of red clover ((Trifolium prateuse) leaves. J. Sci. Food Agric. 1961; 12: 34
  • Leat W. F. M., Harrison F. A. Digestion, absorption and transport of lipids in the sheep. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale, Aust. 1975; 481
  • Shorland F. B., Weenink R. O., Johns A. T. Effect of the rumen on dietary fat. Nature (London) 1955; 175: 1129
  • Garton G. A. Fatty acid composition of the lipids of pasture grasses. Nature (London) 1960; 187: 511
  • Katz I., Keeney M. Characterization of the octadecenoic acids in rumen digesta and rumen bacteria. J. Dairy Sci. 1966; 49: 962
  • Czerkawski J. W. Effect of storage on the fatty acids of dried ryegrass. Br. J. Nutr. 1967; 21: 599
  • Garton G. A., Hobson P. N., Lough A. K. Lipolysis in the rumen. Nature (London) 1958; 182: 1511
  • Dawson R. M. C., Hemington N., Hazlewood G. P. On the role of higher plant and microbial lipases in the ruminal hydrolysis of grass lipids. Br. J. Nutr. 1977; 38: 225
  • Garton G. A., Lough A. K., Vioque E. Glyceride hydrolysis and glycerol fermentation by sheep rumen contents. J. Gen. Microbiol. 1961; 25: 215
  • Hobson P. N., Mann S. O. The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. Gen. Microbiol. 1961; 25: 227
  • Henderson C. A study of the lipase of Anaerovibrio lipolytica: a rumen bacterium. J. Gen. Microbiol. 1971; 65: 81
  • Henderson C. The isolation and characterization of strains of lipolytic bacteria from the ovine rumen. J. Appl. Baaeriol. 1975; 39: 101
  • Hobson P. N., Summers H. Effect of growth rate on the lipase activity of a rumen bacterium. Nature (London) 1966; 209: 736
  • Henderson C. A study of the lipase of Anaerovibrio lipolytica: a rumen bacterium. Ph.D. thesis, University of Aberdeen. 1968
  • Hazlewood G., Dawson R. M. C. Characteristics of a lipolytic and fatty acid-requiring Butyri-vibrio sp. isolated from the ovine rumen. J. Gen. Microbiol. 1979; 112: 15
  • Latham M. J., Starry J. E., Sharpe M. E. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl. Microbiol. 1972; 24: 871
  • Hazlewood G. P., Dawson R. M. C. Isolation and properties of a phospholipid-hydrolyzing bacterium from ovine rumen fluid. J. Gen. Microbiol. 1975; 89: 163
  • Garton G. A. Aspects of lipid metabolism in ruminants. Metabolism and Physiological Significance of Lipids, R. M. C. Dawson, D. N. Rhodes. John Wiley & Sons, London 1964; 335
  • Kemp P., White R. W., Lander D. J. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 1975; 90: 100
  • Hazlewood G. P., Kemp P., Lander D., Dawson R. M. C. C18 unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolyze exogenous phospholipid. Br. J. Nutr. 1976; 35: 293
  • Polan C. E., McNeill J. J., Tove S. B. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol. 1964; 88: 1056
  • Wilde P. F., Dawson R. M. C. The biohydrogenation of α-linolenic acid and oleic acid by rumen microorganisms. Biochem. J. 1966; 98: 469
  • Kepler C. R., Hirons K. P., McNeill J. J., Tove S. B. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio ftbrisolvens. J. Biol. Chem. 1966; 241: 1350
  • Mills S. C., Scott T. W., Russell G. R., Smith R. M. Hydrogenation of C18 unsaturated fatty acids by pure cultures of a rumen micrococcus. Aust. J. Biol. Sci. 1970; 23: 1109
  • Sachan D. S., Davis C. L. Hydrogenation of linoleic acid by a rumen spirochete. J. Bacteriol. 1969; 98: 300
  • White R. W., Kemp P., Dawson R. M. C. Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic acid and linolenic acid. Biochem. J. 1970; 116: 767
  • Clarke D. G., Hawke J. C. Studies on rumen metabolism. 6. In vitro hydrolysis of triglyceride and isolation of a lipolytic fraction. J. Sci. Food Agric. 1970; 21: 446
  • Lough A. K. Component fatty acids of plasma lipids of lambs with and without rumen ciliate protozoa. Proc. Nutr. Soc. 1968; 27: 30A
  • Williams P. D., Dinusson W. E. Ruminal volatile fatty acid concentrations and weight gains of calves reared with and without ruminal ciliated protozoa. J. Anim. Sci. 1973; 36: 588
  • Dawson R. M. C., Kemp P. The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 1969; 115: 351
  • Chapula W. A., Kutches A. J. Biohydrogenation of linoleic-1-14C-acid by rumen protozoa. J. Anim. Sci. 1968; 27: 1502
  • Abaza M. A., Akkada Abou A. R., El Shazly K. Effect of rumen protozoa on dietary lipid in sheep. J. Agric. Sci. 1975; 85: 135
  • Allison M. J., Bryant M. P., Katz I., Keeney M. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J. Bacteriol. 1962; 83: 1084
  • Ifkovits R. W., Ragheb H. S. Cellular fatty acid composition and identification of rumen bacteria. Appl. Microbiol. 1968; 16: 1406
  • Klein R. A., Hazlewood G. P., Kemp P., Dawson R. M. C. A new series of long-chain dicarboxylic acids with vicinyl dimethyl branching found as major components of the lipids of Butyrivibrio spp. Biochem. J. 1979; 183: 691
  • Hazlewood G. P., Clarke N. G., Dawson R. M. C. Complex lipids of a lipolytic and general fatty acid-requiring Butyrivibrio sp. isolated from the ovine rumen. Biochem. J. 1980; 191: 555
  • Clarke N. G., Hazlewood G. P., Dawson R. M. C. Structure of diabolic acid-containing phospholipids isolated from Butyrivibrio sp. Biochem. J. 1980; 191: 561
  • Hazlewood G. P., Northrop A. J., Dawson R. M. C. Diabolic acids: occurrence and identification in natural products and their metabolism by simply stomached and ruminant animals. Br. J. Nutr. 1981; 45: 159
  • Hauser H., Hazlewood G. P., Dawson R. M. C. Membrane fluidity of a fatty acid auxotroph grown with palmitic acid. Nature (London) 1979; 279: 536
  • Clarke N. G., Hazlewood G. P., Dawson R. M. C. Novel lipids of Butyrivibrio sp. Chem. Phys. Lipids. 1976; 17: 222
  • Czerkawski J. W., Blaxter K. L., Wainman F. W. The metabolism of oleic, linoleic, and lino-lenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 1966; 20: 349
  • Brooks C. C., Garner C. B., Gehrke C. W., Muhrer M. E., Pfander W. H. The effect of added fat on the digestion of cellulose and protein by ovine rumen microorganisms. J. Anim. Sci. 1954; 13: 758
  • White T. W., Grainger R. B., Baker F. H., Stroud J. W. Effect of supplemental fat on digestion and the ruminal calcium requirement of sheep. J. Anim. Sci. 1958; 17: 797
  • Henderson C. The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci., Cambridge 1973; 81: 107
  • Prins R. A., Van Nevel C. J., Demeyer D. I. Pure culture studies of inhibitors for methanogenic bacteria. J. Antonie van Leeuwenhoek 1972; 38: 281
  • Shaw J. C., Ensor W. L. Effect of feeding cod liver oil and unsaturated fatty acids on rumen volatile fatty acids and milk fat content. J. Dairy Sci. 1959; 42: 1238
  • Demeyer D. I., Henderickx H. K. The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochim. Biophys. Acta. 1967; 137: 484
  • Stewart C. S. Some effects of phosphate and volatile fatty acid salts on the growth of rumen bacteria. J. Gen. Microbiol. 1975; 89: 319
  • Hungate R. E. Hydrogen as an intermediate in the rumen fermentation. Arch. Mikrobiol. 1967; 59: 158
  • Smith P. H., Hungate R. E. Isolation and characterization of Methanobacterium ruminantium n.sp. J. Bacteriol. 1958; 75: 713
  • Paynter M. J. B., Hungate R. E. Characterization of Melhanobacterium mobilis. J Bacteriol. 1968; 95: 1943
  • McArthur J. M., Miltimore J. E. Rumen gas analysis by gas-solid chromatography. Can. J. Anim. Sci. 1961; 41: 187
  • Czerkawski J. W., Breckenridge G. Determination of concentration of hydrogen and some other gases dissolved in biological fluids. Lab. Pract. 1971; 20: 403
  • Robinson J. A., Strayer R. F., Tiedje J. M. Method for measuring dissolved hydrogen in anaerobic ecosystems: application to the rumen. Appl. Environ. Microbiol. 1981; 41: 545
  • Hungate R. E., Smith W., Bauchop T., Yu I., Rabinowitz J. C. Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol. 1970; 102: 389
  • Czerkawski J. W., Harfoot C. G., Breckenridge G. The relationship between methane production and concentrations of hydrogen in the aqueous and gaseous phases during rumen fermentation in vitro. J. Appl. Bacteriol. 1972; 35: 537
  • Chung K.-T. An ecological significance of hydrogen utilization in methanogenesis. Abstracts, Annual General Meeting. American Society for Microbiology, 1972; 64
  • Chung K-T. Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appl. Environ. Microbiol. 1976; 31: 342
  • Iannotti E. L., Kafkewitz D., Wolin M. J., Bryant M. P. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of hydrogen. J. Bacteriol. 1973; 114: 1231
  • Latham M. J., Wolin M. J. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 1977; 34: 297
  • Scheifinger C. C., Linehan B., Wolin M. J. H 2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl. Microbiol. 1975; 29: 480
  • Russell G. R., Smith R. M. Reduction of heliotrine by a rumen microorganism. Aust. J. Biol. Sci. 1968; 21: 1277
  • Lanigan G. W. Metabolism of pyrrolizidine alkaloids in the ovine rumen. III. The competitive relationship between heliotrine metabolism and methanogenesis in rumen fluid in vitro. Aust. J. Agric. Res. 1971; 22: 123
  • Bauchop T. Inhibition of rumen methanogenesis by methane analogues. J. Bacteriol. 1967; 94: 171
  • Ruffner W. H., Wolin M. J. Effect of CCU on CH 4 and volatile acid production in continuous cultures of rumen organisms and in a sheep rumen. Appl. Microbiol. 1968; 16: 1955
  • Prins R. A., Seckles L. Effect of chloral hydrate on rumen metabolism. J. Dairy Sci. 1968; 51: 882
  • Howard B. H., Hungate R. E. Desulfovibrio of the sheep rumen. Appl. Environ. Microbiol. 1976; 32: 598
  • McInerney M. J., Bryant M. P. Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effects of hydrogen on acetate degradation. Appl. Environ. Microbiol. 1981; 41: 346
  • Bryant M. P., Tzeng S. F., Robinson I. M., Joyner A. E. Nutrient requirements of methanogenic bacteria. Adv. Chem. Ser. 1971; 105: 23
  • Opperman R. A., Nelson W. O., Brown R. E. In vitro studies on methanogenic rumen bacteria. J. Dairy Sci. 1957; 40: 779
  • Nelson W. O., Opperman R. A., Brown R. E. In vitro studies on methanogenic rumen bacteria. II. Fermentation of butyric and valeric acids. J. Dairy Sci. 1958; 41: 545
  • McInerney M. J., Bryant M. P., Pfennig N. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 1979; 122: 129
  • Boone D. R., Bryant M. P. Propionate-degrading bacterium Syntrophobacter wolinii sp. nov. gen nov. from methanogenic ecosystems. Appl. Environ. Microbiol. 1980; 40: 626
  • McInerney M. J., Mackie R. I., Bryant M. P. Syntrophic association of a butyrate-degrading bacterium and Methanosarcina enriched from bovine rumen fluid. Appl. Environ. Microbiol. 1981; 41: 826
  • McInerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 1981; 41: 1029
  • Hobson P. N., McDonald I. Methane production from acids in piggery-waste digesters. J. Chem. Technol. Biotechnol. 1980; 30: 405
  • Opperman R. A., Nelson W. O., Brown R. E. In vivo studies of methanogenesis in the bovine rumen: dissimilation of acetate. J. Gen. Microbiol. 1961; 25: 103
  • Rowe J. B., Loughnan M. L., Nolan J. V., Leng R. A. Secondary fermentation in the rumen of sheep given a diet based on molasses. Br. J. Nutr. 1979; 41: 393
  • Czerkawski J. W., Breckenridge G. Fermentation of various glycolytic intermediates and other compounds by rumen microorganisms, with particular reference to methane production. Br. J. Nutr. 1972; 27: 131
  • Bryant M. P., Wolin E. A., Wolin M. J., Wolfe N. S. Methanobacillus omelianskii a symbiotic association of two species of bacteria. Arch. Mikrobiol 1967; 59: 20
  • Kandler O., Hippe H. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Mikrobiol. 1978; 118: 141
  • Sprott G. D., McKellar R. C. Composition and properties of the cell wall of Methanospirillum hungatii. Can. J. Microbiol. 1980; 26: 115
  • Wolfe R. S. Microbial formation of methane. Adv. Microb. Physiol. 1971; 6: 107
  • Talapatra S. K., Ray S. C., Sen K. C. Calcium assimilation in ruminants on oxalate-rich diets. J. Agric. Sci., Cambridge. 1948; 38: 163
  • Watts P. S. Decomposition of oxalic acid in vitro by rumen contents. Aust. J. Agric. Res. 1957; 8: 266
  • Dodson M. E. Oxalate ingestion studies in the sheep. Aust. Vet. J. 1959; 35: 225
  • Dawson K. A., Allison M. J., Hartman P. A. Characteristics of anaerobic oxalate-degrading enrichment cultures from the rumen. Appl- Environ. Microbiol. 1980; 40: 840
  • Khambata S. R., Bhat J. V. Studies on a new oxalate-decomposing bacterium. Pseudomonas oxalaticus, J. Bacteriol. 1953; 66: 505
  • O'Halloran M. W. The effect of oxalate on bacteria isolated from the rumen. Proc. Aust. Soc. Anim. Prod. 1962; 4: 18
  • Allison M. J., Littledike E. T., James L. F. Changes in ruminal oxalate degradation rates associated with adaptation to oxalate ingestion. J. Anim. Sci. 1977; 45: 1173
  • James L. F., Butcher J. E. Halogeton poisoning of sheep: effect of high level oxalate intake. J. Anim. Sci. 1972; 35: 1233
  • Orpin C. G., Hall F. J. Attachment of the rumen holotrich protozoon Isotricha intestinalis to grass particles. Proc. Soc. Gen. Microbiol. 1977; 4: 82
  • Orpin C. G. Association of rumen ciliate protozoa with plant particles in vitro. Soc. Gen. Microbiol. Q. 1979; 7: 31
  • Orpin C. G. Chemotaxis in rumen ciliate protozoa. Soc. Gen. Microbiol. Q. 1979; 7: 32
  • Cheng K-J., Costerton J. W. The formation of microcolonies by rumen bacteria. Can. J. Microbiol. 1980; 26: 1104
  • Bauchop T., Clarke R. T. J., Newhook J. C. Scanning electron microscope study of bacteria associated with the rumen epithelium of sheep. Appl. Microbiol. 1975; 30: 668
  • Cheng K-J., Costerton J. W. Infrastructure of cell envelopes of bacteria of the bovine rumen. Appl. Microbiol. 1975; 29: 841
  • Sharpe M. E., Brock J. H., Phillips B. A. Glycerol teichoic acid as an antigenic determinant in a Gram negative bacterium Butyrivibrio fibrisolvens. J. Gen. Microbiol. 1975; 88: 355
  • Hewett M. J., Wicken A. J., Knox K. W., Sharpe M. E. Isolation of lipoteichoic acids from Butyrivibrio fibrisolvens. J. Gen. Microbiol. 1976; 94: 126
  • Kamio Y., Kanegasaki S., Takahashi H. Fatty acid and aldehyde compositions in phospholipids of Selenomonas ruminantium with reference to growth conditions. J. Gen. Appl. Microbiol. 1970; 16: 29
  • Kanagasaki S., Takahashi H. Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium. J. Bacteriol. 1967; 93: 456
  • Kamio Y., Kim K. C., Takahashi H. Glyceryl ether phospholipids in Selenomonas ruminantium. J. Gen. Appl. Microbiol. 1970; 16: 291
  • Kamio Y., Kim K. C., Takahashi H. Chemical structure of lipid A of Selenomonas ruminantium. J. Biochem. Tokyo 1971; 70: 187
  • Kamio Y., Kim K. C., Takahashi H. Characterization of lipid A, a component of lipolysaccharides from Selenomonas ruminantium. Agric. Biol. Chem. 1972; 36: 2425
  • Kamio Y., Kim K. C., Takahashi H. Identification of the basic structure of glycolipid from Selenomonas ruminantium as β-glucosaminy)-1,6-glucosamine. Agric. Biol. Chem. 1972; 36: 2195
  • Kamio Y., Takahashi H. Isolation and characterization of outer and inner membranes of Selenomonas ruminantium: lipid compositions. J. Bacteriol. 1980; 141: 888
  • Kamio Y., Takahashi H. Outer membrane proteins and cell surface structure of Selenomonas ruminantium. J. Bacteriol. 1980; 141: 899
  • Kamio Y., Itoh Y., Terawaki Y., Kusano T. Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. J. Bacteriol. 1981; 145: 122
  • Groleau D., Forsberg C. W. Cellulolytic activity of the rumen bacterium Bacteroides succino-genes. Can. J. Microbiol. 1981; 27: 517
  • Leatherwood J. M. Cellulase from Ruminococcus albus and mixed rumen microorganisms. Appl. Microbiol. 1965; 13: 771
  • Kopecny J., Wallace R. J. Location and some properties of proteolytic enzymes of rumen bacteria, Submitted for publication
  • Minato H., Suto T. Technique for fractionation of bacteria in rumen microbial ecosystem. IV. Attachment of rumen bacteria to cellulose powder and elution of bacteria attached to it. J. Gen. Appl. Microbiol. 1981; 27: 21
  • Morris J. G. The physiology of obligate anaerobiosis. Adv. Microb. Physiol. 1975; 12: 169
  • Morris J. G. Oxygen and the obligate anaerobe. J. Appl. Bacteriol. 1976; 40: 229
  • Morris J. G. Nature of oxygen toxicity in anaerobic microorganisms. Strategies oj Microbial Life in Extreme Environments, M. Shilo. Dahlem Konferenzen, Berlin 1979; 149
  • Wolfe R. S., Higgins I. J. Microbial biochemistry of methane — a study in contrasts. Int. Rev. Biochem. 1979; 21: 267
  • McLeod J. W., Gordon J. The problem of intolerance of oxygen by rumen bacteria. J. Pathol. Bacteriol. 1923; 23: 332
  • McCord J. M., Keele B. B., Fridovich I. An enzyme based theory of obligate anaerobiosis, the physiological function of superoxide dismutase. Proc. Natl. Acad. Sci., U.S.A. 1971; 68: 1024
  • Rolfe R. D., Hentges D. J., Campbell B. J., Barrett J. T. Factors related to the oxygen tolerance of anaerobic bacteria. Appl. Environ. Microbiol. 1978; 36: 306
  • Gregory E. M., Moore W. E. C., Holdeman L. V. Superoxide dismutase in anaerobes: survey. Appl. Environ. Microbiol. 1978; 35: 988
  • Holdeman L. V., Moore W. E. C. Anaerobe laboratory manual. V.P.I. Anaerobe Laboratory, Virginia Polytechnic Institute, Blacksburg, Va. 1972
  • Wimpenny J. W. T., Samah D. A. Some effects of oxygen on the growth and physiology of Selenomonas ruminantium. J. Gen. Microbiol. 1978; 108: 329
  • Broberg G. Measurements of the Redox potential in rumen contents, I. In vitro measurements on healthy animals. Nordisk Vet. 1957; 9: 918
  • Hoshino E., Frolander F., Carlsson J. Oxygen and the metabolism of Peptostreptococcus anaerobius VPI 4330–1. J. Gen. Microbiol. 1978; 107: 235
  • Russell J. B., Baldwin R. L. Comparison of substrate affinities among several rumen bacteria: a possible determinant of rumen bacterial competition. Appl. Environ. Microbiol. 1979; 37: 531
  • Russell J. B., Delfino F. J., Baldwin R. L. Effects of combinations of substrates on maximum growth rates of several rumen bacteria. Appl. Environ. Microbiol. 1979; 37: 544
  • Baldwin R. L., Lucas H. L., Cabrera R. Energetic relationships in the formation and utilization of fermentation end products. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, Newcastle 1970; 319
  • Baldwin R. L., Koong L. J., Ulyatt M. J. The formation and utilization of fermentation end products: mathematical models. Microbial Ecology of the Gut, R. T. J. Clarke, T. Bauchop. Academic Press, New York 1977; 347
  • Mertens D. R., Ely L. O. A dynamic model of fiber digestion and passage in the ruminant for evaluating forage quality. J. Anim. Sci. 1979; 49: 1085
  • Reichl J. R., Baldwin R. L. A rumen linear programming model for evaluation of concepts of rumen microbial function. J. Dairy Sci. 1976; 59: 439
  • Lysons R. T., Alexander T. J. L., Wellstead P. D. Nutrition and growth of gnotobiotic lambs. J. Agric. Sci., Cambridge. 1977; 88: 597
  • Hobson P. N., Mann S. O., Stewart C. S. Growth and rumen function of gnotobiotic lambs fed on starchy diets. J. Gen. Microbiol. 1981; 126: 219
  • Lysons R. T., Alexander T. J. L., Wellstead P. D., Hobson P. N., Mann S. O., Stewart C. S. Defined bacterial populations in the rumens of gnotobiotic lambs. J. Gen. Microbiol. 1976; 94: 257
  • Mann S. O., Stewart C. S. Establishment of a limited rumen flora in gnotobiotic lambs fed on a roughage diet. J. Gen. Microbiol. 1974; 84: 379
  • Hobson P. N., Mann S. O., Oxford A. E. Some studies on the occurrence and properties of a large Gram negative coccus from the rumen. J. Gen. Microbiol. 1958; 19: 463
  • Hobson P. N., Mann S. O. Experiments relating to the survival of bacteria introduced into the sheep rumen. J. Gen. Microbiol. 1961; 24: i
  • Mann S. O., Grant C., Hobson P. N. Interactions of E. coli and lactobacilli in gnotobiotic lambs. Microb. Lett. 1981; 15: 141
  • Sharpe M. E., Latham M. J., Reiter B. The immune response of the host animal to bacteria in the rumen and caecum. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale, Aust. 1977; 193
  • Smith R. H. Kale poisoning: the brassica anaemia factor. Vet. Rec. 1980; 107: 12
  • Cushnie G. H., Richardson A. J., Lawson W. J., Sharman G. A. M. Cerebrocortical necrosis in ruminants: effect of thiaminase type 1-producing Clostridium sporogenes in lambs. Vet. Rec. 1979; 105: 480
  • Leat W. M. F., Kemp P., Lysons R. J., Alexander T. J. L. Fatty acid composition in depot fats from gnotobiotic lambs. J. Agric. Sci., Cambridge. 1977; 88: 175
  • Lysons R. J., Alexander T. J. L., Wellstead P. D., Jennings I. W. Observations on the alimentary tract of gnotobiotic lambs. Res. Vet. Sci. 1976; 20: 70
  • Streeter C. L., Oltjen R. R., Slyter L. L., Fishbein W. N. Urea utilization in wethers receiving the urease inhibitor acetohydroxamic acid. J. Anim. Sci. 1969; 29: 88
  • Shimbayashi K., Yonemura T., Deguchi N., Nakanashi M. Effect of caprylohydroxamic acid on rumen content of sheep and intestinal content of rat. Jpn. J. Vet. Sci. 1973; 35: 425
  • Chalupa W., Chow A. W., Parish R. C. Chemical control of amino acid degradation by rumen microbes. Fed. Proc. 1976; 35: 258
  • Chalupa W., Patterson J. A., Chow A. W., Parish R. C. Deaminase inhibitor effects of animal performance. J. Anim. Sci. 1976; 43: 316
  • Chalupa W., Patterson J. A., Chow A. W., Parish R. C. Deaminase inhibitor effects on N-utilization. J. Anim. Sci. 1976; 43: 316
  • Stuart R. L., Shelling G. T., Mitchell G. E., Tucker R. E. Amino acid degradation in rumen bacteria. Abstr. Am. Soc. Anim. Sci. 1977; 260
  • Reid C. S. W., Clarke R. T. J., Cockrem F. R. M., Jones W. T., McIntosh J. T., Wright D. E. Physiological and genetic aspects of pasture (legume) bloat. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale, Aust. 1975; 524
  • Bartley E. E., Meyer R. M., Fina L. R. Feedlot or grain bloat. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale, Aust. 1975; 551
  • Gutierrez J., Davis R. E., Lindahl I. L., Warwick E. J. Bacterial changes in the rumen during the onset of feed-lot bloat of cattle and characteristics of Peptostreptococcus elsdenii n.sp. Appl. Microbiol. 1959; 7: 16
  • Cheng K.-J., Hironaka R., Costerton J. W. Release of bacterial alkaline phosphatase in the rumen of cattle fed a feedlot bloat-provoking diet or a hay diet. Can. J. Microbiol. 1976; 22: 764
  • Bartley E. E., Yadava I. S. Bloat in cattle. IV. The role of bovine saliva, plant mucilages, and animal mucins. J. Anim. Sci. 1961; 20: 648
  • Van Horn H. H., Bartley E. E. Bloat in cattle. I. Effect of bovine saliva and plant mucin on frothing rumen contents in alfalfa bloat. J. Anim. Sci. 1961; 20: 85
  • Mishra B. D., Fina L. R., Bartley E. E., Claydon T. J. Bloat in cattle. XI. The role of rumen aerobic (facultative) mucinolytic bacteria. J. Anim. Sci. 1967; 26: 606
  • Mishra B. D., Bartley E. E., Fina L. R., Bryant M. P. Bloat in cattle. XIV. Mucinolytic activity of several anaerobic rumen bacteria. J. Anim. Sci. 1968; 27: 1651
  • Bailey R. W., Oxford A. E. The nature of the capsular polysaccharides of the dextran-producing organisms Leuconostoc mesenteroides, L dextranicum and Streptococcus bovis. J. Gen. Microbiol. 1959; 20: 258
  • Hironaka R., Miltimore J. E., McArthur J. M., McGregor D. R., Smith E. S. Influence of particle size of concentrate on rumen conditions associated with feedlot bloat. Can. J. Anim. Sci. 1973; 53: 75
  • Laby R. H. Surface active agents in the rumen. Digestion and Metabolism in the Ruminant, I. W. McDonald, A. C. I. Warner. Univ. N. Engl. Publ., Armidale. Aust. 1975
  • Brown L. R., Johnston R. H., Jacobsen N. L., Homeyer P. C. Effects of administration of oils and of penicillin on incidence and severity of bloat and certain other responses of cattle. J. Anim. Sci. 1958; 17: 374
  • Meyer R. M., Bartley E. E. Bloat in cattle, XVI. Development and application of techniques for selecting drugs to prevent feedlot bloat. J. Anim. Sci. 1972; 34: 234
  • Eadie J. M., Mann S. O. Development of the rumen microbial population: high starch diets and instability. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, NewcastleEngl. 1970; 335
  • Mann S. O. Some effects on the rumen microorganisms of overfeeding a high barley ration. J. Appl. Bacteriol. 1970; 33: 403
  • van Gylswyk N. O. Activation of NAD-dependent lactate dehydrogenase in Butyrivibrio fibrisolvens by fructose 1,6-diphosphate. J. Gen. Microbiol. 1977; 99: 441
  • Counotte G. H. M., DeGroot M., Prins R. A. Kinetic parameters of lactate dehydrogenases of some rumen bacterial species, the anaerobic ciliate Isotricha prostoma and mixed rumen microorganisms. J. Antonie van Leeuwenhoek. 1980; 46: 363
  • Russell J. B., Dombrowski D. B. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 1980; 39: 604
  • Counotte G. H. M. Regulation of Lactate Metabolism in the Rumen. Doctoral thesis, Rijksuniversiteit of Utrecht. 1981
  • Czerkawski J. W. Methane production in the rumen and its significance. World Rev.
  • Prins R. A. Nutritional impact of intestinal drug-microbe interactions. Nutrition and Drug Interrelations. Academic Press, New York 1978; 189
  • Degani H., Delgavish G. A. 23Na and 7Li NMR studies of ion transport across the membrane of phosphotidylcholine vesicles. FEBS Lett. 1978; 90: 357
  • Whitlock R. H., White N. A., Rowland G. N., Plue R. Monensin toxicosis in horses: clinical manifestations. Proc. Assoc. Am. Equine Pract. 1979; 23: 473
  • Kemp J. Monensin poisoning in turkeys. Vet. Rec. 1978; 102: 467
  • Haney M. E., Hoehn M. M. Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrobial Agents and Chemotherapy Proc. 7th Interscience Conf. Antimicrobial Agents and Chemotherapy, G. L. Hobby. American Society for Microbiology, Ann Arbor, Mich. 1967; 349
  • Chen M., Wolin M. J. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol. 1979; 38: 72
  • Chalupa W., Corbett W., Brethour J. R. Effects of monensin and amicloral on rumen fermentation. J. Anim. Sci. 1980; 51: 170
  • Lemenager R. P., Owens F. N., Shockey B. J., Lusby K. S., Totusek R. Monensin effects on rumen turnover rate, 24 hr VFA pattern, nitrogen components and cellulose disappearance. J. Anim. Sci. 1978; 47: 255
  • Allen J. D., Harrison D. G. The effect of the dietary addition of monensin upon digestion in the stomachs of sheep. Proc. Nutr. Soc. 1979; 38: 32A
  • Fitzgerald P. R., Mansfield M. E. Ovine coccidiosis: effect of the antibiotic monensin against Eimeria ninakohlyatimovae and other naturally occurring coccidia of sheep. Am. J. Vet. Res. 1978; 39: 7
  • Hammond A. C., Carlson J. R., Breeze R. G. Monensin and the prevention of tryptophan-induced acute bovine pulmonary edema and emphysema. Science 1978; 201: 153
  • Yokoyama M. T., Carlson J. R. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro. Appl. Microbiol. 1974; 27: 540
  • Yokoyama M. T., Carlson J. R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979; 32: 173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.