1,419
Views
93
CrossRef citations to date
0
Altmetric
Review Article

Regulation of toxin production by Bacillus cereus and its food safety implications

, , , , , & show all
Pages 188-213 | Received 13 Nov 2010, Accepted 26 Jan 2011, Published online: 22 Mar 2011

References

  • Abriouel H, Maqueda M, Galvez A, Martinez-Bueno M, Valdivia E. (2002). Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48. Appl Environ Microbiol, 68, 1473–1477.
  • Agaisse H, Gominet M, Okstad OA, Kolsto AB, Lereclus D. (1999). PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol, 32, 1043–1053.
  • Agata N, Mori M, Ohta M, Suwan S, Ohtani I, Isobe M. (1994). A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol Lett, 121, 31–34.
  • Agata N, Ohta M, Arakawa Y, Mori M. (1995). The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology, 141, 983–988.
  • Agata N, Ohta M, Mori M. (1996). Production of an emetic toxin, cereulide, is associated with a specific class of Bacillus cereus. Curr Microbiol, 33, 67–69.
  • Agata N, Ohta M, Mori M, Isobe M. (1995). A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol Lett, 129, 17–20.
  • Agata N, Ohta M, Mori M, Shibayama K. (1999). Growth conditions of and emetic toxin production by Bacillus cereus in a defined medium with amino acids. Microbiol Immunol, 43, 15–18.
  • Agata N, Ohta M, Yokoyama K. (2002). Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int J Food Microbiol, 73, 23–27.
  • Alouf JE, Popoff MR. (2006). The comprehensive sourcebook of bacterial protein toxins third edition. Academic Press, Elsevier.
  • Altayar M, Sutherland AD. (2006). Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J Appl Microbiol, 100, 7–14.
  • American Public Health Association (1992). Compendium of methods for the microbiological examination of foods. (3rd ed.) Ann Arbor, MI: Edwards Brothers.
  • Andersson MA, Jaaskelainen EL, Shaheen R, Pirhonen T, Wijnands LM, Salkinoja-Salonen MS. (2004). Sperm bioassay for rapid detection of cereulide-producing Bacillus cereus in food and related environments. Int J Food Microbiol, 94, 175–183.
  • Apetroaie C, Andersson MA, Sproer C, Tsitko I, Shaheen R, Jaaskelainen EL, Wijnands LM, Heikkila R, Salkinoja-Salonen MS. (2005). Cereulide-producing strains of Bacillus cereus show diversity. Arch Microbiol, 184, 141–151.
  • Apetroaie-Constantin C, Shaheen R, Andrup L, Smidt L, Rita H, Salkinoja-Salonen MS. (2008). Environment driven cereulide production by emetic strains of Bacillus cereus. Int J Food Microbiol, 127, 60–67.
  • Aragon-Alegro LC, Palcich G, Lopes GV, Ribeiro VB, Landgraf M, Destro MT. (2008). Enterotoxigenic and genetic profiles of Bacillus cereus strains of food origin in Brazil. J Food Prot, 71, 2115–2118.
  • Aran N. (2001). The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a ‘sous-vide’ beef goulash under temperature abuse. Int J Food Microbiol, 63, 117–123.
  • Asano SI, Nukumizu Y, Bando H, Iizuka T, Yamamoto T. (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol, 63, 1054–1057.
  • Baida G, Budarina ZI, Kuzmin NP, Solonin AS. (1999). Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol Lett, 180, 7–14.
  • Baker JM, Griffiths MW. (1995). Evidence for increased thermostability of Bacillus cereus enterotoxin in milk. J Food Prot, 58, 443–445.
  • Baron F, Cochet MF, Grosset N, Madec MN, Briandet R, Dessaigne S, Chevalier S, Gautier M, Jan S. (2007). Isolation and characterization of a psychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid egg products. J Food Prot, 70, 2782–2791.
  • Beattie SH, Williams AG. (1999). Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett Appl Microbiol, 28, 221–225.
  • Beattie SH., Williams AG. (2002). Growth and diarrhoeagenic enterotoxin formation by strains of Bacillus cereus in vitro in controlled fermentations and in situ in food products and a model food system. Food Microbiol, 19, 329–340.
  • Beecher DJ, Schoeni JL, Wong AC. (1995). Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun, 63, 4423–4428.
  • Beecher DJ, Wong AC. (2000). Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology, 146, 3033–3039.
  • Beecher DJ, Wong AC. (1997). Tripartite hemolysin BL from Bacillus cereus - Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem, 272, 233–239.
  • Beuchat LR, Clavero MR, Jaquette CB. (1997). Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic Bacillus cereus in beef gravy. Appl Environ Microbiol, 63, 1953–1958.
  • Bischoff DS, Ordal GW. (1992). Identification and characterization of FliY, a novel component of the Bacillus subtilis flagellar switch complex. Mol Microbiol, 6, 2715–2723.
  • Bonerba E, Di Pinto A, Novello L, Montemurro F, Terio V, Colao V, Ciccarese G, Tantillo G. (2010). Detection of potentially enterotoxigenic food-related Bacillus cereus by PCR analysis. Int J Food Sci Tech, 45, 1310–1315.
  • Bottone EJ. (2010). Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev, 23, 382–398.
  • Brillard J, Lereclus D. (2004). Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Microbiology, 150, 2699–2705.
  • Brillard J, Susanna K, Michaud C, Dargaignaratz C, Gohar M, Nielsen-Leroux C, Ramarao N, Kolsto AB, Nguyen-The C, Lereclus D, Broussolle V. (2008). The YvfTU two-component system is involved in plcR expression in Bacillus cereus. BMC Microbiol, 8:183, [Online] Available at: http://www.biomedcentral.com/1471–2180/8/183. Accessed on 15 March 2010.
  • Broderick NA, Goodman RM, Handelsman J, Raffa KF. (2003). Effect of host diet and insect source on synergy of gypsy moth (Lepidoptera: Lymantriidae) mortality to Bacillus thuringiensis subsp kurstaki by zwittermicin A. Environ Entomol, 32, 387–391.
  • Budarina ZI, Nikitin DV, Zenkin N, Zakharova M, Semenova E, Shlyapnikov MG, Rodikova EA, Masyukova S, Ogarkov O, Baida GE, Solonin AS, Severinov K. (2004). A new Bacillus cereus DNA-binding protein, HlyIIR, negatively regulates expression of B. cereus haemolysin II. Microbiology, 150, 3691–3701.
  • Cadot C, Tran SL, Vignaud ML, De Buyser ML, Kolsto AB, Brisabois A, Nguyen-The C, Lereclus D, Guinebretiere MH, Ramarao N. (2010). InhA1, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains. J Clin Microbiol, 48, 1358–1365.
  • Callegan MC, Kane ST, Cochran DC, Novosad B, Gilmore MS, Gominet M, Lereclus D. (2005). Bacillus endophthalmitis: Roles of bacterial toxins and motility during infection. Invest Ophthalmol Vis Sci, 46, 3233–3238.
  • Carlin F, Fricker M, Pielaat A, Heisterkamp S, Shaheen R, Salonen MS, Svensson B, Nguyen-The C, Ehling-Schulz M. (2006). Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int J Food Microbiol, 109, 132–138.
  • Celandroni F, Ghelardi E, Pastore M, Lupetti A, Kolsto AB, Senesi S. (2000). Characterization of the chemotaxis fliY and cheA genes in Bacillus cereus. FEMS Microbiol Lett, 190, 247–253.
  • Ceuppens S, Boon N, Rajkovic A, Heyndrickx M, Van de Wiele T, Uyttendaele M. (2010). Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. J Microbiol Meth, 83, 202–210.
  • Chen JD, Lai SY, Huang SL. (1996). Molecular cloning, characterization, and sequencing of the hemolysin gene from Edwardsiella tarda. Arch Microbiol, 165, 9–17.
  • Choma C, Granum PE. (2002). The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiol Lett, 217, 115–119.
  • Choma C, Guinebretiere MH, Carlin F, Schmitt P, Velge P, Granum PE, Nguyen-The C. (2000). Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J Appl Microbiol, 88, 617–625.
  • Christiansson A, Naidu AS, Nilsson I, Wadstrom T, Pettersson HE. (1989). Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl Environ Microbiol, 55, 2595–2600.
  • Clavel T, Carlin F, Dargaignaratz C, Lairon D, Nguyen-The C, Schmitt P. (2007). Effects of porcine bile on survival of Bacillus cereus vegetative cells and Haemolysin BL enterotoxin production in reconstituted human small intestine media. J Appl Microbiol, 103, 1568–1575.
  • de Been M, Bart MJ, Abee T, Siezen RJ, Francke C. (2008). The identification of response regulator-specific binding sites reveals new roles of two-component systems in Bacillus cereus and closely related low-GC Gram-positives. Environ Microbiol, 10, 2796–2809.
  • de Been M, Francke C, Moezelaar R, Abee T, Siezen RJ. (2006). Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology, 152, 3035–3048.
  • Declerck N, Bouillaut L, Chaix D, Rugani N, Slamti L, Hoh F, Lereclus D, Arold ST. (2007). Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc Natl Acad Sci USA, 104, 18490–18495.
  • Del Torre M, Della CM, Stecchini ML. (2001). Prevalence and behaviour of Bacillus cereus in a REPFED of Italian origin. Int J Food Microbiol, 63, 199–207.
  • Delbrassinne L. (2010). The LC-MS2 as a quantitative tool to investigate the influence of growth parameters on cereulide production by Bacillus cereus in food. Food Micro 2010, The 22nd International ICFMH Symposium.
  • Deutscher J, Francke C, Postma PW. (2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev, 70, 939–1031.
  • Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J. (2005). Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol, 43, 4277–4279.
  • Dietrich R, Fella C, Strich S, Martlbauer E. (1999). Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl Environ Microbiol, 65, 4470–4474.
  • Dietrich R, Moravek M, Burk C, Granum PE, Martlbauer E. (2005). Production and characterization of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin complex. Appl Environ Microbiol, 71, 8214–8220.
  • Dommel MK, Frenzel E, Strasser B, Blochinger C, Scherer S, Ehling-Schulz M. (2010). Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Appl Environ Microbiol, 76, 1232–1240.
  • Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, Wendorff M, Losi A, Gartner W, Jaeger KE. (2007). Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol, 25, 443–445.
  • Duport C, Thomassin S, Bourel G, Schmitt P. (2004). Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Arch Microbiol, 182, 90–95.
  • Duport C, Zigha A, Rosenfeld E, Schmitt P. (2006). Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. J Bacteriol, 188, 6640–6651.
  • Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S. (2006a). Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol, 6:20, [Online] Available at http://www.biomedcentral.com/1471–2180/6/20, Accessed on 1 July 2009.
  • Ehling-Schulz M, Fricker M, Scherer S. (2004). Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol Lett, 232, 189–195.
  • Ehling-Schulz M, Guinebretiere MH, Monthan A, Berge O, Fricker M, Svensson B. (2006b). Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol Lett, 260, 232–240.
  • Esbelin J, Armengaud J, Zigha A, Duport C. (2009). ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: Evidence for multiple modes of binding for ResD and interaction with Fnr. J Bacteriol, 191, 4419–4426.
  • Esbelin J, Jouanneau Y, Armengaud J, Duport C. (2008). ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J Bacteriol, 190, 4242–4251.
  • Fagerlund A, Brillard J, Furst R, Guinebretiere MH, Granum PE. (2007). Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiol, 7:43, [Online] Available at http://www.biomedcentral.com/1471–2180/7/43, Accessed on 18 March 2010.
  • Fagerlund A, Lindbäck T, Granum PE. (2010). Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol, 10:304, [Online] Available at http://www.biomedcentral.com/1471–2180/10/304, Accessed on 26 January 2011.
  • Fagerlund A, Lindbäck T, Storset AK, Granum PE, Hardy SP. (2008). Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HIyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology, 154, 693–704.
  • Fagerlund A, Ween A, Lund T, Hardy SP, Granum PE. (2004). Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology, 150, 2689–2697.
  • Fermanian C, Lapeyre C, Fremy JM, Claisse M. (1996). Production of diarrheal toxin by selected strains of Bacillus cereus. Int J Food Microbiol, 30, 345–358.
  • Fermanian C, Lapeyre C, Fremy JM, Claisse M. (1997). Diarrhoeal toxin production at low temperature by selected strains of Bacillus cereus. J Dairy Res, 64, 551–559.
  • Finlay WJJ, Logan NA, Sutherland AD. (2000). Bacillus cereus produces most emetic toxin at lower temperatures. Lett Appl Microbiol, 31, 385–389.
  • Finlay WJJ, Logan NA, Sutherland AD. (2002). Bacillus cereus emetic toxin production in relation to dissolved oxygen tension and sporulation. Food Microbiol, 19, 423–430.
  • Foegeding PM, Berry ED. (1997). Cold temperature growth of clinical and food isolates of Bacillus cereus. J Food Prot, 60, 1256–1258.
  • Fricker M, Messelhausser U, Busch U, Scherer S, Ehling-Schulz M. (2007). Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl Environ Microbiol, 73, 1892–1898.
  • Garcia-Arribas ML, Kramer JM. (1990). The effect of glucose, starch, and pH on growth, enterotoxin and haemolysin production by strains of Bacillus cereus associated with food poisoning and non-gastrointestinal infection. Int J Food Microbiol, 11, 21–33.
  • Ghelardi E, Celandroni F, Salvetti S, Beecher DJ, Gominet M, Lereclus D, Wong AC, Senesi S. (2002). Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J Bacteriol, 184, 6424–6433.
  • Ghelardi E, Celandroni F, Salvetti S, Ceragioli M, Beecher DJ, Senesi S, Wong AC. (2007). Swarming behavior of and hemolysin BL secretion by Bacillus cereus. Appl Environ Microbiol, 73, 4089–4093.
  • Gilmore MS, Cruzrodz AL, Leimeisterwachter M, Kreft J, Goebel W. (1989). A Bacillus cereus cytolytic determinant, cereolysin A, which comprises the phospholipase-C and sphingomyelinase genes–Nucleotide sequence and genetic linkage. J Bacteriol, 171, 744–753.
  • Gilois N, Ramarao N, Bouillaut L, Perchat S, Aymerich S, Nielsen-Leroux C, Lereclus D, Gohar M. (2007). Growth-related variations in the Bacillus cereus secretome. Proteomics, 7, 1719–1728.
  • Gohar M, Faegri K, Perchat S, Ravnum S, Okstad OA, Gominet M, Kolsto AB, Lereclus D. (2008). The PlcR virulence regulon of Bacillus cereus. PLoS One, 3, [Online] Available at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal. pone.0002793, Accessed on 1 July 2010.
  • Gominet M, Slamti L, Gilois N, Rose M, Lereclus D. (2001). Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol, 40, 963–975.
  • Gore HM, Wakeman CA, Hull RM, McKillip JL. (2003). Real-time molecular beacon NASBA reveals hblC expression from Bacillus spp. in milk. Biochem Bioph Res Comm, 311, 386–390.
  • Granum PE, Brynestad S, Osullivan K, Nissen K. (1993). Enterotoxin from Bacillus cereus: production and biochemical characterization. Neth Milk Dairy J, 47, 63–70.
  • Granum PE, O’Sullivan K, Lund T. (1999). The sequence of the non-haemolytic enterotoxin operon from Bacillus cerceus. FEMS Microbiol Lett, 177, 225–229.
  • Guinebretiere MH, Broussolle V, Nguyen-The C. (2002). Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol, 40, 3053–3056.
  • Guinebretière MH, Velge P, Couvert O, Carlin F, Debuyser ML, Nguyen-The C. (2010). Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (Groups I to VII) rather than species affiliation. J Clin Microbiol, 48, 3388–3391.
  • Gygi D, Bailey MJ, Allison C, Hughes C. (1995). Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Mol Microbiol, 15, 761–769.
  • Haggblom MM, Apetroaie C, Andersson MA, Salkinoja-Salonen MS. (2002). Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl Environ Microbiol, 68, 2479–2483.
  • Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett NA, Fawcett JJ, Glavina T, Goodwin LA, Green LD, Hill KK, Hitchcock P, Jackson PJ, Keim P, Kewalramani, AR, Longmire J, Lucas S, Malfatti S, McMurry K, Meincke LJ, Misra M, Moseman BL, Mundt M, Munk AC, Okinaka RT, Parson-Quintana B, Reilly LP, Richardson P, Robinson DL, Rubin E, Saunders E, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Ticknor LO, Wills PL, Brettin TS, Gilna P. (2006). Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol, 188, 3382–3390.
  • Hansen BM, Hoiby PE, Jensen GB, Hendriksen NB. (2003). The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiol Lett, 223, 21–24.
  • Hardy SP, Lund T, Granum PE. (2001). CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol Lett, 197, 47–51.
  • Harvie DR, Ellar DJ. (2005). A ferric dicitrate uptake system is required for the full virulence of Bacillus cereus. Curr Microbiol, 50, 246–250.
  • Harvie DR, Vilchez S, Steggles JR, Ellar DJ. (2005). Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology, 151, 569–577.
  • Heierson A, Siden I, Kivaisi A, Boman HG. (1986). Bacteriophage-resistant mutants of Bacillus thuringiensis with decreased virulence in pupae of Hyalophora cecropia. J Bacteriol, 167, 18–24.
  • Heinrichs JH, Beecher DJ, Macmillan JD, Zilinskas BA. (1993). Molecular cloning and characterization of the hbla cene encoding the B-component of Hemolysin Bl from Bacillus cereus. J Bacteriol, 175, 6760–6766.
  • Horwood PF, Burgess GW, Oakey HJ. (2004). Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. FEMS Microbiol Lett, 236, 319–324.
  • Hoton FM, Andrup L, Swiecicka I, Mahillon J. (2005). The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology, 151, 2121–2124.
  • Hoton FM, Fornelos N, N’Guessan E, Hu XM, Swiecicka I, Dierick K, Jaaskelainen E, Salkinoja-Salonen M, Mahillon J. (2009). Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ Microbiol Reports, 1, 177–183.
  • Hueck CJ. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev, 62, 379–433.
  • Ikezawa H, Mori M, Ohyabu T, Taguchi R. (1978). Studies on sphingomyelinase of Bacillus cereus.1. Purification and Properties. Biochim Biophys Acta, 528, 247–256.
  • Ikezawa H, Yamanegi M, Taguchi R, Miyashita T, Ohyabu T. (1976). Studies on phosphatidylinositol phosphodiesterase (Phospholipase-C type) of Bacillus cereus.1. Purification, Properties and Phosphatase-Releasing Activity. Biochim Biophys Acta, 450, 154–164.
  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich, SD, Overbeek R, Kyrpides N. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 423, 87–91.
  • Jaaskelainen EL, Haggblom MM, Andersson MA, Salkinoja-Salonen MS. (2004). Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food. Int J Food Microbiol, 96, 75–83.
  • Jaaskelainen EL, Haggblom MM, Andersson MA, Vanne L, Salkinoja-Salonen MS. (2003). Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: quantitative analysis by chemical and biological methods. J Food Prot, 66, 1047–1054.
  • Khan SR, Banerjee-Bhatnagar N. (2002). Loss of catabolite repression function of HPr, the phosphocarrier protein of the bacterial phosphotransferase system, affects expression of the crv4A toxin gene in Bacillus thuringiensis subsp israelensis. J Bacteriol, 184, 5410–5417.
  • Kim JB, Kim JM, Kim SY, Kim JH, Park YB, Choi NJ, Oh DH. (2010). Comparison of enterotoxin production and phenotypic characteristics between emetic and enterotoxic Bacillus cereus. J Food Prot, 73, 1219–1224.
  • Langeveld LPM, van Spronsen WA, van Beresteijn ECH, Notermans SHW. (1996). Consumption by healthy adults of pasteurized milk with a high concentration of Bacillus cereus: A double-blind study. J Food Prot, 59, 723–726.
  • Lapidus A, Goltsman E, Auger S, Galleron N, Segurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, Sanchis V, Nguen-The C, Lereclus D, Richardson P, Wincker P, Weissenbach J, Ehrlich SD, Sorokin A. (2008). Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact, 171, 236–249.
  • Lereclus D, Agaisse H, Grandvalet C, Salamitou S, Gominet M. (2000). Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int J Med Microbiol, 290, 295–299.
  • Lindbäck T, Fagerlund A, Rodland MS, Granum PE. (2004). Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology, 150, 3959–3967.
  • Lindbäck T, Hardy SP, Dietrich R, Sodring M, Didier A, Moravek M, Fagerlund A, Bock S, Nielsen C, Casteel M, Granum PE, Martlbauer E. (2010). Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect Immun, 78, 3813–3821.
  • Lindbäck T, Okstad OA, Rishovd AL, Kolsto AB. (1999). Insertional inactivation of hblC encoding the L-2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology, 145, 3139–3146.
  • Lücking G, Dommel MK, Scherer S, Fouet A, Ehling-Schulz M. (2009). Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology, 155, 922–931.
  • Lund T, De Buyser ML, Granum PE. (2000). A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol, 38, 254–261.
  • Luxananil P, Butrapet S, Atomi H, Imanaka T, Panyim S. (2003). A decrease in cytotoxic and haemolytic activities by inactivation of a single enterotoxin gene in Bacillus cereus Cx5. World J Microb Biot, 19, 831–837.
  • Macfarlane S, Hopkins MJ, Macfarlane GT. (2001). Toxin synthesis and mucin breakdown are related to swarming phenomenon in Clostridium septicum. Infect Immun, 69, 1120–1126.
  • Macnab RM. (2003). How bacteria assemble flagella. Annu Rev Microbiol, 57, 77–100.
  • Mahakarnchanakul W, Beuchat LR. (1999). Influence of temperature shifts on survival, growth, and toxin production by psychrotrophic and mesophilic strains of Bacillus cereus in potatoes and chicken gravy. Int J Food Microbiol, 47, 179–187.
  • Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S. (1997). Fulminant liver failure in association with the emetic toxin of Bacillus cereus. New Engl J Med, 336, 1142–1148.
  • Martinez-Blanch JF, Sanchez G, Garay E, Aznar R. (2009). Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. Int J Food Microbiol, 135, 15–21.
  • Messelhausser U, Kampf P, Fricker M, Ehling-Schulz M, Zucker R, Wagner B, Busch U, Holler C. (2010). Prevalence of emetic Bacillus cereus in different ice creams in Bavaria. J Food Prot, 73, 395–399.
  • Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J. (1995). Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus Uw85. Appl Microbiol Biot, 43, 685–691.
  • Modrie P, Beuls E, Mahillon J. (2010). Differential transfer dynamics of pAW63 plasmid among members of the Bacillus cereus group in food microcosms. J Appl Microbiol, 108, 888–897.
  • Mols M, Pier I, Zwietering MH, Abee T. (2009). The impact of oxygen availability on stress survival and radical formation of Bacillus cereus. Int J Food Microbiol, 135, 303–311.
  • Moravek M, Dietrich R, Buerk C, Broussolle V, Guinebretiere MH, Granum PE, Nguyen-The C, Martlbauer E. (2006). Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol Lett, 257, 293–298.
  • Mossel DA, Corry J, Struijk C, Baird R. (1995). Essentials of the microbiology of food - A textbook for advanced studies. West Sussex, England: John Wiley Sons Ltd.
  • Munsch-Alatossava P, Gursoy O, Alatossava T. (2010). Potential of nitrogen gas (N-2) to control psychrotrophs and mesophiles in raw milk. Microbiol Res, 165, 122–132.
  • Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikarn C, Ohba M, Assavanig A, Panbangred W. (2008). Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol, 121, 352–356.
  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng, 10, 1–6.
  • O’Brien DK, Melville SB. (2004). Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. Infect Immun, 72, 5204–5215.
  • Okstad OA, Gominet M, Purnelle B, Rose M, Lereclus D, Kolsto AB. (1999). Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology, 145, 3129–3138.
  • Oroojalian F, Kasra-Kermanshahi R, Azizi M, Bassami MR. (2010). Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem, 120, 765–770.
  • Otnaess AB, Little C, Sletten K, Wallin R, Johnsen S, Flengsrud R, Prydz H. (1977). Some characteristics of phospholipase-C from Bacillus cereus. Eur J Biochem, 79, 459–468.
  • Ouhib O, Clavel T, Schmitt P. (2006). The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr Microbiol, 53, 222–226.
  • Ouhib-Jacobs O, Lindley ND, Schmitt P, Clavel T. (2009). Fructose and glucose mediates enterotoxin production and anaerobic metabolism of Bacillus cereus ATCC14579(T). J Appl Microbiol, 107, 821–829.
  • Ouoba LII, Thorsen L, Varnam, AH. (2008). Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int J Food Microbiol, 124, 224–230.
  • Paananen A, Mikkola R, Sareneva T, Matikainen S, Hess M, Andersson M, Julkunen I, Salkinoja-Salonen MS, Timonen T. (2002). Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clin Exp Immunol., 129, 420–428.
  • Park YB, Kim JB, Jin YG, Oh DH. (2008). Effect of temperatures on the enterotoxin production of Bacillus cereus in cereal grains. Food Sci Biot, 17, 824–828.
  • Priest, FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ. (2004). Population structure and evolution of the Bacillus cereus group. J Bacteriol, 186, 7959–7970.
  • Priha O, Hallamaa K, Saarela M, Raaska L. (2004). Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR. J Ind Microbiol Biotechnol, 31, 161–169.
  • Rahmati T, Labbe R. (2008). Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. J Food Prot, 71, 1178–1185.
  • Rajkovic A, Uyttendaele M, Debevere J. (2005). Impact of non typical food matrice and cell density on Bacillus cereus emetic toxin production. Commun Agric Appl Biol Sci, 70, 11–13.
  • Rajkovic A, Uyttendaele M, Deley W, Van Soom A, Rijsselaere T, Debevere J. (2006a). Dynamics of boar semen motility inhibition as a semi-quantitative measurement of Bacillus cereus emetic toxin (Cereulide). J Microbiol Meth, 65, 525–534.
  • Rajkovic A, Uyttendaele M, Ombregt SA, Jaaskelainen E, Salkinoja-Salonen M, Debevere J. (2006b). Influence of type of food on the kinetics and overall production of Bacillus cereus emetic toxin. J Food Prot, 69, 847–852.
  • Rajkovic A, Uyttendaele M, Vermeulen A, Andjelkovic M, Fitz-James I, in ‘,t Veld P, Denon Q, Verhe R, Debevere J. (2008). Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett Appl Microbiol, 46, 536–541.
  • Ramarao N, Lereclus D. (2006). Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect, 8, 1483–1491.
  • Rasko DA, Altherr MR, Han CS, Ravel J. (2005a). Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev, 29, 303–329.
  • Rasko DA, Myers GSA, Ravel J. (2005b). Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinformatics, 6:2, [Online] Available at http://www.biomedcentral.com/1471–2105/6/2, Accessed on 8 November 2010.
  • Rasko, DA, Ravel J, Okstad OA, Helgason E, Cer RZ, Jiang LX, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV, Kolonay J, Nelson WC, Kolsto AB, Fraser CM, Read TD. (2004). The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res, 32, 977–988.
  • Reekmans R, Stevens P, Vervust T, de Vos P. (2008). An alternative real-time PCR method to detect the Bacillus cereus group in naturally contaminated food gelatine: a comparison study. Lett Appl Microbiol, 48, 97–104.
  • Richardson K. (1991). Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models. Infect Immun, 59, 2727–2736.
  • Rowan NJ. (1999). Evidence that inimical food-preservation barriers alter microbial resistance, cell morphology and virulence. Trends Food Sci Tech, 10, 261–270.
  • Rowan NJ, Anderson JG. (1997). Maltodextrin stimulates growth of Bacillus cereus and synthesis of diarrheal enterotoxin in infant milk formulae. Appl Environ Microbiol, 63, 1182–1184.
  • Rowan NJ, Anderson JG. (1998). Diarrhoeal enterotoxin production by psychrotrophic Bacillus cereus present in reconstituted milk-based infant formulae (MIF). Lett Appl Microbiol, 26, 161–165.
  • Ryan PA, Macmillan JD, Zilinskas BA. (1997). Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J Bacteriol, 179, 2551–2556.
  • Saile E, Koehler TM. (2002). Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol, 184, 370–380.
  • Salamitou S, Ramisse F, Brehelin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D. (2000). The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology, 146, 2825–2832.
  • Samapundo S, Everaert H, Wandutu JN, Rajkovic A, Uyttendaele M, Devlieghere F. (2010). The influence of headspace and dissolved oxygen level on growth and haemolytic BL enterotoxin production of a psychrotolerant Bacillus weihenstephanensis isolate on potato based ready-to-eat food products. Food Microbiol, in press.
  • Samapundo S, Heyndrickx M, Xhaferi R, Ceuppens S, De Jonghe V, Van Coillie E, Uyttendaele M, Devlieghere F. (2009). Incidence, growth and toxin production of Bacillus cereus isolates in ready-to-eat/cook foods produced by Belgian food companies. Sporeforming bacteria in food 2009, 57–59.
  • Schoeni JL, Wong AC. (1999). Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int J Food Microbiol, 53, 159–167.
  • Seidl K, Bischoff M, Berger-Bachi B. (2008). CcpA Mediates the Catabolite Repression of tst in Staphylococcus aureus. Infect Immun, 76, 5093–5099.
  • Seidl K, Muller S, Francois P, Kriebitzsch C, Schrenzel J, Engelmann S, Bischoff M, Berger-Bachi B. (2009). Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol, 9:95, [Online] Available at http://www.biomedcentral.com/1471–2180/9/95, Accessed on 8 November 2010.
  • Senesi S, Celandroni F, Salvetti S, Beecher DJ, Wong AC, Ghelardi E. (2002). Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology, 148, 1785–1794.
  • Shadrin AM, Shapyrina EV, Siunov AV, Severinov KV, Solonin AS. (2007). Bacillus cereus pore-forming toxins hemolysin II and cytotoxin K: Polymorphism and distribution of genes among representatives of the cereus group. Microbiology, 76, 405–412.
  • Shaheen R, Andersson MA, Apetroaie C, Schulz A, Ehling-Schulz M, Ollilainen VM, Salkinoja-Salonen MS. (2006). Potential of selected infant food formulas for production of Bacillus cereus emetic toxin, cereulide. Int J Food Microbiol, 107, 287–294.
  • Shannon JG, Ross CL, Koehler TM, Rest RF. (2003). Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect immun, 71, 3183–3189.
  • Shinagawa K. (1993). Serology and characterization of toxigenic Bacillus cereus. Neth Milk Dairy J, 47, 89–103.
  • Shinagawa K, Ueno Y, Hu D, Ueda S, Sugii S. (1996). Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. J Vet Med Sci, 58, 1027–1029.
  • Shiota M, Saitou K, Mizumoto H, Matsusaka M, Agata N, Nakayama M, Kage M, Tatsumi S, Okamoto A, Yamaguchi S, Ohta M, Hata D. (2010). Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics, 125, E951–E955.
  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J. (1998). Target range of Zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol, 37, 6–11.
  • Slamti L, Lereclus D. (2002). A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J, 21, 4550–4559.
  • Spira WM, Silverman GJ. (1979). Effects of Glucose, pH, and dissolved-oxygen tension on Bacillus cereus growth and permeability factor production in batch culture. Appl Environ Microbiol, 37, 109–116.
  • Stabb EV, Jacobson LM, Handelsman J. (1994). Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol, 60, 4404–4412.
  • Stenfors Arnesen LP, Fagerlund A, Granum PE. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev, 32, 579–606.
  • Sutherland AD. (1993). Toxin Production by Bacillus cereus in dairy-products. J Dairy Res, 60, 569–574.
  • Sutherland AD, Limond AM. (1993). Influence of pH and sugars on the growth and production of diarrhoeagenic toxin by Bacillus cereus. J Dairy Res, 60, 575–580.
  • Svensson B, Monthan A, Shaheen R, Andersson MA, Salkinoja-Salonen M, Christiansson A. (2006). Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int Dairy J, 16, 740–749.
  • Swiecicka I, Van der Auwera GA, Mahillon J. (2006). Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. Microb Ecol, 52, 544–551.
  • The EFSA journal (2005). Opinion of the Scientific Panel on Biological Hazards on Bacillus cereus and other Bacillus spp. in foodstuffs, Rep. No. 175.
  • Thomassin S, Jobin MP, Schmitt P. (2006). The acid tolerance response of Bacillus cereus ATCC14579 is dependent on culture pH, growth rate and intracellular pH. Arch Microbiol, 186, 229–239.
  • Thorsen L, Budde BB, Henrichsen L, Martinussen T, Jakobsen M. (2009). Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions. Int J Food Microbiol, 134, 133–139.
  • Thorsen L, Budde BB, Koch AG, Klingberg TD. (2009). Effect of modified atmosphere and temperature abuse on the growth from spores and cereulide production of Bacillus weihenstephanensis in a cooked chilled meat sausage. Int J Food Microbiol, 130, 172–178.
  • Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB. (2006). Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl Environ Microbiol, 72, 5118–5121.
  • Torres VJ, Attia AS, Mason WJ, Hood MI, Corbin BD, Beasley FC, Anderson KL, Stauff D, L McDonald, WH, Zimmerman LJ, Friedman DB, Heinrichs DE, Dunman PM, Skaar EP. (2010). Staphylococcus aureus Fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect Immun, 78, 1618–1628.
  • Tran SL, Guillemet E, Gohar M, Lereclus D, Ramarao N. (2010). CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J Bacteriol, 192, 2638–2642.
  • Turnbull PC, Kramer JM, Jorgensen K, Gilbert RJ, Melling J. (1979). Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Am J Clin Nutr, 32, 219–228.
  • Ultee A, Smid EJ. (2001). Influence of carvacrol on growth and toxin production by Bacillus cereus. Int J Food Microbiol, 64, 373–378.
  • Van der Auwera GA, Timmery S, Hoton F, Mahillon J. (2007). Plasmid exchanges among members of the Bacillus cereus group in foodstuffs. Int J Food Microbiol, 113, 164–172.
  • van der Voort M, Abee T. (2009). Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579. J Appl Microbiol, 107, 795–804.
  • van der Voort M, Kuipers OP, Buist G, de Vos WM, Abee T. (2008). Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol, 8:62, [Online] Available at http://www.biomedcentral.com/1471–2180/8/62, Accessed on 8 November 2010.
  • Van Netten P, Van De Moosdijk A, Van Hoensel P, Mossel DA, Perales I. (1990). Psychrotrophic strains of Bacillus cereus producing enterotoxin. J Appl Bacteriol, 69, 73–79.
  • Varga J, Stirewalt VL, Melville SB. (2004). The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J Bacteriol, 186, 5221–5229.
  • Vassileva M, Torii K, Oshimoto M, Okamoto A, Agata N, Yamada K, Hasegawa T, Ohta M. (2007). A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J Clin Microbiol, 45, 1274–1277.
  • Wang RF, Cao WW, Cerniglia CE. (1997). A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol, 83, 727–736.
  • Wijnands LM, Dufrenne JB, Rombouts FM, In’t Veld PH, van Leusden FM. (2006). Prevalence of potentially pathogenic Bacillus cereus in food commodities in The Netherlands. J Food Prot, 69, 2587–2594.
  • Wijnands LM, Dufrenne JB, van Leusden FM, Abee T. (2007). Germination of Bacillus cereus spores is induced by germinants from differentiated Caco-2 Cells, a human cell line mimicking the epithelial cells of the small intestine. Appl Environ Microbiol, 73, 5052–5054.
  • Wijnands LM, Dufrenne JB, Zwietering MH, van Leusden, FM. (2006). Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int J Food Microbiol, 112, 120–128.
  • Yang IC, Shih DY, Wang JY, Pani TM. (2007). Development of rapid real-time PCR and most-probable-number real-time PCR assays to quantify enterotoxigenic strains of the species in the Bacillus cereus group. J Food Prot, 70, 2774–2781.
  • Yang IC, Shih DYC, Huang TP, Huang YP, Wang JY, Pan TM. (2005). Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J Food Prot, 68, 2123–2130.
  • Yasukawa K, Agata N, Inouye K. (2010). Detection of cesA mRNA from Bacillus cereus by RNA-specific amplification. Enzyme Microb Tech, 46, 391–396.
  • Yuan YM, Hu XM, Liu HZ, Hansen BM, Yan JP, Yuan ZM. (2007). Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Arch Microbiol, 187, 425–431.
  • Zhang MY, Lovgren A, Low MG, Landen R. (1993). Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect Immun, 61, 4947–4954.
  • Zigha A, Rosenfeld E, Schmitt P, Duport C. (2006). Anaerobic cells of Bacillus cereus F4430/73 respond to low oxidoreduction potential by metabolic readjustments and activation of enterotoxin expression. Arch Microbiol, 185, 222–233.
  • Zigha A, Rosenfeld E, Schmitt P, Duport C. (2007). The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. J Bacteriol, 189, 2813–2824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.