780
Views
31
CrossRef citations to date
0
Altmetric
Review Article

Acinetobacter: A potential reservoir and dispenser for β-lactamases

&
Pages 30-51 | Received 20 Jul 2011, Accepted 03 Sep 2011, Published online: 18 Oct 2011

References

  • Afzal-Shah M, Woodford N, Livermore DM. (2001). Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother, 45, 583–588.
  • Alsultan AA, Hamouda A, Evans BA, Amyes SG. (2009). Acinetobacter baumannii: emergence of four strains with novel blaOXA-51-like genes in patients with diabetes mellitus. J Chemother, 21, 290–295.
  • Ambler RP. (1980). The structure of β-lactamases. Philos Trans R Soc Lond, B, Biol Sci, 289, 321–331.
  • Anandham R, Weon HY, Kim SJ, Kim YS, Kim BY, Kwon SW. (2010). Acinetobacter brisouii sp. nov., isolated from a wetland in Korea. J Microbiol, 48, 36–39.
  • Audureau A. (1940). Etude du genre Moraxella. Ann Inst Pasteur, 64, 126–166.
  • Baumann P, Doudoroff M, Stanier RY. (1968). A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol, 95, 1520–1541.
  • Beceiro A, Dominguez L, Ribera A, Vila J, Molina F, Villanueva R, Eiros JM, Bou G. (2004). Molecular characterization of the gene encoding a new AmpC β-lactamase in a clinical strain of acinetobacter genomic species 3. Antimicrob Agents Chemother, 48, 1374–1378.
  • Beceiro A, Pérez-Llarena FJ, Pérez A, Tomás Mdel M, Fernández A, Mallo S, Villanueva R, Bou G. (2007). Molecular characterization of the gene encoding a new AmpC β-lactamase in Acinetobacter baylyi. J Antimicrob Chemother, 59, 996–1000.
  • Beceiro A, Pérez A, Fernández-Cuenca F, Martínez-Martínez L, Pascual A, Vila J, Rodríguez-Baño J, Cisneros JM, Pachón J, Bou G; and the Spanish Group for Nosocomial Infection (GEIH). (2009). Genetic variability among ampC genes from acinetobacter genomic species 3. Antimicrob Agents Chemother, 53, 1177–1184.
  • Beijerinck MW. (1911). Pigments as products of oxidation by bacterial action. Proc Royal Acad Sci 13, 1066–1077.
  • Berlau J, Aucken HM, Houang E, Pitt TL. (1999a). Isolation of Acinetobacter spp. including A. baumannii from vegetables: implications for hospital-acquired infections. J Hosp Infect, 42, 201–204.
  • Berlau J, Aucken H, Malnick H, Pitt T. (1999b). Distribution of Acinetobacter species on skin of healthy humans. Eur J Clin Microbiol Infect Dis, 18, 179–183.
  • Bertini A, Poirel L, Bernabeu S, Fortini D, Villa L, Nordmann P, Carattoli A. (2007). Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother, 51, 2324–2328.
  • Bertini A, Poirel L, Mugnier PD, Villa L, Nordmann P, Carattoli A. (2010). Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother, 54, 4168–4177.
  • Bogaerts P, Cuzon G, Naas T, Bauraing C, Deplano A, Lissoir B, Nordmann P, Glupczynski Y. (2008). Carbapenem-resistant Acinetobacter baumannii isolates expressing the blaOXA-23 gene associated with ISAba4 in Belgium. Antimicrob Agents Chemother, 52, 4205–4206.
  • Bogaerts P, Naas T, El Garch F, Cuzon G, Deplano A, Delaire T, Huang TD, Lissoir B, Nordmann P, Glupczynski Y. (2010). GES extended-spectrum ß-lactamases in Acinetobacter baumannii isolates in Belgium. Antimicrob Agents Chemother, 54, 4872–4878.
  • Bonnet R, Marchandin H, Chanal C, Sirot D, Labia R, De Champs C, Jumas-Bilak E, Sirot J. (2002). Chromosome-encoded class D β-lactamase OXA-23 in Proteus mirabilis. Antimicrob Agents Chemother, 46, 2004–2006.
  • Bonnin RA, Potron A, Poirel L, Lecuyer H, Neri R, Nordmann P. (2011a). PER-7, an extended-spectrum β-lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob Agents Chemother, 55, 2424–2427.
  • Bonnin RA, Nordmann P, Potron A, Lecuyer H, Zahar JR, Poirel L. (2011b). Carbapenem-hydrolyzing GES-type extended-spectrum β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother, 55, 349–354.
  • Bou G, Martínez-Beltrán J. (2000). Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother, 44, 428–432.
  • Bou G, Oliver A, Martínez-Beltrán J. (2000). OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother, 44, 1556–1561.
  • Bouvet PJ, Grimont PA. (1986). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended description of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol, 36, 228–240.
  • Bouvet PJ, Jeanjean S. (1989). Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol, 140, 291–299.
  • Bradford PA. (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 14, 933–951.
  • Brisou J, Prevot AR. (1954). [Studies on bacterial taxonomy. X. The revision of species under Acromobacter group]. Ann Inst Pasteur (Paris), 86, 722–728.
  • Brown S, Amyes SG. (2005). The sequences of seven class D β-lactamases isolated from carbapenem-resistant Acinetobacter baumannii from four continents. Clin Microbiol Infect, 11, 326–329.
  • Brown S, Young HK, Amyes SG. (2005). Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect, 11, 15–23.
  • Burman LG, Park JT, Lindström EB, Boman HG. (1973). Resistance of Escherichia coli to penicillins: identification of the structural gene for the chromosomal penicillinase. J Bacteriol, 116, 123–130.
  • Carr EL, Kämpfer P, Patel BK, Gürtler V, Seviour RJ. (2003). Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol, 53, 953–963.
  • Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. (2006). Spread of blaCTX-M-type and blaPER-2 β-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother, 57, 975–978.
  • Chen TL, Lee YT, Kuo SC, Hsueh PR, Chang FY, Siu LK, Ko WC, Fung CP. (2010). Emergence and Distribution of Plasmids Bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrob Agents Chemother, 54, 4575–4581.
  • Choury D, Szajnert MF, Joly-Guillou ML, Azibi K, Delpech M, Paul G. (2000). Nucleotide sequence of the blaRTG-2 (CARB-5) gene and phylogeny of a new group of carbenicillinases. Antimicrob Agents Chemother, 44, 1070–1074.
  • Chu YW, Afzal-Shah M, Houang ET. Palepou MI, Lyon DJ, Woodford N, Livermore DM. (2001). IMP-4, a novel metallo-β-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother, 45, 710–714.
  • Chu YW, Cheung TK, Chu MY, Lo JY, Dijkshoorn L. (2009). OXA-23-type imipenem resistance in Acinetobacter baumannii in Hong Kong. Int J Antimicrob Agents, 34, 285–286.
  • Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. (2003). AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother, 52, 629–635.
  • Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. (2007). Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in Acinetobacter baumannii. Antimicrob Agents Chemother, 51, 1530–1533.
  • Da Silva GJ, Correia M, Vital C, Ribeiro G, Sousa JC, Leitão R, Peixe L, Duarte A. (2002). Molecular characterization of blaIMP-5, a new integron-borne metallo-β-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol Lett, 215, 33–39.
  • Datta N, Kontomichalou P. (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature, 208, 239–241.
  • Dent LL, Marshall DR, Pratap S, Hulette RB. (2010). Multidrug resistant Acinetobacter baumannii: a descriptive study in a city hospital. BMC Infect Dis, 10, 196.
  • Devaud M, Kayser FH, Bächi B. (1982). Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob Agents Chemother, 22, 323–329.
  • Di Cello F, Pepi M, Baldi F, Fani R. (1997). Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Res Microbiol, 148, 237–249.
  • Dijkshoorn L, Nemec A, Seifert H. (2007). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol, 5, 939–951.
  • Donald HM, Scaife W, Amyes SG, Young HK. (2000). Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother, 44, 196–199.
  • Endimiani A, Luzzaro F, Migliavacca R, Mantengoli E, Hujer AM, Hujer KM, Pagani L, Bonomo RA, Rossolini GM, Toniolo A. (2007). Spread in an Italian hospital of a clonal Acinetobacter baumannii strain producing the TEM-92 extended-spectrum β-lactamase. Antimicrob Agents Chemother, 51, 2211–2214.
  • Espinal P, Fugazza G, López Y, Kasma M, Lerman Y, Malhotra-Kumar S, Goosens H, Carmeli Y, Vila J. (2011). Dissemination of the NDM-2-producing Acinetobacter baumannii clone in an Israeli Rehabilitation Center. Antimicrob Agents Chemother (Epub ahead of print).
  • Evans BA, Brown S, Hamouda A, Findlay J, Amyes SG. (2007). Eleven novel OXA-51-like enzymes from clinical isolates of Acinetobacter baumannii. Clin Microbiol Infect, 13, 1137–1138.
  • Evans BA, Hamouda A, Towner KJ, Amyes SG. (2010). Novel genetic context of multiple blaOXA-58 genes in Acinetobacter genospecies 3. J Antimicrob Chemother, 65, 1586–1588.
  • Figueiredo S, Poirel L, Papa A, Koulourida V, Nordmann P. (2008). First identification of VIM-4 metallo-β-lactamase in Acinetobacter spp. Clin Microbiol Infect, 14, 289–290.
  • Figueiredo S, Poirel L, Papa A, Koulourida V, Nordmann P. (2009). Overexpression of the naturally occurring blaOXA-51 gene in Acinetobacter baumannii mediated by novel insertion sequence ISAba9. Antimicrob Agents Chemother, 53, 4045–4047.
  • Figueiredo S, Poirel L, Seifert H, Mugnier P, Benhamou D, Nordmann P. (2010). OXA-134, a naturally occurring carbapenem-hydrolyzing class D β-lactamase from Acinetobacter lwoffii. Antimicrob Agents Chemother, 54, 5372–5375.
  • Gales AC, Tognim MC, Reis AO, Jones RN, Sader HS. (2003). Emergence of an IMP-like metallo-enzyme in an Acinetobacter baumannii clinical strain from a Brazilian teaching hospital. Diagn Microbiol Infect Dis, 45, 77–79.
  • Gerner-Smidt P, Tjernberg I, Ursing J. (1991). Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol, 29, 277–282.
  • Gerner-Smidt P, Tjernberg I. (1993). Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS, 101, 826–832.
  • Giannouli M, Tomasone F, Agodi A, Vahaboglu H, Daoud Z, Triassi M, Tsakris A, Zarrilli R. (2009). Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii strains in intensive care units of multiple Mediterranean hospitals. J Antimicrob Chemother, 63, 828–830.
  • Goldstein FW, Labigne-Roussel A, Gerbaud G, Carlier C, Collatz E, Courvalin P. (1983). Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid, 10, 138–147.
  • Gulati A, Vyas P, Rahi P, Kasana RC. (2009). Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol, 58, 371–377.
  • Hansson K, Sundström L, Pelletier A, Roy PH. (2002). IntI2 integron integrase in Tn7. J Bacteriol, 184, 1712–1721.
  • Henwood CJ, Gatward T, Warner M, James D, Stockdale MW, Spence RP, Towner KJ, Livermore DM, Woodford N. (2002). Antibiotic resistance among clinical isolates of Acinetobacter in the UK, and in vitro evaluation of tigecycline (GAR-936). J Antimicrob Chemother, 49, 479–487.
  • Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. (2009). OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother, 53, 5035–5038.
  • Houang ET, Chu YW, Leung CM, Chu KY, Berlau J, Ng KC, Cheng AF. (2001). Epidemiology and infection control implications of Acinetobacter spp. in Hong Kong. J Clin Microbiol, 39, 228–234.
  • Huang LY, Lu PL, Chen TL, Chang FY, Fung CP, Siu LK. (2010). Molecular characterization of β-lactamase genes and their genetic structures in Acinetobacter genospecies 3 isolates in Taiwan. Antimicrob Agents Chemother, 54, 2699–2703.
  • Hujer KM, Hamza NS, Hujer AM, Perez F, Helfand MS, Bethel CR, Thomson JM, Anderson VE, Barlow M, Rice LB, Tenover FC, Bonomo RA. (2005). Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother, 49, 2941–2948.
  • Héritier C, Poirel L, Aubert D, Nordmann P. (2003). Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of Acinetobacter baumannii. Antimicrob Agents Chemother, 47, 268–273.
  • Héritier C, Poirel L, Nordmann P. (2006). Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect, 12, 123–130.
  • Jacoby G, Bush K. (2011). β-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes. http://www.lahey.org/Studies/. Accessed on 3 July 2011.
  • Jacoby GA. (2009). AmpC β-lactamases. Clin Microbiol Rev, 22, 161–182.
  • Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. (2011). NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother, 66, 1260–1262.
  • Kang YS, Jung J, Jeon CO, Park W. (2011). Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol, 49, 29–34.
  • Karah N, Haldorsen B, Hegstad K, Simonsen GS, Sundsfjord A, Samuelsen Ø; Norwegian Study Group of Acinetobacter. (2011). Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. J Antimicrob Chemother, 66, 738–744.
  • Karthikeyan K, Thirunarayan MA, Krishnan P. (2010). Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. J Antimicrob Chemother, 65, 2253–2254.
  • Kilic A, Li H, Mellmann A, Basustaoglu AC, Kul M, Senses Z, Aydogan H, Stratton CW, Harmsen D, Tang YW. (2008). Acinetobacter septicus sp. nov. association with a nosocomial outbreak of bacteremia in a neonatal intensive care unit. J Clin Microbiol, 46, 902–908.
  • Kim CK, Lee Y, Lee H, Woo GJ, Song W, Kim MN, Lee WG, Jeong SH, Lee K, Chong Y. (2010). Prevalence and diversity of carbapenemases among imipenem-nonsusceptible Acinetobacter isolates in Korea: emergence of a novel OXA-182. Diagn Microbiol Infect Dis, 68, 432–438.
  • Kim D, Baik KS, Kim MS, Park SC, Kim SS, Rhee MS, Kwak YS, Seong CN. (2008). Acinetobacter soli sp. nov., isolated from forest soil. J Microbiol, 46, 396–401.
  • Koh TH, Sng LH, Wang GC, Hsu LY, Zhao Y. (2007). IMP-4 and OXA β-lactamases in Acinetobacter baumannii from Singapore. J Antimicrob Chemother, 59, 627–632.
  • Lee HJ, Lee SS. (2010). Acinetobacter kyonggiensis sp. nov., a ß-glucosidase-producing bacterium, isolated from sewage treatment plant. J Microbiol, 48, 754–759.
  • Lee K, Kim CK, Hong SG, Choi J, Song S, Koh E, Yong D, Jeong SH, Yum JH, Docquier JD, Rossolini GM, Chong Y. (2010). Characteristics of clinical isolates of Acinetobacter genomospecies 10 carrying two different metallo-β-lactamases. Int J Antimicrob Agents, 36, 259–263.
  • Lee K, Kim MN, Choi TY, Cho SE, Lee S, Whang DH, Yong D, Chong Y, Woodford N, Livermore DM; KONSAR Group. (2009a). Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. Int J Antimicrob Agents, 33, 520–524.
  • Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM, Chong Y. (2005). Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother, 49, 4485–4491.
  • Lee MF, Peng CF, Hsu HJ, Chen YH. (2008). Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int J Antimicrob Agents, 32, 475–480.
  • Lee JS, Lee KC, Kim KK, Hwang IC, Jang C, Kim NG, Yeo WH, Kim BS, Yu YM, Ahn JS. (2009b). Acinetobacter antiviralis sp. nov., from Tobacco plant roots. J Microbiol Biotechnol, 19, 250–256.
  • Lee Y, Kim CK, Lee H, Jeong SH, Yong D, Lee K. (2011). A novel insertion sequence, ISAba10, inserted into ISAba1 adjacent to the blaOXA-23 gene and disrupting the outer membrane protein gene carO in Acinetobacter baumannii. Antimicrob Agents Chemother, 55, 361–363.
  • Lee YT, Turton JF, Chen TL, Wu RC, Chang WC, Fung CP, Chen CP, Cho WL, Huang LY, Siu LK. (2009c). First identification of blaOXA-51-like in non-baumannii Acinetobacter spp. J Chemother, 21, 514–520.
  • Lolans K, Rice TW, Munoz-Price LS, Quinn JP. (2006). Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother, 50, 2941–2945.
  • Mahillon J, Chandler M. (1998). Insertion sequences. Microbiol Mol Biol Rev, 62, 725–774.
  • Mammeri H, Poirel L, Mangeney N, Nordmann P. (2003). Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to β-lactams. Antimicrob Agents Chemother, 47, 1536–1542.
  • Marqué S, Poirel L, Héritier C, Brisse S, Blasco MD, Filip R, Coman G, Naas T, Nordmann P. (2005). Regional occurrence of plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe. J Clin Microbiol, 43, 4885–4888.
  • Matthew M, Harris AM. (1976). Identification of β-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. J Gen Microbiol, 94, 55–67.
  • Mazel D. (2006). Integrons: agents of bacterial evolution. Nat Rev Microbiol, 4, 608–620.
  • Mendes RE, Bell JM, Turnidge JD, Castanheira M, Deshpande LM, Jones RN. (2009a). Codetection of blaOXA-23-like gene (blaOXA-133) and blaOXA-58 in Acinetobacter radioresistens: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother, 53, 843–844.
  • Mendes RE, Bell JM, Turnidge JD, Castanheira M, Jones RN. (2009b). Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. J Antimicrob Chemother, 63, 55–59.
  • Merkier AK, Centrón D. (2006). blaOXA-51-type β-lactamase genes are ubiquitous and vary within a strain in Acinetobacter baumannii. Int J Antimicrob Agents, 28, 110–113.
  • Mitsuhashi S, Inoue M. (1981). Mechanisms of resistance to β-lactam antibiotics. In: Mitsuhashi S, ed. β-lactam antibiotics. New York: Springer-Verlag, 41–56.
  • Moubareck C, Brémont S, Conroy MC, Courvalin P, Lambert T. (2009). GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob Agents Chemother, 53, 3579–3581.
  • Mugnier PD, Poirel L, Naas T, Nordmann P. (2010). Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerging Infect Dis, 16, 35–40.
  • Mugnier PD, Poirel L, Nordmann P. (2009). Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. J Bacteriol, 191, 2414–2418.
  • Naas T, Bogaerts P, Bauraing C, Degheldre Y, Glupczynski Y, Nordmann P. (2006a). Emergence of PER and VEB extended-spectrum β-lactamases in Acinetobacter baumannii in Belgium. J Antimicrob Chemother, 58, 178–182.
  • Naas T, Coignard B, Carbonne A, Blanckaert K, Bajolet O, Bernet C, Verdeil X, Astagneau P, Desenclos JC, Nordmann P; French Nosocomial Infection Early Warning Investigation and Surveillance Network. (2006b). VEB-1 Extended-spectrum β-lactamase-producing Acinetobacter baumannii, France. Emerging Infect Dis, 12, 1214–1222.
  • Naas T, Namdari F, Réglier-Poupet H, Poyart C, Nordmann P. (2007). Panresistant extended-spectrum β-lactamase SHV-5-producing Acinetobacter baumannii from New York City. J Antimicrob Chemother, 60, 1174–1176.
  • Naas T, Nordmann P. (1999). OXA-type β-lactamases. Curr Pharm Des, 5, 865–879.
  • Naas T, Poirel L, Nordmann P. (2008). Minor extended-spectrum β-lactamases. Clin Microbiol Infect, 14 Suppl 1, 42–52.
  • Nagano N, Nagano Y, Cordevant C, Shibata N, Arakawa Y. (2004). Nosocomial transmission of CTX-M-2 β-lactamase-producing Acinetobacter baumannii in a neurosurgery ward. J Clin Microbiol, 42, 3978–3984.
  • Naiemi NA, Duim B, Savelkoul PH, Spanjaard L, de Jonge E, Bart A, Vandenbroucke-Grauls CM, de Jong MD. (2005). Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J Clin Microbiol, 43, 4862–4864.
  • Navia MM, Ruiz J, Vila J. (2002). Characterization of an integron carrying a new class D β-lactamase (OXA-37) in Acinetobacter baumannii. Microb Drug Resist, 8, 261–265.
  • Nemec A, De Baere T, Tjernberg I, Vaneechoutte M, van der Reijden TJ, Dijkshoorn L. (2001). Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol, 51, 1891–1899.
  • Nemec A, Dijkshoorn L, Cleenwerck I, De Baere T, Janssens D, Van Der Reijden TJ, Jezek P, Vaneechoutte M. (2003). Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. Int J Syst Evol Microbiol, 53, 1563–1567.
  • Nemec A, Musílek M, Maixnerová M, De Baere T, van der Reijden TJ, Vaneechoutte M, Dijkshoorn L. (2009). Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol, 59, 118–124.
  • Nemec A, Musílek M, Sedo O, De Baere T, Maixnerová M, van der Reijden TJ, Zdráhal Z, Vaneechoutte M, Dijkshoorn L. (2010). Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int J Syst Evol Microbiol, 60, 896–903.
  • Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, Vaneechoutte M, Brisse S, Dijkshoorn L. (2011). Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol, 162, 393–404.
  • Nishio H, Komatsu M, Shibata N, Shimakawa K, Sueyoshi N, Ura T, Satoh K, Toyokawa M, Nakamura T, Wada Y, Orita T, Kofuku T, Yamasaki K, Sakamoto M, Kinoshita S, Aihara M, Arakawa Y. (2004). Metallo-β-lactamase-producing gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki region of Japan. J Clin Microbiol, 42, 5256–5263.
  • Nishimura Y, Ino T, Iizuka H (1988). Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol, 38, 209–211.
  • Nordmann P, Guibert M. (1998). Extended-spectrum β-lactamases in Pseudomonas aeruginosa. J Antimicrob Chemother, 42, 128–131.
  • Nordmann P, Mammeri H. (2007). Extended-spectrum cephalosporinases: structure, detection and epidemiology. Future Microbiol, 2, 297–307.
  • Park YK, Choi JY, Jung SI, Park KH, Lee H, Jung DS, Heo ST, Kim SW, Chang HH, Cheong HS, Chung DR, Peck KR, Song JH, Ko KS. (2009). Two distinct clones of carbapenem-resistant Acinetobacter baumannii isolates from Korean hospitals. Diagn Microbiol Infect Dis, 64, 389–395.
  • Paterson DL, Bonomo RA. (2005). Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev, 18, 657–686.
  • Paton R, Miles RS, Hood J, Amyes SG, Miles RS, Amyes SG. (1993). ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents, 2, 81–87.
  • Peleg AY, Franklin C, Walters LJ, Bell JM, Spelman DW. (2006). OXA-58 and IMP-4 carbapenem-hydrolyzing β-lactamases in an Acinetobacter junii blood culture isolate from Australia. Antimicrob Agents Chemother, 50, 399–400.
  • Peleg AY, Seifert H, Paterson DL. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev, 21, 538–582.
  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. (2007). Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother, 51, 3471–3484.
  • Pfeifer Y, Wilharm G, Zander E, Wichelhaus TA, Göttig S, Hunfeld KP, Seifert H, Witte W, Higgins PG. (2011). Molecular characterization of blaNDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J Antimicrob Chemother, 66, 1998–2001.
  • Poirel L, Corvec S, Rapoport M, Mugnier P, Petroni A, Pasteran F, Faccone D, Galas M, Drugeon H, Cattoir V, Nordmann P. (2007a). Identification of the novel narrow-spectrum β-lactamase SCO-1 in Acinetobacter spp. from Argentina. Antimicrob Agents Chemother, 51, 2179–2184.
  • Poirel L, Figueiredo S, Cattoir V, Carattoli A, Nordmann P. (2008a). Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob Agents Chemother, 52, 1252–1256.
  • Poirel L, Mansour W, Bouallegue O, Nordmann P. (2008b). Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob Agents Chemother, 52, 1613–1617.
  • Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. (2005). OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother, 49, 202–208.
  • Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. (2003). Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol, 41, 3542–3547.
  • Poirel L, Mugnier PD, Toleman MA, Walsh TR, Rapoport MJ, Petroni A, Nordmann P. (2009). ISCR2, another vehicle for blaVEB gene acquisition. Antimicrob Agents Chemother, 53, 4940–4943.
  • Poirel L, Naas T, Nordmann P. (2010). Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother, 54, 24–38.
  • Poirel L, Nordmann P. (2006). Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother, 50, 1442–1448.
  • Poirel L, Pitout JD, Nordmann P. (2007b). Carbapenemases: molecular diversity and clinical consequences. Future Microbiol, 2, 501–512.
  • Potron A, Poirel L, Croizé J, Chanteperdrix V, Nordmann P. (2009). Genetic and biochemical characterization of the first extended-spectrum CARB-type β-lactamase, RTG-4, from Acinetobacter baumannii. Antimicrob Agents Chemother, 53, 3010–3016.
  • Queenan AM, Bush K. (2007). Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev, 20, 440–458.
  • Ramirez MS, Adams MD, Bonomo RA, Centrón D, Tolmasky ME. (2011). Genomic analysis of Acinetobacter baumannii A118 by comparison of optical maps: identification of structures related to its susceptibility phenotype. Antimicrob Agents Chemother, 55, 1520–1526.
  • Ramírez MS, Piñeiro S, Centrón D; Argentinian Integron Study Group. (2010). Novel insights about class 2 integrons from experimental and genomic epidemiology. Antimicrob Agents Chemother, 54, 699–706.
  • Ravasi P, Limansky AS, Rodriguez RE, Viale AM, Mussi MA. (2011). ISAba825, a functional insertion sequence modulating genomic plasticity and blaOXA-58 expression in Acinetobacter baumannii. Antimicrob Agents Chemother, 55, 917–920.
  • Riccio ML, Franceschini N, Boschi L, Caravelli B, Cornaglia G, Fontana R, Amicosante G, Rossolini GM. (2000). Characterization of the metallo-β-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of blaIMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother, 44, 1229–1235.
  • Robledo IE, Aquino EE, Santé MI, Santana JL, Otero DM, León CF, Vázquez GJ. (2010). Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother, 54, 1354–1357.
  • Rodríguez-Martínez JM, Nordmann P, Ronco E, Poirel L. (2010a). Extended-spectrum cephalosporinase in Acinetobacter baumannii. Antimicrob Agents Chemother, 54, 3484–3488.
  • Rodríguez-Martínez JM, Poirel L, Nordmann P. (2010b). Genetic and functional variability of AmpC-type ß-lactamases from Acinetobacter baumannii. Antimicrob Agents Chemother, 54, 4930–4933.
  • Sato K, Nakae T. (1991). Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J Antimicrob Chemother, 28, 35–45.
  • Segal H, Garny S, Elisha BG. (2005). Is ISABA-1 customized for Acinetobacter? FEMS Microbiol Lett, 243, 425–429.
  • Segal H, Nelson EC, Elisha BG. (2004). Genetic environment and transcription of ampC in an Acinetobacter baumannii clinical isolate. Antimicrob Agents Chemother, 48, 612–614.
  • Seifert H, Baginski R, Schulze A, Pulverer G. (1993a). The distribution of Acinetobacter species in clinical culture materials. Zentralbl Bakteriol, 279, 544–552.
  • Seifert H, Baginski R, Schulze A, Pulverer G. (1993b). Antimicrobial susceptibility of Acinetobacter species. Antimicrob Agents Chemother, 37, 750–753.
  • Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M. (1997). Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol, 35, 2819–2825.
  • Sevillano E, Gallego L, García-Lobo JM. (2009). First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathol Biol, 57, 493–495.
  • Shakil S, Khan AU. (2010). Detection of CTX-M-15-producing and carbapenem-resistant Acinetobacter baumannii strains from urine from an Indian hospital. J Chemother, 22, 324–327.
  • Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, Kato H, Kai K, Arakawa Y. (2003). PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol, 41, 5407–5413.
  • Stokes HW, Hall RM. (1989). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol, 3, 1669–1683.
  • Tian GB, Adams-Haduch JM, Bogdanovich T, Pasculle AW, Quinn JP, Wang HN, Doi Y. (2011a). Identification of diverse OXA-40 group carbapenemases, including a novel variant, OXA-160, from Acinetobacter baumannii in Pennsylvania. Antimicrob Agents Chemother, 55, 429–432.
  • Tian GB, Adams-Haduch JM, Taracila M, Bonomo RA, Wang HN, Doi Y. (2011b). Extended-spectrum AmpC in Acinetobacter baumannii; ADC-56 confers resistance to cefepime. Antimicrob Agents Chemother 55, 4922–4925.
  • Tjernberg I, Ursing J. (1989). Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS, 97, 595–605.
  • Theaker C, Azadian B, Soni N. (2003). The impact of Acinetobacter baumannii in the intensive care unit. Anaesthesia, 58, 271–274.
  • Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, Walsh TR. (2002). Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother, 50, 673–679.
  • Towner KJ, Levi K, Vlassiadi M; ARPAC Steering Group. (2008). Genetic diversity of carbapenem-resistant isolates of Acinetobacter baumannii in Europe. Clin Microbiol Infect, 14, 161–167.
  • Tsakris A, Ikonomidis A, Poulou A, Spanakis N, Vrizas D, Diomidous M, Pournaras S, Markou F. (2008). Clusters of imipenem-resistant Acinetobacter baumannii clones producing different carbapenemases in an intensive care unit. Clin Microbiol Infect, 14, 588–594.
  • Tsakris A, Ikonomidis A, Pournaras S, Tzouvelekis LS, Sofianou D, Legakis NJ, Maniatis AN. (2006). VIM-1 metallo-β-lactamase in Acinetobacter baumannii. Emerging Infect Dis, 12, 981–983.
  • Tsakris A, Ikonomidis A, Spanakis N, Pournaras S, Bethimouti K. (2007). Identification of a novel blaOXA-51 variant, blaOXA-92, from a clinical isolate of Acinetobacter baumannii. Clin Microbiol Infect, 13, 348–349.
  • Turner PJ. (2008). Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results. Diagn Microbiol Infect Dis, 60, 185–192.
  • Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL. (2006a). The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett, 258, 72–77.
  • Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. (2006b). Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol, 44, 2974–2976.
  • Vahaboglu H, Budak F, Kasap M, Gacar G, Torol S, Karadenizli A, Kolayli F, Eroglu C. (2006). High prevalence of OXA-51-type class D β-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: co-existence with OXA-58 in multiple centres. J Antimicrob Chemother, 58, 537–542.
  • Vahaboglu H, Oztürk R, Aygün G, Coskunkan F, Yaman A, Kaygusuz A, Leblebicioglu H, Balik I, Aydin K, Otkun M. (1997). Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother, 41, 2265–2269.
  • Vaz-Moreira I, Novo A, Hantsis-Zacharov E, Lopes AR, Gomila M, Nunes OC, Manaia CM, Halpern M. (2011). Acinetobacter rudis sp. nov. isolated from raw milk and raw wastewater. Int J Syst Evol Microbiol, (Epub ahead of print).
  • Vila J, Marcos A, Marco F, Abdalla S, Vergara Y, Reig R, Gomez-Lus R, Jimenez de Anta T. (1993). In vitro antimicrobial production of β-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother, 37, 138–141.
  • Vila J, Navia M, Ruiz J, Casals C. (1997). Cloning and nucleotide sequence analysis of a gene encoding an OXA-derived β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother, 41, 2757–2759.
  • Waley SG. (1992). β-Lactamase: mechanism of action. In: Page MI, ed. The chemistry of β-lactams. London: Chapman and Hall, 198–228.
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. (2005). Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev, 18, 306–325.
  • Walther-Rasmussen J, Høiby N. (2007). Class A carbapenemases. J Antimicrob Chemother, 60, 470–482.
  • Wang H, Guo P, Sun H, Wang H, Yang Q, Chen M, Xu Y, Zhu Y. (2007). Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother, 51, 4022–4028.
  • Yamamoto M, Nagao M, Matsumura Y, Matsushima A, Ito Y, Takakura S, Ichiyama S. (2011). Interspecies dissemination of a novel class 1 integron carrying blaIMP-19 among Acinetobacter species in Japan. J Antimicrob Chemother, Epub ahead of print.
  • Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother, 53, 5046–5054.
  • Yoon JH, Kim IG, Oh TK. (2007). Acinetobacter marinus sp. nov. and Acinetobacter seohaensis sp. nov., isolated from sea water of the Yellow Sea in Korea. J Microbiol Biotechnol, 17, 1743–1750.
  • Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, Rossolini GM, Chong Y. (2002). Molecular characterization of metallo-β-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. J Antimicrob Chemother, 49, 837–840.
  • Zarrilli R, Crispino M, Bagattini M, Barretta E, Di Popolo A, Triassi M, Villari P. (2004). Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J Clin Microbiol, 42, 946–953.
  • Zhao WH, Hu ZQ. (2010). β-lactamases identified in clinical isolates of Pseudomonas aeruginosa. Crit Rev Microbiol, 36, 245–258.
  • Zhao WH, Hu ZQ. (2011a). IMP-type metallo-ß-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons. Crit Rev Microbiol, 37, 214–226.
  • Zhao WH, Hu ZQ. (2011b). Epidemiology and genetics of VIM-type metallo-ß-lactamases in Gram-negative bacilli. Future Microbiol, 6, 317–333.
  • Zong Z, Lü X, Valenzuela JK, Partridge SR, Iredell J. (2008). An outbreak of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemase in western China. Int J Antimicrob Agents, 31, 50–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.