449
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Chlamydial biology and its associated virulence blockers

, , &
Pages 313-328 | Received 16 May 2012, Accepted 29 Aug 2012, Published online: 07 Nov 2012

References

  • Aberg V, Almqvist F. (2007). Pilicides-small molecules targeting bacterial virulence. Org Biomol Chem, 5, 1827–1834
  • Aiello D, Williams JD, Majgier-Baranowska H, Patel I, Peet NP, Huang J, Lory S, Bowlin TL, Moir DT. (2010). Discovery and characterization of inhibitors of Pseudomonas aeruginosa type III secretion. Antimicrob Agents Chemother, 54, 1988–1999
  • Al-Younes HM, Rudel T, Meyer TF. (1999). Characterization and intracellular trafficking pattern of vacuoles containing Chlamydia pneumoniae in human epithelial cells. Cell Microbiol, 1, 237–247
  • Andersen AA, Rogers DG. (1998). Resistance to tetracycline and sulfadiazine in swine C. trachomatis isolates. In: Stephens RS, ed. Ninth International Symposium on Human Chlamydial Infection, San Fransico; 313–316
  • Arevalo-Ferro C, Hentzer M, Reil G, Görg A, Kjelleberg S, Givskov M, Riedel K, Eberl L. (2003). Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol, 5, 1350–1369
  • Awasthi D, Kumar K, Ojima I. (2011). Therapeutic potential of FtsZ inhibition: a patent perspective. Expert Opin Ther Pat, 21, 657–679
  • Bailey L, Gylfe A, Sundin C, Muschiol S, Elofsson M, Nordström P, Henriques-Normark B, Lugert R, Waldenström A, Wolf-Watz H, Bergström S. (2007). Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett, 581, 587–595
  • Balañá ME, Niedergang F, Subtil A, Alcover A, Chavrier P, Dautry-Varsat A. (2005). ARF6 GTPase controls bacterial invasion by actin remodelling. J Cell Sci, 118, 2201–2210
  • Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E. (2008). The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci USA, 105, 16761–16766
  • Barbour AG, Amano K, Hackstadt T, Perry L, Caldwell HD. (1982). Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol, 151, 420–428
  • Bavoil P, Ohlin A, Schachter J. (1984). Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect Immun, 44, 479–485
  • Bavoil PM, Hsia RC. (1998). Type III secretion in Chlamydia: a case of déjà vu? Mol Microbiol, 28, 860–862
  • Beeckman DS, Van Droogenbroeck CM, De Cock BJ, Van Oostveldt P, Vanrompay DC. (2007). Effect of ovotransferrin and lactoferrins on Chlamydophila psittaci adhesion and invasion in HD11 chicken macrophages. Vet Res, 38, 729–739
  • Beeckman DS, Meesen G, Van Oostveldt P, Vanrompay D. (2009). Digital titration: automated image acquisition and analysis of load and growth of Chlamydophila psittaci. Microsc Res Tech, 72, 398–402
  • Beeckman DS, Vanrompay DC. (2010a). Biology and intracellular pathogenesis of high or low virulent Chlamydophila psittaci strains in chicken macrophages. Vet Microbiol, 141, 342–353
  • Beeckman DSA, Vanrompay DCG. (2010b). Bacterial Secretion Systems with an Emphasis on the Chlamydial Type III Secretion System. Curr Issues Mol Biol, 12, 17–41
  • Belland RJ, Ouellette SP, Gieffers J, Byrne GI. (2004). Chlamydia pneumoniae and atherosclerosis. Cell Microbiol, 6, 117–127
  • BelVet-SAC. (2012). BelVet-SAC report 2012. Belgian Veterinary Surveillance of Antimicrobial Consumption. Available at: www.belvetsac.ugent.be
  • Byrne GI, Moulder JW. (1978). Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells. Infect Immun, 19, 598–606
  • Byrne GI, Ouellette SP, Wang Z, Rao JP, Lu L, Beatty WL, Hudson AP. (2001). Chlamydia pneumoniae expresses genes required for DNA replication but not cytokinesis during persistent infection of HEp-2 cells. Infect Immun, 69, 5423–5429
  • Caldwell HD, Kromhout J, Schachter J. (1981). Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun, 31, 1161–1176
  • Campbell LA, Kuo CC. (2004). Chlamydia pneumoniae–an infectious risk factor for atherosclerosis? Nat Rev Microbiol, 2, 23–32
  • Carabeo RA, Hackstadt T. (2001). Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Infect Immun, 69, 5899–5904
  • Carabeo RA, Grieshaber SS, Fischer E, Hackstadt T. (2002). Chlamydia trachomatis induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells. Infect Immun, 70, 3793–3803
  • Castanon JI. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci, 86, 2466–2471
  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415, 545–549
  • Chiliveru S, Birkelund S, Paludan SR. (2010). Induction of interferon-stimulated genes by Chlamydia pneumoniae in fibroblasts is mediated by intracellular nucleotide-sensing receptors. PLoS ONE, 5, e10005
  • Chitambar CR, Narasimhan J. (1991). Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium. Pathobiology, 59, 3–10
  • Chopra I, Storey C, Falla TJ, Pearce JH. (1998). Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology (Reading, Engl), 144 (Pt 10), 2673–2678
  • Cianciotto NP. (2007). Iron acquisition by Legionella pneumophila. Biometals, 20, 323–331
  • Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. (2006). The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA, 103, 10420–10425
  • Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T. (2004). A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA, 101, 10166–10171
  • Coombes BK, Mahony JB. (2002). Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol, 4, 447–460
  • Cortes C, Rzomp KA, Tvinnereim A, Scidmore MA, Wizel B. (2007). Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect Immun, 75, 5586–5596
  • Costerton JW, Poffenroth L, Wilt JC, Kordová N. (1976). Ultrastructural studies of the nucleoids of the pleomorphic forms of Chlamydia psittaci 6BC: a comparison with bacteria. Can J Microbiol, 22, 16–28
  • Cotter TW, Meng Q, Shen ZL, Zhang YX, Su H, Caldwell HD. (1995). Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect Immun, 63, 4704–4714
  • Cotter SE, Surana NK, St Geme JW 3rd. (2005). Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol, 13, 199–205
  • Crane DD, Carlson JH, Fischer ER, Bavoil P, Hsia RC, Tan C, Kuo CC, Caldwell HD. (2006). Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc Natl Acad Sci USA, 103, 1894–1899
  • Dautry-Varsat A, Subtil A, Hackstadt T. (2005). Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol, 7, 1714–1722
  • Davis CH, Wyrick PB. (1997). Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo. Infect Immun, 65, 2914–2924
  • Delevoye C, Nilges M, Dehoux P, Paumet F, Perrinet S, Dautry-Varsat A, Subtil A. (2008). SNARE protein mimicry by an intracellular bacterium. PLoS Pathog, 4, e1000022
  • DeMars R, Weinfurter J. (2008). Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J Bacteriol, 190, 1605–1614
  • Demars R, Weinfurter J, Guex E, Lin J, Potucek Y. (2007). Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J Bacteriol, 189, 991–1003
  • Di Francesco A, Donati M, Rossi M, Pignanelli S, Shurdhi A, Baldelli R, Cevenini R. (2008). Tetracycline-resistant Chlamydia suis isolates in Italy. Vet Rec, 163, 251–252
  • Diggle SP, Cornelis P, Williams P, Cámara M. (2006). 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol, 296, 83–91
  • Dugan J, Rockey DD, Jones L, Andersen AA. (2004). Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob Agents Chemother, 48, 3989–3995
  • Dugan J, Andersen AA, Rockey DD. (2007). Functional characterization of IScs605, an insertion element carried by tetracycline-resistant Chlamydia suis. Microbiology (Reading, Engl), 153, 71–79
  • Eisele NA, Anderson DM. (2009). Dual-function antibodies to Yersinia pestis LcrV required for pulmonary clearance of plague. Clin Vaccine Immunol, 16, 1720–1727
  • Eissenberg LG, Wyrick PB. (1981). Inhibition of phagolysosome fusion is localized to Chlamydia psittaci-laden vacuoles. Infect Immun, 32, 889–896
  • Elwell CA, Ceesay A, Kim JH, Kalman D, Engel JN. (2008). RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog, 4, e1000021
  • Ernst JD. (2000). Bacterial inhibition of phagocytosis. Cell Microbiol, 2, 379–386
  • Escaich S. (2010). Novel agents to inhibit microbial virulence and pathogenicity. Expert Opin Ther Pat, 20, 1401–1418
  • Escalante-Ochoa C, Ducatelle R, Haesebrouck F. (1998). The intracellular life of Chlamydia psittaci: how do the bacteria interact with the host cell? FEMS Microbiol Rev, 22, 65–78
  • Everett KD, Hatch TP. (1991). Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC. J Bacteriol, 173, 3821–3830
  • Everett KD. (2000). Chlamydia and Chlamydiales: more than meets the eye. Vet Microbiol, 75, 109–126
  • Fadel S, Eley A. (2004). Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis-infected cells. J Med Microbiol, 53, 93–95
  • Fadel S, Eley A. (2007). Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. J Med Microbiol, 56, 15–22
  • Fadel S, Eley A. (2008). Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV. J Med Microbiol, 57, 1058–1061
  • Finco O, Bonci A, Agnusdei M, Scarselli M, Petracca R, Norais N, Ferrari G, Garaguso I, Donati M, Sambri V, Cevenini R, Ratti G, Grandi G. (2005). Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings. Vaccine, 23, 1178–1188
  • Fox A, Rogers JC, Gilbart J, Morgan S, Davis CH, Knight S, Wyrick PB. (1990). Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect Immun, 58, 835–837
  • Frank DW, Vallis A, Wiener-Kronish JP, Roy-Burman A, Spack EG, Mullaney BP, Megdoud M, Marks JD, Fritz R, Sawa T. (2002). Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J Infect Dis, 186, 64–73
  • Fudyk T, Olinger L, Stephens RS. (2002). Selection of mutant cell lines resistant to infection by Chlamydia spp [corrected]. Infect Immun, 70, 6444–6447
  • Gébus C, Caroline G, Faudry E, Eric F, Bohn YS, Elsen S, Sylvie E, Attree I. (2008). Oligomerization of PcrV and LcrV, protective antigens of Pseudomonas aeruginosa and Yersinia pestis. J Biol Chem, 283, 23940–23949
  • Gérard HC, Krausse-Opatz B, Wang Z, Rudy D, Rao JP, Zeidler H, Schumacher HR, Whittum-Hudson JA, Köhler L, Hudson AP. (2001). Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol, 41, 731–741
  • Gombos I, Kiss E, Detre C, László G, Matkó J. (2006). Cholesterol and sphingolipids as lipid organizers of the immune cells’ plasma membrane: their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death. Immunol Lett, 104, 59–69
  • Gomez HF, Ochoa TJ, Carlin LG, Cleary TG. (2003). Human lactoferrin impairs virulence of Shigella flexneri. J Infect Dis, 187, 87–95
  • Goure J, Broz P, Attree O, Cornelis GR, Attree I. (2005). Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J Infect Dis, 192, 218–225
  • Grieshaber S, Swanson JA, Hackstadt T. (2002). Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes. Cell Microbiol, 4, 273–283
  • Gump DW. (1996). Antimicrobial susceptibility testing for some atypical microorganisms: chlamydiae, mycoplasmas, rickettsia and spirochetes. Baltimore: Williams & Wilkins
  • Hackstadt T, Fischer ER, Scidmore MA, Rockey DD, Heinzen RA. (1997). Origins and functions of the chlamydial inclusion. Trends Microbiol, 5, 288–293
  • Hackstadt T, Todd WJ, Caldwell HD. (1985). Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae? J Bacteriol, 161, 25–31
  • Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA. (1996). Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J, 15, 964–977
  • Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER. (1999). The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol, 1, 119–130
  • Harley R, Herring A, Egan K, Howard P, Gruffydd-Jones T, Azuma Y, Shirai M, Helps C. (2007). Molecular characterisation of 12 Chlamydophila felis polymorphic membrane protein genes. Vet Microbiol, 124, 230–238
  • Hatch TP, Al-Hossainy E, Silverman JA. (1982). Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol, 150, 662–670
  • Hatch TP, Allan I, Pearce JH. (1984). Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J Bacteriol, 157, 13–20
  • Hatch TP. (1996). Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J Bacteriol, 178, 1–5
  • Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T. (1996). Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun, 64, 796–809
  • Heinzen RA, Hackstadt T. (1997). The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. Infect Immun, 65, 1088–1094
  • Helms JB, Zurzolo C. (2004). Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic, 5, 247–254
  • Henderson IR, Lam AC. (2001). Polymorphic proteins of Chlamydia spp.–autotransporters beyond the Proteobacteria. Trends Microbiol, 9, 573–578
  • Henke JM, Bassler BL. (2004). Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol, 186, 6902–6914
  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M. (2003). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J, 22, 3803–3815
  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL. (2007). The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 450, 883–886
  • Hodinka RL, Davis CH, Choong J, Wyrick PB. (1988). Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells. Infect Immun, 56, 1456–1463
  • Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P. (2004). Chlamydial persistence: beyond the biphasic paradigm. Infect Immun, 72, 1843–1855
  • Hughes DT, Sperandio V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol, 6, 111–120
  • Hybiske K, Stephens RS. (2007). Mechanisms of Chlamydia trachomatis entry into nonphagocytic cells. Infect Immun, 75, 3925–3934
  • Iliffe-Lee ER, McClarty G. (1999). Glucose metabolism in Chlamydia trachomatis: the ‘energy parasite’ hypothesis revisited. Mol Microbiol, 33, 177–187
  • Jewett TJ, Fischer ER, Mead DJ, Hackstadt T. (2006). Chlamydial TARP is a bacterial nucleator of actin. Proc Natl Acad Sci USA, 103, 15599–15604
  • Johnson FW, Spencer WN. (1983). Multiantibiotic resistance in Chlamydia psittaci from ducks. Vet Rec, 112, 208
  • Jones RB, Van der Pol B, Martin DH, Shepard MK. (1990). Partial characterization of Chlamydia trachomatis isolates resistant to multiple antibiotics. J Infect Dis, 162, 1309–1315
  • Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS. (1999). Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet, 21, 385–389
  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK. (2007). The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest, 117, 877–888
  • Kauppi AM, Nordfelth R, Uvell H, Wolf-Watz H, Elofsson M. (2003). Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol, 10, 241–249
  • Kendall MM, Rasko DA, Sperandio V. (2007). Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infect Immun, 75, 4875–4884
  • Keyser P, Elofsson M, Rosell S, Wolf-Watz H. (2008). Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria. J Intern Med, 264, 17–29
  • Kim SK, DeMars R. (2001). Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. Curr Opin Immunol, 13, 429–436
  • Klingenberg M. (1989). Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch Biochem Biophys, 270, 1–14
  • Koo IC, Stephens RS. (2003). A developmentally regulated two-component signal transduction system in Chlamydia. J Biol Chem, 278, 17314–17319
  • Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA. (2008). Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog, 4, e1000014
  • Lefèvre JC, Lépargneur JP. (1998). Comparative in vitro susceptibility of a tetracycline-resistant Chlamydia trachomatis strain isolated in Toulouse (France). Sex Transm Dis, 25, 350–352
  • Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM. (2006). Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA, 103, 18992–18997
  • Linington RG, Robertson M, Gauthier A, Finlay BB, van Soest R, Andersen RJ. (2002). Caminoside A, an antimicrobial glycolipid isolated from the marine sponge Caminus sphaeroconia. Org Lett, 4, 4089–4092
  • Linington RG, Robertson M, Gauthier A, Finlay BB, MacMillan JB, Molinski TF, van Soest R, Andersen RJ. (2006). Caminosides B-D, antimicrobial glycolipids isolated from the marine sponge Caminus sphaeroconia. J Nat Prod, 69, 173–177
  • Linka N, Hurka H, Lang BF, Burger G, Winkler HH, Stamme C, Urbany C, Seil I, Kusch J, Neuhaus HE. (2003). Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene, 306, 27–35
  • Litwin J, Officer JE, Brown A, Moulder JW. (1961). A comparative study of the growth cycles of different members of the psittacosis group in different host cells. J Infect Dis, 109, 251–279
  • Liu X, Afrane M, Clemmer DE, Zhong G, Nelson DE. (2010). Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics. J Bacteriol, 192, 2852–2860
  • Longbottom D, Russell M, Jones GE, Lainson FA, Herring AJ. (1996). Identification of a multigene family coding for the 90 kDa proteins of the ovine abortion subtype of Chlamydia psittaci. FEMS Microbiol Lett, 142, 277–281
  • Longbottom D, Coulter LJ. (2003). Animal chlamydioses and zoonotic implications. J Comp Pathol, 128, 217–244
  • Lyon GJ, Novick RP. (2004). Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides, 25, 1389–1403
  • Markham AP, Barrett BS, Esfandiary R, Picking WL, Picking WD, Joshi SB, Middaugh CR. (2010). Formulation and immunogenicity of a potential multivalent type III secretion system-based protein vaccine. J Pharm Sci, 99, 4497–4509
  • Mathews S, George C, Flegg C, Stenzel D, Timms P. (2001). Differential expression of ompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-gamma treated cultures of Chlamydia pneumoniae. Microb Pathog, 30, 337–345
  • Matsumoto A, Fujiwara E, Higashi N. (1976). Observations of the surface projections of infectious small cell of Chlamydia psittaci in thin sections. J Electron Microsc (Tokyo), 25, 169–170
  • Matsumoto A. (1982a). Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J Bacteriol, 150, 358–364
  • Matsumoto A. (1982b). Surface projections of Chlamydia psittaci elementary bodies as revealed by freeze-deep-etching. J Bacteriol, 151, 1040–1042
  • McCoy AJ, Maurelli AT. (2006). Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol, 14, 70–77
  • McDowell P, Affas Z, Reynolds C, Holden MT, Wood SJ, Saint S, Cockayne A, Hill PJ, Dodd CE, Bycroft BW, Chan WC, Williams P. (2001). Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus. Mol Microbiol, 41, 503–512
  • Misyurina OY, Chipitsyna EV, Finashutina YP, Lazarev VN, Akopian TA, Savicheva AM, Govorun VM. (2004). Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides. Antimicrob Agents Chemother, 48, 1347–1349
  • Moelleken K, Hegemann JH. (2008). The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Mol Microbiol, 67, 403–419
  • Moulder JW. (1991). Interaction of chlamydiae and host cells in vitro. Microbiol Rev, 55, 143–190
  • Moulder JW. (1993). Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis, 2, 87–99
  • Moulin G, Cavalié P, Pellanne I, Chevance A, Laval A, Millemann Y, Colin P, Chauvin C; Antimicrobial Resistance ad hoc Group of the French Food Safety Agency. (2008). A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J Antimicrob Chemother, 62, 617–625
  • Mpiga P, Ravaoarinoro M. (2006). Chlamydia trachomatis persistence: an update. Microbiol Res, 161, 9–19
  • Mueller CA, Broz P, Cornelis GR. (2008). The type III secretion system tip complex and translocon. Mol Microbiol, 68, 1085–1095
  • Muschiol S, Bailey L, Gylfe A, Sundin C, Hultenby K, Bergström S, Elofsson M, Wolf-Watz H, Normark S, Henriques-Normark B. (2006). A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA, 103, 14566–14571
  • Muschiol S, Normark S, Henriques-Normark B, Subtil A. (2009). Small molecule inhibitors of the Yersinia type III secretion system impair the development of Chlamydia after entry into host cells. BMC Microbiol, 9, 75
  • Newhall WJ, Jones RB. (1983). Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J Bacteriol, 154, 998–1001
  • Newhall WJ 5th. (1987). Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis. Infect Immun, 55, 162–168
  • Novick RP. (2003). Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol, 48, 1429–1449
  • Ochoa TJ, Noguera-Obenza M, Ebel F, Guzman CA, Gomez HF, Cleary TG. (2003). Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect Immun, 71, 5149–5155
  • Ochoa TJ, Clearly TG. (2004). Lactoferrin disruption of bacterial type III secretion systems. Biometals, 17, 257–260
  • Pan J, Ren D. (2009). Quorum sensing inhibitors: a patent overview. Expert Opin Ther Pat, 19, 1581–1601
  • Paradkar PN, De Domenico I, Durchfort N, Zohn I, Kaplan J, Ward DM. (2008). Iron depletion limits intracellular bacterial growth in macrophages. Blood, 112, 866–874
  • Parton RG, Richards AA. (2003). Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic, 4, 724–738
  • Peeling R, Maclean IW, Brunham RC. (1984). In vitro neutralization of Chlamydia trachomatis with monoclonal antibody to an epitope on the major outer membrane protein. Infect Immun, 46, 484–488
  • Peters J, Wilson DP, Myers G, Timms P, Bavoil PM. (2007). Type III secretion à la Chlamydia. Trends Microbiol, 15, 241–251
  • Peterson EM, Cheng X, Markoff BA, Fielder TJ, de la Maza LM. (1991). Functional and structural mapping of Chlamydia trachomatis species-specific major outer membrane protein epitopes by use of neutralizing monoclonal antibodies. Infect Immun, 59, 4147–4153
  • Peterson JR, Mitchison TJ. (2002). Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol, 9, 1275–1285
  • Philipovskiy AV, Cowan C, Wulff-Strobel CR, Burnett SH, Kerschen EJ, Cohen DA, Kaplan AM, Straley SC. (2005). Antibody against V antigen prevents Yop-dependent growth of Yersinia pestis. Infect Immun, 73, 1532–1542
  • Prain CJ, Pearce JH. (1989). Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism. J Gen Microbiol, 135, 2107–2123
  • Prantner D, Nagarajan UM. (2009). Role for the chlamydial type III secretion apparatus in host cytokine expression. Infect Immun, 77, 76–84
  • Rasko DA, Moreira CG, Li de R, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sperandio V. (2008). Targeting QseC signaling and virulence for antibiotic development. Science, 321, 1078–1080
  • Rasko DA, Sperandio V. (2010). Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov, 9, 117–128
  • Rasmussen-Lathrop SJ, Koshiyama K, Phillips N, Stephens RS. (2000). Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells. Cell Microbiol, 2, 137–144
  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M. (2005a). Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol, 187, 1799–1814
  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M. (2005b). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology (Reading, Engl), 151, 1325–1340
  • Raulston JE, Davis CH, Schmiel DH, Morgan MW, Wyrick PB. (1993). Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the hsp70 family of proteins. J Biol Chem, 268, 23139–23147
  • Raulston JE. (1997). Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun, 65, 4539–4547
  • Ravn L, Christensen AB, Molin S, Givskov M, Gram L. (2001). Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods, 44, 239–251
  • Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen IT, Heidelberg J, Holtzapple E, Khouri H, Federova NB, Carty HA, Umayam LA, Haft DH, Peterson J, Beanan MJ, White O, Salzberg SL, Hsia RC, McClarty G, Rank RG, Bavoil PM, Fraser CM. (2003). Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res, 31, 2134–2147
  • Ren Q, Kang KH, Paulsen IT. (2004). TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res, 32, D284–D288
  • Reynolds DJ, Pearce JH. (1990). Characterization of the cytochalasin D-resistant (pinocytic) mechanisms of endocytosis utilized by chlamydiae. Infect Immun, 58, 3208–3216
  • Ridderhof JC, Barnes RC. (1989). Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis. Infect Immun, 57, 3189–3193
  • Rockey DD, Fischer ER, Hackstadt T. (1996). Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect Immun, 64, 4269–4278
  • Rockey DD, Matsumoto A. (2000). The chlamydial developmental cycle. Washington DC: ASM Press
  • Rockey DD, Scidmore MA, Bannantine JP, Brown WJ. (2002). Proteins in the chlamydial inclusion membrane. Microbes Infect, 4, 333–340
  • Rzomp KA, Moorhead AR, Scidmore MA. (2006). The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect Immun, 74, 5362–5373
  • Saier MH Jr. (2000). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev, 64, 354–411
  • Salmond GP, Bycroft BW, Stewart GS, Williams P. (1995). The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol Microbiol, 16, 615–624
  • Sanchez-Campillo M, Bini L, Comanducci M, Raggiaschi R, Marzocchi B, Pallini V, Ratti G. (1999). Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis, 20, 2269–2279
  • Sandoz KM, Rockey DD. (2010). Antibiotic resistance in Chlamydiae. Future Microbiol, 5, 1427–1442
  • Sardinia LM, Segal E, Ganem D. (1988). Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis. J Gen Microbiol, 134, 997–1004
  • Sarmah AK, Meyer MT, Boxall AB. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759
  • Schauder S, Shokat K, Surette MG, Bassler BL. (2001). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol, 41, 463–476
  • Schautteet K, De Clercq E, Miry C, Van Groenweghe F, Delava P, Kalmar I, Vanrompay D. (2012). Chlamydia suis and reproductive failure in Belgian, Cypriote, German and Israeli pigs. Journal of Medical Microbiology (in press)
  • Schramm N, Bagnell CR, Wyrick PB. (1996). Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect Immun, 64, 1208–1214
  • Schwarzenbacher R, Stenner-Liewen F, Liewen H, Robinson H, Yuan H, Bossy-Wetzel E, Reed JC, Liddington RC. (2004). Structure of the Chlamydia protein CADD reveals a redox enzyme that modulates host cell apoptosis. J Biol Chem, 279, 29320–29324
  • Scidmore MA, Fischer ER, Hackstadt T. (1996). Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol, 134, 363–374
  • Scidmore MA, Fischer ER, Hackstadt T. (2003). Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun, 71, 973–984
  • Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T. (2000). Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol, 37, 913–925
  • Simons K, Toomre D. (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 1, 31–39
  • Skoudy A, Mounier J, Aruffo A, Ohayon H, Gounon P, Sansonetti P, Tran Van Nhieu G. (2000). CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol, 2, 19–33
  • Slepenkin A, Enquist PA, Hägglund U, de la Maza LM, Elofsson M, Peterson EM. (2007). Reversal of the antichlamydial activity of putative type III secretion inhibitors by iron. Infect Immun, 75, 3478–3489
  • Smith KM, Bu Y, Suga H. (2003a). Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol, 10, 81–89
  • Smith KM, Bu Y, Suga H. (2003b). Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol, 10, 563–571
  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. (2003). Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA, 100, 8951–8956
  • Stenner-Liewen F, Liewen H, Zapata JM, Pawlowski K, Godzik A, Reed JC. (2002). CADD, a Chlamydia protein that interacts with death receptors. J Biol Chem, 277, 9633–9636
  • Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW. (1998). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science, 282, 754–759
  • Stephens RS, Koshiyama K, Lewis E, Kubo A. (2001). Heparin-binding outer membrane protein of chlamydiae. Mol Microbiol, 40, 691–699
  • Stephens RS, Lammel CJ. (2001). Chlamydia outer membrane protein discovery using genomics. Curr Opin Microbiol, 4, 16–20
  • Stuart ES, Webley WC, Norkin LC. (2003). Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp Cell Res, 287, 67–78
  • Su H, Watkins NG, Zhang YX, Caldwell HD. (1990). Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun, 58, 1017–1025
  • Su H, Raymond L, Rockey DD, Fischer E, Hackstadt T, Caldwell HD. (1996). A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci USA, 93, 11143–11148
  • Subtil A, Wyplosz B, Balañá ME, Dautry-Varsat A. (2004). Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity. J Cell Sci, 117, 3923–3933
  • Suchland RJ, Sandoz KM, Jeffrey BM, Stamm WE, Rockey DD. (2009). Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother, 53, 4604–4611
  • Suga H, Smith KM. (2003). Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr Opin Chem Biol, 7, 586–591
  • Surette MG, Miller MB, Bassler BL. (1999). Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA, 96, 1639–1644
  • Swanson KA, Crane DD, Caldwell HD. (2007). Chlamydia trachomatis species-specific induction of ezrin tyrosine phosphorylation functions in pathogen entry. Infect Immun, 75, 5669–5677
  • Taraska T, Ward DM, Ajioka RS, Wyrick PB, Davis-Kaplan SR, Davis CH, Kaplan J. (1996). The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins. Infect Immun, 64, 3713–3727
  • Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, Cerdeño-Tárraga AM, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG, Parkhill J, Longbottom D. (2005). The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res, 15, 629–640
  • Ting LM, Hsia RC, Haidaris CG, Bavoil PM. (1995). Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect Immun, 63, 3600–3608
  • Tjaden J, Winkler HH, Schwöppe C, Van Der Laan M, Möhlmann T, Neuhaus HE. (1999). Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J Bacteriol, 181, 1196–1202
  • Van Blarcom TJ, Sofer-Podesta C, Ang J, Boyer JL, Crystal RG, Georgiou G. (2010). Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge. Gene Ther, 17, 913–921
  • Van Droogenbroeck C, Beeckman DS, Harkinezhad T, Cox E, Vanrompay D. (2008). Evaluation of the prophylactic use of ovotransferrin against chlamydiosis in SPF turkeys. Vet Microbiol, 132, 372–378
  • Van Droogenbroeck C, Dossche L, Wauman T, Van Lent S, Phan TT, Beeckman DS, Vanrompay D. (2011). Use of ovotransferrin as an antimicrobial in turkeys naturally infected with Chlamydia psittaci, avian metapneumovirus and Ornithobacterium rhinotracheale. Vet Microbiol, 153, 257–263
  • Vanrompay D, Charlier G, Ducatelle R, Haesebrouck F. (1996). Ultrastructural changes in avian Chlamydia psittaci serovar A-, B-, and D-infected Buffalo Green Monkey cells. Infect Immun, 64, 1265–1271
  • Vanrompay D, Mast J, Ducatelle R, Haesebrouck F, Goddeeris B. (1995). Chlamydia psittaci in turkeys: pathogenesis of infections in avian serovars A, B and D. Vet Microbiol, 47, 245–256
  • Wang J, Chen L, Chen F, Zhang X, Zhang Y, Baseman J, Perdue S, Yeh IT, Shain R, Holland M, Bailey R, Mabey D, Yu P, Zhong G. (2009). A chlamydial type III-secreted effector protein (Tarp) is predominantly recognized by antibodies from humans infected with Chlamydia trachomatis and induces protective immunity against upper genital tract pathologies in mice. Vaccine, 27, 2967–2980
  • Wang D, Zetterström CE, Gabrielsen M, Beckham KS, Tree JJ, Macdonald SE, Byron O, Mitchell TJ, Gally DL, Herzyk P, Mahajan A, Uvell H, Burchmore R, Smith BO, Elofsson M, Roe AJ. (2011). Identification of bacterial target proteins for the salicylidene acylhydrazide class of virulence-blocking compounds. J Biol Chem, 286, 29922–29931
  • Ward ME. (1988). The Chlamydial developmental cycle. In: Barron AL, ed. Microbiology of Chlamydia. Boca Raton: CRC Press, Inc
  • Warrell RP Jr, Bockman RS. (1989). Gallium in the treatment of hypercalcemia and bone metastasis. Important Adv Oncol, 1989, 205–220
  • Watarai M, Funato S, Sasakawa C. (1996). Interaction of Ipa proteins of Shigella flexneri with α5β1 integrin promotes entry of the bacteria into mammalian cells. J Exp Med, 183, 991–999
  • Wehrl W, Brinkmann V, Jungblut PR, Meyer TF, Szczepek AJ. (2004). From the inside out–processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Mol Microbiol, 51, 319–334
  • Wilson DP, Timms P, McElwain DL, Bavoil PM. (2006). Type III secretion, contact-dependent model for the intracellular development of chlamydia. Bull Math Biol, 68, 161–178
  • Winkler HH, Neuhaus HE. (1999). Non-mitochondrial ATP transport. Trends Biochem Sci, 24, 64–68
  • Wolf K, Betts HJ, Chellas-Géry B, Hower S, Linton CN, Fields KA. (2006). Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol Microbiol, 61, 1543–1555
  • Wyrick PB, Choong J, Davis CH, Knight ST, Royal MO, Maslow AS, Bagnell CR. (1989). Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect Immun, 57, 2378–2389
  • Wyrick PB. (2000). Intracellular survival by Chlamydia. Cell Microbiol, 2, 275–282
  • Yekta MA, Verdonck F, Van Den Broeck W, Goddeeris BM, Cox E, Vanrompay D. (2010). Lactoferrin inhibits E. coli O157:H7 growth and attachment to intestinal epithelial cells. Vet Med, 55, 359–368
  • Yuan Y, Zhang YX, Watkins NG, Caldwell HD. (1989). Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun, 57, 1040–1049
  • Zavil’gel’skii GB, Manukhov IV. (2001). [“Quorum sensing”, or how bacteria “talk” to each other]. Mol Biol (Mosk), 35, 268–277
  • Zhang JP, Stephens RS. (1992). Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell, 69, 861–869

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.