444
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Revisiting eukaryotic anti-infective biotherapeutics

, , , &
Pages 281-292 | Received 11 Jul 2012, Accepted 09 Nov 2012, Published online: 15 Jan 2013

References

  • Abbassi F, Lequin O, Piesse C, et al. (2010). Temporin-SHF, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 285:16880–92
  • Almeida AAP, Farah A, Silva DMA, et al. (2006). Antibacterial activity of coffee extracts and selected coffee chemical compounds against Enterobacteria. J Agric Food Chem 54:8738–43
  • Amarowicz R, Dykes GA, Pegg RB. (2008). Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia 79:217–19
  • Andreu D, Rivas L. (1998). Animal antimicrobial peptides: an overview. Biopolymers 47:415–33
  • Aoki N, Tateda K, Kikuchi Y, et al. (2009). Efficacy of colistin combination therapy in a mouse model of pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 63:534–42
  • Arunachalam G, Bag P, Chattopadhyay D. (2009). Phytochemical and phytotherapeutic evaluation of Mallotus peltatus (Geist.) Muell. Arg. var acuminatus and Alstonia macrophylla wall ex A. DC: two ethnomedicine of Andaman islands. India J Pharmocog Phytother 1:1–13
  • Avrahami D, Shai Y. (2004). A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem 279:12277–85
  • Benincasa M, Pelillo C, Zorzet S, et al. (2010). The proline-rich peptide Bac7 (1-35) reduces mortality from Salmonella typhimurium in a mouse model of infection. BMC Microbiol 10:178
  • Bharrhan S, Chopra K, Arora SK, et al. (2012). Down-regulation of NF-κB signalling by polyphenolic compounds prevents endotoxin-induced liver injury in a rat model. Innate Immunity 18:70–9
  • Bhattacharjee I, Chatterjee SK, Chatterjee S, Chandra G. (2006). Antibacterial potentiality of Argemone mexicana solvent extracts against some pathogenic bacteria. Mem Inst Oswaldo Cruz 101:645–8
  • Bradshaw J. (2003). Cationic antimicrobial peptides: issues for potential clinical use. Biodrugs 17:233–40
  • Breemen RB, Tao Y, Li W. (2011). Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 82:38–43
  • Brinch KS, Sandberg A, Baudoux P, et al. (2009). Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model. Antimicrob Agents Chemother 53:4801–8
  • Brinch KS, Sandberg A, Jensen KS, et al. (2008). Plectasin wt (NZ2000) is efficacious against extra and intracellular S. aureus in a murine PK/PD model. 48th Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstracts, Washington D.C., A-989
  • Cassone M, Otvos JL. (2010). Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev Anti Infect Ther 8:703–16
  • Chandrababu KB, Ho B, Yang D. (2009). Structure, dynamics, and activity of an all-cysteine mutated human beta defensin-3 peptide analogue. Biochemistry (Mosc) 48:6052–61
  • Chen X, Niyonsaba F, Ushio H, et al. (2005). Synergistic effect of antibacterial agents human β-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40:123–32
  • Chennupati SK, Chiu AG, Tamashiro E, et al. (2009). Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis. Am J Rhinol Allergy 23:46–51
  • Ciornei CD, Sigurdardottir T, Schmidtchen A, Bodelsson M. (2005). Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49:2845–50
  • Cirioni O, Giacometti A, Kamysz W, et al. (2007). In-vitro activities of tachiplesin III against Pseudomonas aeruginosa. Peptides 28:747–51
  • Cirioni O, Giacometti A, Silvestri C, et al. (2006a). In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:3923–5
  • Cirioni O, Silvestri C, Ghiselli R, et al. (2006b). Experimental study on the efficacy of combination of α-helical antimicrobial peptides and vancomycin against Staphylococcus aureus with intermediate resistance to glycopeptides. Peptides 27:2600–6
  • Cirioni O, Silvestri C, Ghiselli R, et al. (2008). Protective effects of the combination of α-helical antimicrobial peptides and rifampin in three rat models of Pseudomonas aeruginosa infection. J Antimicrob Chemother 62:1332–8
  • Cole AM, Cole AL. (2008). Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am J Reprod Immunol 59:27–34
  • Cowan MM. (1999). Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–92
  • De Souza SM, Delle Monache F, Smania A Jr.. (2005). Antibacterial activity of coumarins. Z Naturforsch C 60:693–700
  • Desbois AP, Gemmell CG, Coote PJ. (2010). In-vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic methicillin-resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Agents 35:559–65
  • Deslouches B, Shruti M, Phadke L, et al. (2005). De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother 49:316–22
  • Diggle SP, Crusz SA, Camara M. (2007). Quorum sensing. Curr Biol 17:R907–10
  • Du WX, Olsen CW, Avena-Bustillos RJ, et al. (2011). Physical and antibacterial properties of edible films formulated with apple skin polyphenols. J Food Sci 76:M149–55
  • Epand RF, Mor A, Epand RM. (2011). Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell Mol Life Sci 68:2177–88
  • Farahna M, Bedri S, Khalid S, et al. (2010). Anti-plasmodial effects of Azadirachta indica in experimental cerebral malaria: apoptosis of cerebellar Purkinje cells of mice as a marker. N Am J Med Sci 2:518–25
  • Fjell CD, Hiss JA, Hancock REW, Schneider G. (2012). Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51
  • Foryst-Ludwiga A, Neumanna M, Schneider-Brachertb W, Naumanna M. (2004). Curcumin blocks NF-kB and the motogenic response in Helicobacter pylori infected epithelial cells. Biochem Biophys Res Commun 316:1065–72
  • Franzman MR, Burnell KK, Dehkordi-Vakil FH, et al. (2009). Targeted antimicrobial activity of a specific IgG-SMAP28 conjugate against Porphyromonas gingivalis in a mixed culture. Int J Antimicrob Agents 33:14–20
  • Ganz T. (2002). Immunology: versatile defensins. Science 298:977–9
  • Ganz T, Selsted ME, Lehrer RI. (1990). Defensins. Eur J Haematol 44:1–8
  • Gaus K, Huang Y, Israel DA, et al. (2009). Standardized ginger (Zingiber officinale) extract reduces bacterial load and suppresses acute and chronic inflammation in Mongolian gerbils infected with cagA Helicobacter pylori. Pharm Biol 47:92–8
  • Gende LB, Floris I, Fritz R, Eguaras MJ. (2008). Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. B Insectol 61:1–4
  • Georgetti SR, Casagrande R, Souza CRF, et al. (2008). Spray drying of the soybean extract: Effects on chemical properties and antioxidant activity. LWT Food Sci Technol 41:1521–7
  • Ghiselli R, Giacometti A, Cirioni O, et al. (2001). Therapeutic efficacy of the polymyxin-like peptide ranalexin in an experimental model of endotoxemia. J Surg Res 100:183–8
  • Giacometti A, Cirioni O, Ghiselli R, et al. (2000a). Efficacy of polycationic peptides in preventing vascular graft infection due to Staphylococcus epidermidis. J Antimicrob Chemother 46:751–6
  • Giacometti A, Cirioni O, Ghiselli R, et al. (2000b). Polycationic peptides as prophylactic agents against methicillin-susceptible or methicillin-resistant Staphylococcus epidermidis vascular graft infection. Antimicrob Agents Chemother 44:3306–9
  • Gibbons S, Oluwatuyi M, Kaatz GW. (2004). A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J Antimicrob Chemother 48:1968–73
  • Girennavar B, Cepeda ML, Soni KA, et al. (2008). Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol 125:204–8
  • Gradisar H, Keber MM, Pristovsek P, Jerala R. (2007). MD-2 as the target of curcumin in the inhibition of response to LPS. J Leukoc Biol 82:968–74
  • Hancock RE. (2001). Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–64
  • Hancock RE, Diamond G. (2000). The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–10
  • Hancock RE, Scott MG. (2000). The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97:8856–61
  • Hannan A, Ullah MI, Usman M, et al. (2011). Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant Mycobacterium tuberculosis. Pak J Pharm Sci 24:81–5
  • Harris MR, Coote PJ. (2010). Combination of caspofungin or anidulafungin with antimicrobial peptides results in potent synergistic killing of Candida albicans and Candida glabrata in-vitro. Int J Antimicrob Agents 35:347–56
  • He J, Anderson M, Shi W, Eckert, R. (2009). Design and activity of a ‘dual-targeted’ antimicrobial peptide. Int J Antimicrob Agents 33:532–7
  • Hemaiswaryaa S, Kruthiventib AK, Doble M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15:639–52
  • Hussain R, Siligardi G. (2010). Novel drug delivery system for lipophilic therapeutics of small molecule, peptide-based and protein drugs. Chirality 22:E44–6
  • Iwalokun BA, Gbenle GO, Adewole TA, et al. (2003). Effects of Ocimum gratissimum L. essential oil at subinhibitory concentrations on virulent and multidrug-resistant Shigella strains from Lagos, Nigeria. APMIS 111:477–82
  • Joerger RD. (2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–7
  • Joshi B, Lekhak S, Sharma A. (2009). Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum marjorana. Kathmandu Univ J Sci Engg Technol 5:143–50
  • Kalita A, Verma I, Khullar GK. (2004). Role of human neutrophil peptide–1 as a possible adjunct to antituberculosis chemotherapy. J Inf Dis 190:1476–80
  • Kaur G, Tirkey N, Bharrhan S, et al. (2006). Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatotoxicity in rodents. Clin Exp Immunol 145:313–21
  • Kohlgraf KG, Ackermann A, Lu X, et al. (2010a). Defensins attenuate cytokine responses yet enhance antibody responses to Porphyromonas gingivalis adhesins in mice. Future Microbiol 5:115–25
  • Kohlgraf KG, Pingel LC, Dietrich DE, Brogden KA. (2010b). Defensins as anti-inflammatory compounds and mucosal adjuvants. Future Microbiol 5:99–113
  • Koul A, Bharrhan S, Singh B, Rishi P. (2009). Potential of Azadirachta indica against Salmonella typhimurium-induced inflammation in BALB/C mice. Inflammopharmacology 17:29–36
  • Lacmata ST, Kuete V, Dzoyem JP, et al. (2012). Antibacterial activities of selected cameroonian plants and their synergistic effects with antibiotics against bacteria expressing MDR phenotypes. Evid Based Complement Alternat Med. doi:10.1155/2012/623723. [EPub ahead of print]
  • Lagorio SH, Bianchi DA, Sutich EG, Kaufman TS. (2006). Synthesis and antimicrobial activity of pyranobenzoquinones related to the pyranonaphthoquinone antibiotics. Eur J Med Chem 41:1333–8
  • Lehrer RI, Ganz T. (1999). Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11:23–7
  • Leon MRG, Gonazalez MM, Martin MM, et al. (2007). In-vivo and in-vitro control of Leishmania mexicana due to garlic induced NO production. Scand J Immunol Supp 66:508–14
  • Lipsky BA, Holroyd KJ, Zasloff M. (2008). Topical versus systemic antimicrobial therapy for treating infected diabetic foot ulcers: a randomized, controlled, double-blinded multicenter trial of Pexiganan. Cream Clin Infect Dis 47:1537–45
  • Liu S, Zhou L, Li J, et al. (2008). Linear analogues of human beta-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. ChemBioChem 9:964–73
  • Livne L, Epand RF, Papahadjopoulos-Sternberg B, et al. (2010). OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. FASEB J 24:5092–101
  • Mandal S, Mandal MD, Pal NK, Saha K. (2010). Synergistic anti–Staphylococcus aureus activity of amoxicillin in combination with Emblica officinalis and Nymphae odorata extracts. Asian Pac J Trop Med 3:711–14
  • Martin KW, Ernst E. (2003). Herbal medicines for treatment of bacterial infections: a review of controlled clinical trials. J Antimicrob Chemother 51:241–6
  • Mason AJ, Moussaoui W, Abdelrahman T, et al. (2009). Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine rich amphipathic cationic peptides. J Biol Chem 284:119–33
  • Mattson MP. (2008). Hormesis defined. Ageing Res Rev 7:1–7
  • Min ER, Pinchak WE, Anderson RC, Callaway TR. (2007). Effect of tannins on the in-vitro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers. J Food Prot 70:543–50
  • Modi C, Mody S, Patel H, Dudhatra G, Kumar A, Awale M. (2012). Herbal Antibacterials: A Review. J Intercult Ethnopharmacol 1:52–61
  • Munin A, Edwards-Lévy F. (2011). Encapsulation of natural polyphenolic compounds: a Review. Pharmaceutics 3:793–829
  • Mygind PH, Fischer RL, Schnorr KM, et al. (2005). Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–80
  • Nohynek LJ, Alakomi HL, Kahkonen MP, et al. (2006). Phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 54:18–32
  • Nori MP, Favaro-Trindade CS, Matias de Alencar S, et al. (2011). Microencapsulation of propolis extract by complex coacervation. LWT Food Sci Technol 44:429–35
  • Nostro A, Roccaro AS, Bisignano G, et al. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–23
  • O’Donnell G, Gibbons S. (2007). Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother Res 21:653–7
  • O’Neil DA. (2004). Prospects for peptide anti-infective agents. Innov Pharmaceutic Technol 7:62–6
  • Okwu DE, Igara EC. (2009). Isolation, characterization and antibacterial activity of alkaloid from Datura metel Linn leaves. Afr J Pharmacy Pharmacol 3:277–81
  • Oussalah M, Caillet S, Lacroix M. (2006). Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 69:1046–55
  • Overington JP, Al-Lazikani B, Hopkins A. (2006). How many drug targets are there? Nat Rev Drug Discov 5:993–6
  • Panichayupakaranant P, Tewtrakul S, Yuenyongsawad S. (2010). Antibacterial, anti-inflammatory and anti-allergic activities of standardised pomegranate rind extract. Food Chem 123:400–3
  • Pankuch GA, Lin G, Seifert H, Appelbaum PC. (2008). Activity of meropenem with and without ciprofloxacin and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother 52:333–6
  • Parison A, Allan B, Zhang J, Mandeville R, Lan CQ. (2008). Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases and antimicrobial peptides. J Appl Microbiol 104:1–13
  • Peters BM, Shirtliff ME, Shirtliff ME, Jabra-Rizk MA, (2010). Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6:e1001067
  • Pompilio A, Crocetta V, Scocchi M, et al. (2012). Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed alpha-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol 12:145
  • Prabuseenivasan S, Jayakumar M, Ignacimuthu S. (2006). In-vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6:39
  • Pranoto Y, Rakshit SK, Salokhe VM. (2005). Enhancing antimicrobial acitivity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol 38:859–65
  • Preet S, Bharati S, Shukla G, et al. (2011). Evaluation of amoebicidal potential of Paneth cell cryptdin-2 against Entamoeba histolytica. PLoS Neg Trop Dis 5:e1386
  • Preet S, Verma I, Rishi P. (2010). Cryptdin-2: a novel therapeutic agent for experimental Salmonella typhimurium infection. J Antimicrob Chemother 65:991–4
  • Qiu XQ, Wang H, Lu XF, et al. (2003). An engineered multidomain bactericidal peptide as a model for targeted antibiotics against specific bacteria. Nat Biotechnol 21:1480–5
  • Qiu XQ, Zhang J, Wang H, Wu GY. (2005). A novel engineered peptide, a narrow-spectrum antibiotic, is effective against vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 49:1184–9
  • Radzishevsky IS, Rotem S, Bourdetsky D, et al. (2007). Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25:657–9
  • Rajkapoor B, Murugesh N, Kavimani S, et al. (2007). Antimycobacterial, antiviral and cytotoxic studies of Indigofera aspalathoides Vahl. Pharmacog Mag 3:163–6
  • Ramos FA, Takaishi Y, Shirotori M, et al. (2006). Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J Agric Food Chem 54:3551–7
  • Reichling J, Schnitzler P, Suschke U, Saller R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties-an overview. Forsch Komplementmed 16:79–90
  • Rhayour K, Bouchikhi T, Tantaoui-Elaraki A, et al. (2003). The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J Essent Oil Res 15:356–62
  • Rishi P, Preet S, Bharrhan S, Verma I. (2011). In-vitro and in-vivo synergistic effects of cryptdin 2 and ampicillin against Salmonella. Antimicrob Agents Chemother 55:4176–82
  • Rishi P, Rampuria A, Tewari R, Koul A. (2008). Phytomodulatory potentials of Aloe vera against Salmonella OmpR-mediated inflammation. Phytother Res 22:1075–82
  • Rivas-Santiago B, Sada E, Tsutsumi V, et al. (2006). β-defensin gene expression during the course of experimental tuberculosis infection. J Infect Dis 194:697–701
  • Ruiz PA, Haller D. (2006). Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr 136:664–71
  • Saleem M, Nazir M, Ali MS, et al. (2010). Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Res 27:238–54
  • Selsted ME, Ouellette AJ. (2005). Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–7
  • Sharma S, Verma I, Khuller GK. (2001). Therapeutic potential of human neutrophil peptide 1 against experimental tuberculosis. Antimicrob Agents Chemother 45:639
  • Shimamura T, Zhao WH, Hu Z. (2007). Mechanism of action and potential for use of tea catechin as an anti-infective agent. Antiinfect Agents Med Chem 6:57−62
  • Siddaraju MN, Dharmesh SM. (2007). Inhibition of gastric H+, K+-ATPase and Helicobacter pylori growth by phenolic antioxidants of Zingiber officinale. Mol Nutr Food Res 51:324–32
  • Singh PK, Tack BF, McCray PB, Welsh MJ. (2000). Synergistic and additive killing by antimicrobial factors found in human airway surface liquids. Am J Physiol Lung Cell Mol Physiol 279:799–805
  • Sivaraj A, Jenifa BP, Kavitha M, et al. (2011). Antibacterial activity of Coccinia grandis leaf extract on selective bacterial strains. J Appl Pharmaceut Sci 01:120–3
  • Steinstraesser L, Kraneburg, UM, et al. (2009). Host defense peptides as effector molecules of the innate immune response: A sledgehammer for drug resistance? Int J Mol Sci 10:3951–70
  • Taylor K, Clarke DJ, McCullough B, et al. (2008). Analysis and separation of residues important for the chemoattractant and antimicrobial activities of beta-defensin 3. J Biol Chem 283:6631–9
  • Taylor PW, Hamilton-Miller JMT, Stapleton PD. (2005). Antimicrobial properties of green tea catechins. Food Sci Technol Bull 2:71–81
  • Thakurta P, Bhowmik P, Mukherjee S, et al. (2007). Antibacterial, antisecretory and antihemorrhagic activity of Azadirachta indica used to treat cholera and diarrhoea in India. J Ethnopharmacol 111:607–12
  • Tsao SM, Hsu CC, Yin MC. (2003). Garlic extract and two diallyl sulphides inhibit methicillin-resistant Staphylococcus aureus infection in BALB/cA mice. J Antimicrob Chemother 52:974–80
  • Uma B, Prabhakar K, Rajendran S. (2009). In-vitro antimicrobial activity and phytochemical analysis of Ficus religiosa L. and Ficus bengalensis L. against diarrhoeal enterotoxigenic E. Coli. Ethnobotan Leafl 13:472–4
  • Vikram A, Jayaprakasha GK, Jesudhasan PR, et al. (2010a). Suppression of bacterial cell- cell signaling, biofilm formation and type III secretion system by Citrus flavonoisa. J Appl Microbiol 109:515–27
  • Vikram A, Jesudhasan PR, Jayaprakasha GK, et al. (2010b). Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS biofilm. Int J Food Microbiol 140:109–11
  • Wang D, Kong L, Wang J, et al. (2009). Polymyxin E sulfate–loaded liposome for intravenous use: preparation, lyophilization, and toxicity assessment in-vivo. PDA J Pharm Sci Technol 63:159–67
  • Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. (2011). Human defensin 5 disulfide array mutants: disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Biochemistry 20:8005–17
  • Westerhoff HV, Zasloff M, Rosner JL, et al. (1995). Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem 228:257–64
  • Yamasaki S, Asakura M, Neogi SB, et al. (2011). Inhibition of virulence potential of Vibrio cholerae by natural compounds. Indian J Med Res 133:232–9
  • Yan H, Hancock REW. (2001). Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob Agents Chemother 45:1558–60
  • Yanagi S, Ashitani J, Imai K, et al. (2007). Significance of human β-defensins in the epithelial lining fluid of patients with chronic lower respiratory tract infections. Clin Microbiol Infect 13:63–9
  • Yeaman MR, Kupferwasser D, Yount NY, et al. (2009). Efficacy of intravenous platelet kinocidin congener RP-1 in a murine model of Staphylococcus aureus (SA) biofilm infection. Presented at 49th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco
  • Yenugu S, Narmadha G. (2010). The human male reproductive tract antimicrobial peptides of the HE2 family exhibit potent synergy with standard antibiotics. J Pept Sci 16:337–41
  • Youn HS, Lim HJ, Lee HJ, et al. (2008). Garlic (Allium sativum) extract inhibits lipopolysaccharide-induced toll-like receptor 4 dimerization. Biosci Biotechnol Biochem 72:368–75
  • Yount NY, Yeaman MR. (2012). Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 52:337–60
  • Zarrouk V, Bozdogan B, Leclercq R, et al. (2001). Activities of the combination of quinupristin-dalfopristin with rifampin in-vitro and in experimental endocarditis due to Staphylococcus aureus strains with various phenotypes of resistance to macrolide-lincosamide-streptogramin antibiotics. Antimicrob Agents Chemother 45:1244–8
  • Zasloff M. (2002a). Antimicrobial peptides in health and disease. N Engl J Med 347:1199–200
  • Zasloff M. (2002b). Antimicrobial peptides of multicellular organisms. Nature 415:389–95
  • Zasloff M. (2006). Fighting infections with vitamin D. Nat Med 12:388–90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.