699
Views
61
CrossRef citations to date
0
Altmetric
Review Article

Thermophilic molds: Biology and applications

, , &
Pages 985-1006 | Received 04 May 2015, Accepted 27 Oct 2015, Published online: 17 Jan 2016

References

  • Amlacher S, Sarges P, Flemming D, et al. (2011). Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146:277–89
  • Arima K, Iwasaki S,Tamura G. (1968). Milk clotting enzymes from microorganisms. V. Purification and crystallization of Mucor rennin from Mucor pusillus Lindt. Appl Microbiol 16: 1727-33
  • Aquino AC, Jorge JA, Terenzi HF, et al. (2001). Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungus Scytalidium thermophilum. Folia Microbiol (Praha) 46:11–16
  • Avci KG, Coruh N, Bolukbasi U, et al. (2013). Oxidation of phenolic compounds by the bifunctional catalase-phenol oxidase (CATPO) from Scytalidium thermophilum. Appl Microbiol Biotechnol 97:661–72
  • Bala A, Sapna, Jain J, et al. (2014). Production of an extracellular phytase from a thermophilic mould Humicola nigrescens in solid state fermentation and its application in dephytinization. Biocatal Agricult Biotechnol 3:259–64
  • Banerjee S, Archana A, Satyanarayana T. (1994). Xylose metabolism in a thermophilic mould Malbranchea pulchella var. sulfurea TMD-8. Curr Microbiol 29:349–53
  • Baraznenoka VA, Becker EG, Ankudimova NV, et al. (1999). Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb Technol 25:651–9
  • Barns SM, Delwiche CF, Palmer JD, et al. (1996). Perspectives on archaeal diversity, thermophily, and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–93
  • Beeson WT, Iavarone AT, Hausmann CD, et al. (2011). Extracellular aldonolactonase from Myceliophthora thermophila. Appl Environ Microbiol 77:650–6
  • Bengtsson L, Johansson B, Hackett TJ, et al. (1995). Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Appl Microbiol Biotechnol 42:807–11
  • Bennett NA, Ryan J, Biely P, et al. (1998). Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882. Carbohydr Res 306:445–55
  • Benoliel B, Poças-Fonseca MJ, Torres FAG, et al. (2010). Expression of a glucose-tolerant beta-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:2036–44
  • Berka RM, Grigoriev IV, Otillar R, et al. (2011). Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–9
  • Berka RM, Rey MW, Brown KM, et al. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–7
  • Bhat KM, Maheshwari R. (1987). Sporotrichum thermophile: growth, cellulose degradation, and cellulase activity. Appl Environ Microbiol 53:2175-82
  • Bódai V, Peredi R, Bálint J, et al. (2003). Novel hydrolases from thermophilic filamentous fungi for enantiomerically and enantiotopically selective biotransformations. Adv Synth Catal 345:811–18
  • Bru-Adan V, Wéry N, Moletta-Denat M, et al. (2009). Diversity of bacteria and fungi in aerosols during screening in a green waste composting plant. Curr Microbiol 59:326–35
  • Bruszewski TE, Fergus CL, Mumma RO. (1972). Thermophlic fungi. IV. The lipid composition of six species. Lipids 7:695–8
  • Campos L, Felix CR. (1995). Purification and characterization of a glucoamylase from Humicola grisea. Appl Environ Microbiol 61:2436–8
  • Canevascini G, Borer P, Dreyer JL. (1991). Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur J Biochem 198:43–52
  • Chadha BS, Gulati H, Minhas M, et al. (2004). Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–9
  • Chadha BS, Singh S, Vohra G, et al. (1997). Shake culture studies for the production of amylases by Thermomyces lanuginosus. Acta Microbiol Immunol Hung 44:181–5
  • Chahal DS, Moo-Young M, Vlach D. (1981). Effect of physical and physicochemical pretreatments of wood for SCP production with Chaetomium cellulolyticum. Biotechnol Bioeng 23:2417–20
  • Chavez ER, Touchburn SP, Moo-Young M. (1988). Microbial biomass protein from the fungus Chaetomium cellulolyticum. I. Composition and nutritive evaluation. Animal Feed Sci Technol 22:1–11
  • Chen J, Zhang YQ, Zhao CQ, et al. (2007). Cloning of a gene encoding thermostable glucoamylase from Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 103:2277–84
  • Christakopoulos P, Katapodis P, Kalogeris E, et al. (2003). Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31:171–5
  • Chu YS, Niu XM, Wang YL, et al. (2010). Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus. Org Lett 12:4356–9
  • Cooney DG, Emerson R. (1964). Thermophilic fungi. An account of their biology, activities and classification. San Francisco, California: W. H. Freeman & Co
  • Crisan EV. (1973). Current concepts of thermophilism and the thermophilic fungi. Mycologia 65:1171–98
  • Derikx PJL, Op den Camp HJM, Wagner AM, et al. (1990). Respiratory pathways in Agaricus bisporus and Scytalidium thermophilum. FEMS Microbiol Lett 66:307–12
  • dos Santos E, Piovan T, Roberto IC, et al. (2003). Kinetics of the solid state fermentation of sugarcane bagasse by Thermoascus aurantiacus for the production of xylanase. Biotechnol Lett 25:13–16
  • Dotsenko GS, Semenova MV, Sinitsyna OA, et al. (2012). Cloning, purification, and characterization of galactomannan-degrading enzymes from Myceliophthora thermophila. Biochemistry Mosc 77:1303–11
  • Du Y, Shi P, Huang H, et al. (2013). Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol 130:161–7
  • Dusterhoft EM, Linssen VAJM, Voragen AGJ, et al. (1997). Purification, characterization, and properties of two xylanases from Humicola insolens. Enzyme Microb Technol 20:437–45
  • El-Refai AH, Ghanem KM, El-Sabaery AH. (1991). Single cell protein production from orange waste by Sporotrichum thermophile cultivated under optimal conditions. Microbios 16:63–7
  • Fujii T, Koike H, Sawayama S, et al. (2015). Draft genome sequence of Talaromyces cellulolyticus strain Y-94, a source of lignocellulosic biomass-degrading enzymes. Genome Announc 3:e00014–15
  • Gomes I, Gomes J, Gomes DJ, et al. (2000). Simultaneous production of high activities of thermostable endoglucanase and beta-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–8
  • Grajek W. (1987). Production of D-xylanases by thermophilic fungi using different methods of culture. Biotechnol Lett 9:353-6
  • Grassick A, Murray PG, Thompson R, et al. (2004). Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271:4495–506
  • Guimaraes LHS, Terenzi HF, Jorge JA, et al. (2001). Thermostable conidial and mycelial alkaline phosphatases from the thermophilic fungus Scytalidium thermophilum. J Ind Microbiol Biotechnol 27:265–70
  • Gulati HK, Chadha BS, Saini HS. (2007). Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol Immunol Hung 54:121–38
  • Guo FX, Shi-Jin E, Liu SA, et al. (2008). Purification and characterization of a thermostable MnSOD from the thermophilic fungus Chaetomium thermophilum. Mycologia 100:375–80
  • Guo JP, Tan JL, Wang YL, et al. (2011). Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4. J Nat Prod 74:2278–81
  • Guo JP, Zhu CY, Zhang CP, et al. (2012). Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J Am Chem Soc 134:20306–9
  • Guo RF, Li DC, Wang R. (2005). Purification and properties of a thermostable chitinase from thermophilic fungus Thermomyces lanuginosus. Wei Sheng Wu Xue Bao 45:270–4
  • Guo RF, Li DC. (2006). cDNA cloning and expression of thermostable chitinase from thermophilic fungus Thermomyces lanuginosus. Wei Sheng Wu Xue Bao 46:99–103
  • Gupta AK, Gautam SP. (1993). Purification and properties of an extracellular α-glucosidase from thermophilic fungus Malbranchea sulfurea. J Gen Microbiol 139:963–7
  • Haakana H, Miettinen-Oinonen A, Joutsjoki V, et al. (2004). Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzyme Microb Technol 34:159–67
  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, et al. (2006). Bio-ethanol-the fuel of tomorrow from the residues of today Trends Biotechnol 24:549–56
  • Haikarainen T, Frioux C, Zhnag LQ, et al. (2014). Crystal structure and biochemical characterization of a manganese superoxide dismutase from Chaetomium thermophilum. Biochim Biophys Acta 1844:422–9
  • Hammonds P, Smith SN. (1986). Lipid composition of a psychrophilic, a mesophilic and a thermophilic Mucor spp. Trans Br Mycol Soc 86:551–60
  • Han P, Zhou P, Hu S, et al. (2013). A novel multifunctional α-amylase from the thermophilic fungus Malbranchea cinnamomea: biochemical characterization and three-dimensional structure. Appl Biochem Biotechnol 170:420–35
  • Hawksworth DL. (2012). Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–33
  • Heinzelman P, Komor R, Kanaan A, et al. (2010). Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 23:871–80
  • Heinzelman P, Snow CD, Wu I, et al. (2009). A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci USA 106:5610–15
  • Hirvonen M, Papageorgiou AC. (2003). Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: mechanistic implications based on the free and cellobiose-bound forms. J Mol Biol 329:403–10
  • Hong J, Tamaki H, Yamamoto K, et al. (2003). Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol Lett 25:657–61
  • Hultman J, Vasara T, Partanen P, et al. (2010). Determination of fungal succession during municipal solid waste composting using a cloning-based analysis. J Appl Microbiol 108:472–87
  • Hunter AC, Mills PW, Dedi C, et al. (2008). Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 108:155–63
  • Hunter AC, Watts KR, Dedi C, et al. (2009). An unusual ring-a opening and other reactions in steroid transformation by the thermophilic fungus Myceliophthora thermophila. J Steroid Biochem Mol Biol 116:171–7
  • Ifrij H, Ogel ZB. (2002). Production of neutral and alkaline extracellular proteases by the thermophilic fungus, Scytalidium thermophilum, grown on microcrystalline cellulose. Biotechnol Lett 24:1107–10
  • Jensen B, Nebelong P, Olsen J, et al. (2002). Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus. Biotechnol Lett 24:41–5
  • Johri BN, Alurralde JD, Klein J. (1990). Lipase production by free and immobilized protoplasts of Sporotrichum (Chrysosporium) thermophile Apinis. Appl Microbiol Biotechnol 33:367–71
  • Johri BN, Satyanarayana T, Olsen J. (1999). Thermophilic moulds in biotechnology. Dordrecht: Kluwer Academic Publishers
  • Kalogeris E, Christakopoulos P, Katapodis P, et al. (2003). Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38:1099–104
  • Kalogeris E, Christakopoulos P, Kekos D, et al. (1998). Studies on the solid state production of thermostable endoxylanases from Thermoascus aurantiacus, characterization of two isozymes. J Biotechnol 60:155–63
  • Kamra P, Satyanarayana T. (2004). Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl Biochem Biotechnol 119:145–57
  • Katapodis P, Vrsanská M, Kekos D, et al. (2003). Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338:1881–90
  • Kaur G, Kumar S, Satyanarayana T. (2004). Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94:239–43
  • Kaur G, Satyanarayana T. (2004). Production of extracellular pectinolytic, cellulolytic and xylanolytic enzymes by a thermophilic mould Sporotrichum thermophile Apinis in solid state fermentation. Indian J Biotechnol 3:552–7
  • Khan SA, Gambhir S, Ahmad A. (2014). Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol 5:249–57
  • Kidwell MA, Chan JM, Doudna JA. (2014). Evolutionarily conserved roles of the dicer helicase domain in regulating RNAi processing. J Biol Chem 289:28352–62
  • Klyosov AA, Dotsenko GS, Hinz SW, et al. (2012). Structural features of β-(1→4)-D-galactomannans of plant origin as a probe for β-(1→4)-mannanase polymeric substrate specificity. Carbohydr Res 352:65–9
  • Komor RS, Romero PA, Xie CB, et al. (2012). Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods. Protein Eng Des Sel 25:827–33
  • Kontkanen H, Saloheimo M, Pere J, et al. (2006b). Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme. Appl Microbiol Biotechnol 72:696–704
  • Korniłłowicz-Kowalska T, Kitowski I. (2013). Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds. Mycopathologia 175:43–56
  • Kumar KK, Deshpande BS, Ambedkar SS. (1993). Production of extracellular acidic lipase by Rhizopus arrhizus as a function of culture conditions. Hindustan Antibiot Bull 35:33–42
  • Kumar S, Satyanarayana T. (2003). Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Biotechnol Prog 19:936–44
  • Kumar S, Satyanarayana T. (2007). Economical glucoamylase production by alginate-immobilized Thermomucor indicae-seudaticae in cane molasses medium. Lett Appl Microbiol 45:392–7
  • Landry KS, Levin RE. (2014). Purification and characterization of iso-ribonucleases from a novel thermophilic fungus. Int J Mol Sci 15:944–57
  • Lee H, Lee YM, Jang Y, et al. (2014). Isolation and analysis of the enzymatic properties of thermophilic fungi from compost. Mycobiology 42:181–4
  • Li DC, Li W, Zhou QX, et al. (2007). Molecular cloning and characterization of a putative protein kinase gene from the thermophilic fungus Thermomyces lanuginosus. DNA Seq 18:423–33
  • Liang JD, Han YF, Zhang JW, et al. (2011). Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1. J Appl Microbiol 110:871–80
  • Liu SA, Li DC, E SJ, et al. (2005). Cloning and expressing of cellulase gene (cbh2) from thermophilic fungi Chaetomium thermophilum CT2. Sheng Wu Gong Cheng Xue Bao 21:892–9
  • Lloret L, Hollmann F, Eibes G, et al. (2012). Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation 23:373–86
  • Ma LJ, Ibrahim AS, Skory C, et al. (2009). Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5:e1000549
  • Maheshwari R, Balasubramanyam PV. (1988). Simultaneous utilization of glucose and sucrose by thermophilic fungi. J Bacteriol 170:3274–80
  • Maheshwari R, Bharadwaj G, Bhat MB. (2000). Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–88
  • Maheshwari R, Kamalam PT, Balasubrahamanyam PL. (1987). The biogeography of thermophilic fungi. Curr Sci 56:151-5
  • Martins ES, Leite RS, da Silva R. (2013). Purification and properties of polygalacturonase produced by thermophilic fungus Thermoascus aurantiacus CBMAI-756 on solid-state fermentation. Enzyme Res 2013:438645
  • McClendon SD, Batth T, Petzold CJ, et al. (2012). Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 5:54
  • Mchunu NP, Permaul K, Abdul Rahman AY, et al. (2013). Xylanase superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc 1:e00388–13
  • Mchunu NP, Singh S, Permaul K. (2009). Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol 141:26–30
  • Meyer GW. (1970). Amino acid utilization by thermophilic fungi. Bull Torrey Bot Club 97:227–9
  • Miehe H. (1907). Die selbsterhitzung des Heus. Ene biologische studie. Jena: Gustav Fischer, 1–127
  • Miller HM, Sullivan PA, Shepherd MG. (1974). Intracellular protein breakdown in thermophilic and mesophilic fungi. Biochem J 144:209–14
  • Mishra R, Maheshwari R. (1996). Amylases of the thermophilic fungus Thermomyces lanuginosus, their purification, properties, action on starch and response to heat. J Biosci 21:653–72
  • Mitchell DB, Vogel K, Weimann BJ, et al. (1997). The phytase subfamily of histidine acid phosphatase; isolation of genes for two novel phytases from the Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–52
  • Moo-Young M, Chahal DS, Swan JE, et al. (1977). SCP production by Chaetomium cellulolyticum, a new thermotolerant cellulolytic fungus. Biotechnol Bioeng 19:527–38
  • Moo-Young M, Daugulis AJ, Chahal DS, et al. (1979). The waterloo process for the process of SCP from wastes. Process Biochem 14:38–40
  • Morgentern I, Powlowski J, Ishmael N, et al. (2012). A molecular phylogeny of thermophilic fungi. Fungal Biol 116:489–502
  • Moriya T, Watanabe M, Sumida N, et al. (2003). Cloning and overexpression of the avi2 gene encoding a major cellulase produced by Humicola insolens FERM BP-5977. Biosci Biotechnol Biochem 67:1434–7
  • Mouchacca J. (1997). Thermophilic fungi: biodiversity and taxonomic status. Crypt Mycol 18:19–69
  • Mouchacca J. (2000). Thermophilic fungi and applied research: a synopsis of name changes and synonymies. World J Microbiol Biotechnol 16:881–8
  • Mumma RO, Fergus CL, Sekura RD. (1970). The lipids of thermophilic fungi: lipid composition comparisons between thermophilic and mesophilic fungi. Lipids 5:100–3
  • Mumma RO, Sekura RD, Fergus CL. (1971). Thermophilic fungi: II. Fatty acid composition of polar and neutral lipids of thermophilic and mesophilic fungi. Lipids 6:584–8
  • Murray P, Aro N, Collins C, et al. (2004). Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38:248-57
  • Nageswara Rao JS, Cherayil JD. (1979). Minor nucleotides in the ribosomal RNA of Thermomyces lanuginosus. Curr Sci 48:983–7
  • Nampoothiri KM, Tomes GJ, Roopesh K, et al. (2004). Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl Biochem Biotechnol 118:205–14
  • Narang S, Sahai V, Bisaria VS. (2001). Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid state fermentation using response surface methodology. J Biosci Bioeng 91:425–7
  • Nguyena QD, Judit M, Claeyssens RM, et al. (2002). Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 31:345–52
  • Noack K. (1920). Der Betriebstoffwechsel der thermophilen. Pilze Jahrb Wiss Bot 59:593–648
  • Noel M, Combes D. (2003). Effects of temperature and pressure on Rhizomucor miehei lipase stability. J Biotechnol 102:23–32
  • O'Donoghue AJ, Mahon CS, Goetz DH, et al. (2008). Inhibition of a secreted glutamic peptidase prevents growth of the fungus Talaromyces emersonii. J Biol Chem 283:29186-95
  • Ohmomo S, Kaneko Y, Sirianuntapiboon S, et al. (1987). Decolorization of molasses waste by a thermophilic strain Aspergillus fumigatus G-2-6. Agric Biol Chem 51:3339–46
  • Pan WZ, Huang XW, Wei KB, et al. (2010). Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–52
  • Parry NJ, Beever DE, Owen E, et al. (2001). Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–27
  • Pasamontes L, Haiker M, Henriquez-Huecas M, et al. (1997b). Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim Biophys Acta 1353:217–23
  • Pasamontes L, Haiker M, Wyss M, et al. (1997a). Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–700
  • Pereira MG, Guimarães LH, Furriel RP, et al. (2011). Biochemical properties of an extracellular trehalase from Malbranchea pulchella var. Sulfurea. J Microbiol 49:809–15
  • Powell AJ, Parchert KJ, Bustamante JM, et al. (2012). Thermophilic fungi in an aridland ecosystem. Mycologia 104:813–25
  • Prabhu KA, Maheshwari R. (1999). Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls. J Biosci 24:461–70
  • Prasad GS, Girisham S, Reddy SM. (2011). Potential of thermophilic fungus Rhizomucor pusillus NRRL 28626 in biotransformation of antihelmintic drug albendazole. Appl Biochem Biotechnol 165:1120–8
  • Prasad ARS, Maheshwari R. (1978). Growth and trehalase activity in the thermophilic fungus Thermomyces lanuginosus. Proc Indian Acad Sci 87B (Exp. Biol. -4):231-41
  • Prasad M, Palanivelu P. (2013). A novel method for the immobilization of a thermostable fungal chitinase and the properties of the immobilized enzyme. Biotechnol Appl Biochem 61:441–5
  • Rajasekaran AK, Maheshwari R. (1993). Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18:345–54
  • Raju KS, Maheshwari R, Sastry PS. (1976). Lipids of some thermophilic fungi. Lipids 11:741–5
  • Rao P, Divakar S. (2002). Response surface methodological approach for Rhizomucor miehei lipase-mediated esterification of α-terpineol with propionic acid and acetic anhydride. World J Microbiol Biotechnol 18:345–9
  • Rawat S, Agarwal PK, Chaudhary DK, Johri BN. (2005). Microbial diversity and community dynamics of mushroom compost ecosystem. In: Satyanarayana T, Johri BN, eds. Microbial diversity: current perspectives and applications. New Delhi, India: I.K. International Pvt. Ltd., 181–206
  • Ritari J, Koskinen K, Hultman J, et al. (2012). Molecular analysis of meso- and thermophilic microbiota associated with anaerobic biowaste degradation. BMC Microbiol 12:121
  • Rosenberg SL. (1975). Temperature and pH optima for 21 species of thermophilic and thermo-tolerant fungi. Can J Microbiol 21:1535–40
  • Roy I, Sastry MSR, Johri BN, Gupta MN. (2000). Purification of alpha-amylase isoenzymes from Scytalidium thermophilum on a fluidized bed of alginate beads followed by concanavalin A-agarose column chromatography. Protein Expr Purif 20:162–8
  • Sadaf A, Khare SK. (2014). Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour Technol 153:126–30
  • Salar RK, Aneja KR. (2006). Thermophilous fungi from temperate soils of Northern India. J Agric Technol 2:49–58
  • Salar RK, Aneja KR. (2007). Thermophilic fungi: taxonomy and biogeography. J Agric Technol 3:77–107
  • Satyanarayana T. (1978). Thermophilic microorganisms and their role in composting process [PhD thesis]. Sagar: Sagar University, 212 p
  • Satyanarayana T, Chavant L. (1987). Bioconversion and binding of sterols by thermophilic moulds. Folia Microbiol (Praha) 32:354–9
  • Satyanarayana T, Chavant L, Montant C. (1985). Applicability of API ZYM for screening enzyme activity of thermophilic moulds. Trans Brit Mycol Soc 85:727-30
  • Satyanarayana T, Grajek W. (1999). Composting and solid state fermentation. In: Johri BN, Satyanarayana T, Olsen J, eds. Thermophilic moulds in biotechnology. Dordrecht, Netherlands: Kluwer Academic Publishers, 265–88
  • Satyanarayana T, Johri BN, Klein J. (1992). Biotechnological potential of thermophilic fungi. In: Arora DK, Elander RP, Mukherji KG, eds. Handbook of Applied Mycology. New York, USA: Marcel Dekker, 729-61
  • Satyanarayana T, Johri BN, Saksena SB. (1977). Seasonal variation in mycoflora of nesting materials of birds with special reference to thermophilic fungi. Trans Br Mycol Soc 62:307–9
  • Satyanarayana T, Johri BN. (1984). Thermophilic fungi of paddy straw compost: growth, nutrition and temperature relationships. J Indian Bot Soc 63:164–70
  • Satyanarayana T, Johri BN. (1992). Lipids of thermophilic fungi. Indian J Microbiol 32:1–14
  • Satyanarayana T, Sancholle M, Chavant L. (1987). Lipid composition of thermophilic moulds Acremonium alabamensis and Thermomucor indicae-seudaticae. Antonie Van Leeuwenhoek 53:85–91
  • Sharma HA, Johri BN. (1992). The role of thermophilic fungi in agriculture. Hand Book Appl Mycol 4:707–28
  • Sharma M, Chadha BS, Kaur M, et al. (2008). Molecular characterization of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials. Lett Appl Microbiol 46:526–35
  • Sheehan D, Casey JP. (1993). Evidence for alpha and Mu class glutathione S-transferases in a number of fungal species. Comp Biochem Physiol B 104:7–13
  • Siddiqui MA, Pande V, Arif M. (2012). Production, purification, and characterization of polygalacturonase from Rhizomucor pusillus isolated from decomposting orange peels. Enzyme Res 2012:138634
  • Silva BL, Geraldes FM, Murari CS, et al. (2014). Production and characterization of a milk-clotting protease produced in submerged fermentation by the thermophilic fungus Thermomucor indicae-seudaticae N31. Appl Biochem Biotechnol 172:1999–2011
  • Singh B, Satyanarayana T. (2006a). Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Appl Biochem Biotechnol 133:239–50
  • Singh B, Satyanarayana T. (2006b). A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J Appl Microbiol 101:344–52
  • Singh B, Satyanarayana T. (2008a). Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization. Bioresour Technol 99:824–30
  • Singh B, Satyanarayana T. (2008b). Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresour Technol 99:2824–30
  • Singh B, Satyanarayana T. (2008c). Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. J Appl Microbiol 105:1858–65
  • Singh B, Satyanarayana T. (2009a). Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100:2046–51
  • Singh B, Satyanarayana T. (2009b).Thermophilic moulds in environmental management. In: Mishra JK, Deshmukh SK, eds. Progress in mycological research. Vol I. Fungi from different environments. Environmental mycology. New Hampshire: Science Publishers, 352–75
  • Singh B, Satyanarayana T. (2010). Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160:1267–76
  • Singh B, Satyanarayana T. (2011). Phytases from thermophilic molds: their production, characteristics and multifarious applications. Process Biochem 46:1391–8
  • Singh B, Satyanarayana T. (2015). Fungal phytases: characteristics and amelioration of nutritional quality and growth of non ruminants. J Anim Physiol Anim Nutr 99:646–60
  • Singh B. (2014). Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 15:1–11
  • Singh S, Pillay B, Prior BA. (2000). Thermal stability of beta-xylanases produced by different Thermomyces lanuginosus strains. Enzyme Microb Technol 26:502–8
  • Singhania S, Satyanarayana T, Rajam MV. (1991). Polyamines of thermophilic moulds: distribution and effect of polyamine biosynthesis inhibitors on growth. Mycol Res 95:915–17
  • Souza TP, Marques SC, da Silveira e Santos DM, et al. (2014). Analysis of thermophilic fungal populations during phase II of composting for the cultivation of Agaricus subrufescens. World J Microbiol Biotechnol 30:2419–25
  • Stephens DE, Rumbold K, Permaul K, et al. (2007). Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. J Biotechnol 127:348–54
  • Straatsma G, Samson RA, Olijnsma TW, et al. (1994). Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60:454–8
  • Subrahmanyam A. (1977). Nutritional requirements of Torula thermophila Cooney & Emerson at two different temperatures. Nova Hedwigia 19:85–9
  • Subrahmanyam A. (1980). Studies on Thermoascus aurantiacus Miehe. Acta Mycol 26:121-31
  • Subrahmanyam A. (1999). Ecology and distribution, In: Johri BN, Satyanarayana T, Olsen J, eds. Thermophilic moulds in biotechnology. Dordrecht: Kluwer Academic Publishers, 13–42
  • Sumner JL, Morgan ED. (1969). The fatty acid composition of sporangiospores and vegetative mycelium of temperature adapted fungi in the order Mucorales. J Gen Microbiol 59:215–21
  • Sundman G, Kirk TK, Chang H. (1981). Fungal decolorization of kraft bleach plant effluent. Tappi 64:145–8
  • Svahn KS, Göransson U, El-Seedi H, et al. (2012). Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infect Ecol Epidemiol 2. doi: 10.3402/iee.v2i0.11591
  • Syed A, Saraswati S, Kundu GC, et al. (2013). Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta a Mol Biomol Spectrosc 114:144–7
  • Szijarto N, Siika-Aho M, Tenkanen M, et al. (2008). Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 136:140–7
  • Taha M, Adetutua EM, Shahsavaria E, et al. (2014). Azo and anthraquinone dye mixture decolourization at elevated temperature and concentration by a newly isolated thermophilic fungus, Thermomucor indicae-seudaticae. J Environ Chem Eng 2:415–23
  • Tambor JH, Ren H, Ushinsky S, et al. (2012). Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-β-glucanases that efficiently hydrolyse cellulosic substrates. Appl Microbiol Biotechnol 93:203–14
  • Tang Y, Yang S, Yan Q, et al. (2012). Purification and characterization of a novel β-1,3-1,4-glucanase (lichenase) from thermophilic Rhizomucor miehei with high specific activity and its gene sequence. J Agric Food Chem 60:2354–61
  • Tansey MR. (1973). Isolation of thermophilic fungi from alligator nesting materials. Mycologia 65:594-601
  • Tansey MR, Brock TD. (1972). The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci USA 69:2426–8
  • Thakur IS, Rana BK, Johri BN. (1992). Multiplicity of xylanase in Humicola grisea var. thermoidea. In: Visser J, Beldman G, Kaustwers-van-Someren MA, eds. Xylan and xylanases. Amsterdam, The Netherlands: Elsevier Applied Science, 511–14
  • Thakur MS, Karanth NG, Krishnanand G. (1993). Production of fungal rennet by Mucor miehei using solid state fermentation. Appl Microbiol Biotechnol 32:409–13
  • Topakas E, Christakopoulos P, Faulds CB. (2005). Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J Biotechnol 115:355–66
  • Topakas E, Moukouli M, Dimarogona M, et al. (2010). Functional expression of a thermophilic glucuronyl esterase from Sporotrichum thermophile: identification of the nucleophilic serine. Appl Microbiol Biotechnol 87:1765-72
  • Trent JD, Gabrielsen M, Jensen B, et al. (1994). Acquired thermo-tolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176:6148–52
  • Tsiklinskaya P. (1899). Sur les mucédinées thermophiles. Ann Inst Pasteur (Paris) 13:500–15
  • Tuohy MG, Puls J, Claeyssens M, et al. (1993). The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl beta-D-xylosides and unsubstituted xylans. Biochem J 290:515–23
  • Vafiadi C, Topakas E, Biely P, et al. (2009). Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol Lett 296:178–84
  • van den Brink J, van Muiswinkel GCJ, Theelen B, et al. (2013). Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol 79:1316–24
  • van Noort V, Bradatsch B, Arumugam M, et al. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evol Biol 13:7
  • Venturi LL, Polizeli LM, Terenzi HF, et al. (2002). Extracellular beta-D-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties. J Basic Microbiol 42:55–66
  • Voutilainen SP, Boer H, Alapuranen M, et al. (2009). Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 83:261–72
  • Voutilainen SP, Murray PG, Tuohy MG, et al. (2010). Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 23:69–79
  • Voutilainen SP, Nurmi-Rantala S, Penttilä M, et al. (2014). Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98:2991–3001
  • Voutilainen SP, Puranen T, Siika-Aho M, et al. (2008). Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng 101:515–28
  • Wali AS, Mattoo AK, Modi VV. (1978). Stimulation of growth and glucoe catabolite enzymes by succinate in some thermophilic fungi. Arch Microbiol 118:49-53
  • Wali AS, Mattoo AK, Modi VV. (1979). Comparative temperature-stability properties of malate dehydrogenases from some thermophilic fungi. Int J Pept Protein Res 14:99–106
  • Wang Y, Fu Z, Huang H, et al. (2012). Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresour Technol 112:275–9
  • Wang Y, Gao X, Su Q, et al. (2007). Cloning, expression, and enzyme characterization of an acid heat-stable phytase from Aspergillus fumigatus WY-2. Curr Microbiol 55:65–70
  • Weigant WM, Wery V, Buitenhuis ET, et al. (1992). Growth promoting effect of thermophilic fungi on the mycelium of the edible mushroom Agaricus bisporus. Appl Environ Microbiol 58:2654–9
  • Weigant WM. (1992). Growth characteristics of the thermophilic fungus Scytalidium thermophilum in relation to production of mushroom compost. Appl Environ Microbiol 58:1301–7
  • Wright C, Alkewitz D, Somberg EW. (1983). Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus. J Bacteriol 156:493–7
  • Yaginuma S, Asahi A, Morishita A, et al. (1989). Isolation and characterization of new thiol protease inhibitors estatins A and B. J Antibiot (Tokyo) 42:1362–9
  • Yang S, Hua C, Yan Q, et al. (2013). Biochemical properties of a novel glycoside hydrolase family 1 β-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohydr Polym 92:784–91
  • Yang S, Qiaojuan Y, Jiang Z, et al. (2008). Biochemical characterization of a novel thermostable beta-1,3-1,4-glucanase (lichenase) from Paecilomyces thermophila. J Agric Food Chem 56:5345–51
  • Yang S, Xu H, Yan Q, et al. (2013). A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters). J Ind Microbiol Biotechnol 40:217–26
  • Zhou P, Zhang G, Chen S, et al. (2014). Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 15:294

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.