3,085
Views
82
CrossRef citations to date
0
Altmetric
Review Article

Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1-30 | Received 02 Sep 2015, Accepted 12 Dec 2015, Published online: 27 Oct 2016

References

  • Ackermann G, Rodloff AC. (2003). Drugs of the 21st century: telithromycin (HMR 3647) – the first ketolide. J Antimicrob Chemother 51:497–511.
  • Adriaenssens N, Coenen S, Versporten A, et al. (2011). European Surveillance of Antimicrobial Consumption (ESAC): outpatient macrolide, lincosamide and streptogramin (MLS) use in Europe (1997–2009). J Antimicrob Chemother 66:vi37–45.
  • Adusumilli S, Mve-Obiang A, Sparer T, et al. (2005). Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo. Cell Microbiol 7:1295–304.
  • Allos BM. (2001). Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32:1201–6.
  • Andersen TE, Porse BT, Kirpekar F. (2004). A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. RNA 10:907–13.
  • Anderson P, Roth J. (1981). Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc Natl Acad Sci USA 78:3113–17.
  • Andremont A, Gerbaud G, Courvalin P. (1986). Plasmid-mediated high-level resistance to erythromycin in Escherichia coli. Antimicrob Agents Chemother 29:515–18.
  • Anonymous. (2013). Meeting of the international Task Force for disease eradication – November 2012. Wkly Epidemiol Rec 88:75–80.
  • Apirion D. (1967). Three genes that affect Escherichia coli ribosomes. J Mol Biol 30:255–75.
  • Arthur M, Andremont A, Courvalin P. (1986a). Heterogeneity of genes conferring high-level resistance to erythromycin by inactivation in enterobacteria. Ann Inst Pasteur Microbiol 137A:125–34.
  • Arthur M, Andremont A, Courvalin P. (1987). Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother 3:404–9.
  • Arthur M, Autissier D, Courvalin P. (1986b). Analysis of the nucleotide sequence of the ereB gene encoding the erythromycin esterase type II. Nucleic Acids Res 14:4987–99.
  • Atkinson GC, Hansen LH, Tenson T, et al. (2013). Distinction between the Cfr methyltransferase conferring antibiotic resistance and the housekeeping RlmN methyltransferase. Antimicrob Agents Chemother 57:4019–26.
  • Ayele B, Gebre T, House JI, et al. (2011). Adverse events after mass azithromycin treatments for trachoma in Ethiopia. Am J Trop Med Hyg 85:291–4.
  • Bailey M, Chettiath T, Mankin AS. (2008). Induction of erm(C) expression by noninducing antibiotics. Antimicrob Agents Chemother 52:866–74.
  • Baker KS, Dallman TJ, Ashton PM, et al. (2015). Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infect Dis 15:913–21.
  • Barthélémy P, Autissier D, Gerbaud G, Courvalin P. (1984). Enzymic hydrolysis of erythromycin by a strain of Escherichia coli. A new mechanism of resistance. J Antibiot 37:1692–6.
  • Basualdo W. (2003). Randomized comparison of azithromycin versus cefixime for treatment of shigellosis in children. Pediatr Infect Dis J 22:347–77.
  • Bay DC, Rommens KL, Turner RJ. (2008). Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778:1814–38.
  • Beketskaia MS, Bay DC, Turner RJ. (2014). Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J Bacteriol 196:1908–14.
  • Bhardwaj AK, Mohanty P. (2012). Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapy. Recent Pat Antiinfect Drug Discov 7:73–89.
  • Billard-Pomares T, Tenaillon O, Le Nagard H, et al. (2011). Complete nucleotide sequence of plasmid pTN48, encoding the CTX-M-14 extended-spectrum β-lactamase from an Escherichia coli O102-ST405 strain. Antimicrob Agents Chemother 55:1270–3.
  • Binet R, Bowlin AK, Maurelli AT, Rank RG. (2010). Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs. Antimicrob Agents Chemother 54:1094–101.
  • Biskri L, Mazel D. (2003). Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron. Antimicrob Agents Chemother 47:3326–31.
  • Bley C, van der Linden M, Reinert RR. (2011). mef(A) is the predominant macrolide resistance determinant in Streptococcus pneumoniae and Streptococcus pyogenes in Germany. Int J Antimicrob Agents 37:425–31.
  • Bohnert JA, Schuster S, Fähnrich E, et al. (2007). Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59:1216–22.
  • Boumghar-Bourtchai L, Mariani-Kurkdjian P, Bingen E, et al. (2008). Macrolide-resistant Shigella sonnei. Emerg Infect Dis 14:1297–9.
  • Bowen A, Eikmeier D, Talley P, et al. (2015). Notes from the field: outbreaks of Shigella sonnei infection with decreased susceptibility to azithromycin among men who have sex with men – Chicago and Metropolitan Minneapolis-St. Paul, 2014. MMWR Morb Mortal Wkly Rep 64:597–8.
  • Brinker AD1, Wassel RT, Lyndly J, et al. (2009). Telithromycin-associated hepatotoxicity: Clinical spectrum and causality assessment of 42 cases. Hepatology 49:250–7.
  • Brockmann H, Henkel W. (1950). Pikromycin, ein neues Antibiotikum aus Actinomyceten. Naturwissenschaften 37:138–9.
  • Butler T, Girard E. (1993). Comparative efficacies of azithromycin and ciprofloxacin against experimental Salmonella typhimurium infection in mice. J Antimicrob Chemother 31:313–19.
  • Canu A, Malbruny B, Coquemont M, et al. (2002). Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 46:125–31.
  • Cassone M, D'Andrea MM, Iannelli F, et al. (2006). DNA microarray for detection of macrolide resistance genes. Antimicrob Agents Chemother 50:2038–41.
  • CDC. Center for Diseases Control and Prevention. (2013). Antibiotic resistance threats in the United States, 2013. Atlanta (GA), USA: US Department of Health and Human Services, CDC.
  • Chave JP, Munafo A, Chatton JY, et al. (1992). Once-a-week azithromycin in AIDS patients: tolerability, kinetics, and effects on zidovudine disposition. Antimicrob Agents Chemother 36:1013–18.
  • Chen J, Kuroda T, Huda MN, et al. (2003). An RND-type multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob Chemother 56:176–9.
  • Chesneau O, Tsvetkova K, Courvalin P. (2007). Resistance phenotypes conferred by macrolide phosphotransferases. FEMS Microbiol Lett 269:317–22.
  • Chisholm SA, Dave J, Ison CA. (2010). High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob Agents Chemother 54:3812–16.
  • Chittum HS, Champney WS. (1985). Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. Curr Microbiol 30:273–9.
  • Chittum HS, Champney WS. (1994). Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 176:6192–8.
  • Chollet R, Chevalier J, Bryskier A, Pagès JM. (2004). The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 48:3621–4.
  • Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. (1997). Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 41:2719–23.
  • Clancy J, Petitpas J, Dib-Hajj F, et al. (1996). Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol Microbiol 22:867–79.
  • CLSI: Clinical Laboratory Standards Institute. (2013) Performance standards for antimicrobial susceptibility testing. Twenty-five Informational Supplement M100-S25. Wayne (PA): CLSI.
  • CMPVU: Committee for Medicinal Products for Veterinary Use. (2011). Reflection paper on the use of macrolides, lincosamides and streptogramins (MLS) in food-producing animals in the European Union: development of resistance and impact on human and animal health. London, UK: European Medicines Agency.
  • Cochella L, Green R. (2004). Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system. Proc Natl Acad Sci USA 101:3786–91.
  • Condon C, Liveris D, Squires C, et al. (1995). rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 177:4152–6.
  • Corbaz R, Ettlinger L, Gäumann E, et al. (1955a). Stoffwechselprodukte von Actinomyceten. 1. Mitteilung. Narbomycin. Helv Chim Acta 38:935–42.
  • Corbaz R, Ettlinger L, Gäumann E, et al. (1955b). Stoffwechselprodukte von Actinomyceten. 2. Mitteilung. Angolamycin. Helv Chim Acta 38:1202–9.
  • Crameri S, Heininger U. (2008). Successful control of a pertussis outbreak in a university children's hospital. Int J Infect Dis 12:e85–7.
  • Dam M, Douthwaite S, Tenson T, Mankin AS. (1996). Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance. J Mol Biol 259:1–6.
  • de Toro M, Sáenz Y, Cercenado E, et al. (2011). Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanate and third-generation cephalosporins in Salmonella enterica from three Spanish hospitals. Int Microbiol 14:173–81.
  • Deng H, Sun J, Ma J, et al. (2014). Identification of the multi-resistance gene cfr in Escherichia coli isolates of animal origin. PLoS One 9:e102378.
  • Desmolaize B, Rose S, Warrass R, Douthwaite S. (2011a). A novel Erm monomethyltransferase in antibiotic-resistant isolates of Mannheimia haemolytica and Pasteurella multocida. Mol Microbiol 80:184–94.
  • Desmolaize B, Rose S, Wilhelm C, et al. (2011b). Combinations of macrolide resistance determinants in field isolates of Mannheimia haemolytica and Pasteurella multocida. Antimicrob Agents Chemother 55:4128–33.
  • Diner EJ, Hayes CS. (2009). Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. J Mol Biol 386:300–15.
  • Dolejska M, Villa L, Poirel L, et al. (2013). Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother 68:34–9.
  • Donin MN, Pagano J, Dutcher JD, McKee CM. (1953). Methymycin, a new crystalline antibiotic. In: Welch H, Martí-Ibañez F, eds. Antibiotics annual 1953–1954. New York: Medical Encyclopedia, 179–89.
  • Douthwaite S, Prince JB, Noller HF. (1985). Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant. Proc Natl Acad Sci USA 82:8330–4.
  • Douthwaite S. (1992). Functional interactions within 23S rRNA involving the peptidyltransferase center. J Bacteriol 174:1333–8.
  • Du XD, Li DX, Hu GZ, et al. (2012). Tn1548-associated armA is co-located with qnrB2, aac(6′)-Ib-cr and blaCTX-M-3 on an IncFII plasmid in a Salmonella enterica subsp. enterica serovar Paratyphi B strain isolated from chickens in China. J Antimicrob Chemother 67:246–8.
  • DuPont HL. (2009). Bacterial diarrhea. N Engl J Med 361:1560–9.
  • Edgar R, Bibi E. (1997). MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J Bacteriol 179:2274–80.
  • Elkin CA, Mullis LB. (2007). Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli. Antimicrob Agents Chemother 51:923–9.
  • Ellwood M, Nomura M. (1980). Deletion of a ribosomal ribonucleic acid operon in Escherichia coli. J Bacteriol 143:1077–80.
  • Erdman SM, Buckner EE, Hindler JF. (2008). Options for treating resistant Shigella species infections in children. J Pediatr Pharmacol Ther 13:29–43.
  • Ettayebi M, Prasad SM, Morgan EA. (1985). Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol 162:551–7.
  • EUCAST: European Committee on Antimicrobial Susceptibility Testing. (2015). Clinical Breakpoint Table v. 5.0, 2015. Available from: http://www.eucast.org/clinical_breakpoints/ [last accessed 22 Aug 2015].
  • Farmer S, Li Z, Hancock REW. (1992). Influence of outer membrane mutations on susceptibility of Escherichia coli to the dibasic macrolide azithromycin. J Antimicrob Chemother 29:27–33.
  • FDA: Food and Drug Administration. (2013). New animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions with GFI #209. Rockville (USA): U.S. Department of Health and Human Services.
  • Gabashvili IS, Gregory ST, Valle M, et al. (2001). The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8:181–8.
  • Gamerdinger M, Deuerling E. (2012). Macrolides: the plug is out. Cell 151:469–71.
  • Gardner AD, Chain E. (1942). Proactinomycin: a “bacteriostatic” produced by a species of Proactinomyces. Br J Exp Path 23:123–7.
  • Garza-Ramos G, Xiong L, Zhong P, Mankin A. (2001). Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J Bacteriol 183:6898–907.
  • Gaudreau C, Barkati S, Leduc JM, et al. (2014). Shigella spp. with reduced azithromycin susceptibility, Quebec, Canada, 2012–2013. Emerg Infect Dis 20:854–6.
  • Gäumann E, Hütter R, Keller-Schierlein W, et al. (1960). Stoffwechselprodukte von Actinomyceten. Lankamycin und lankacidin. Hel Chim Acta 43:601–6.
  • Georgopapadakou NH. (2014). The wobbly status of ketolides: where do we stand? Expert Opin Investig Drugs 23:1313–19.
  • Giamarellos-Bourboulis E, Adamis T, Sabracos L, et al. (2005a). Clarithromycin: immunomodulatory therapy of experimental sepsis and acute pyelonephritis by Escherichia coli. Scand J Infect Dis 37:48–54.
  • Giamarellos-Bourboulis EJ, Baziaka F, Antonopoulou A, et al. (2005b). Clarithromycin co-administered with amikacin attenuates systemic inflammation in experimental sepsis with Escherichia coli. Int J Antimicrob Agents 25:168–72.
  • Gil F, Ipinza F, Fuentes J, et al. (2007). The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar Typhimurium. Res Microbiol 158:529–6.
  • Gołebiewski M, Kern-Zdanowicz I, Zienkiewicz M, et al. (2007). Complete nucleotide sequence of the pCTX-M3 plasmid and its involvement in spread of the extended-spectrum beta-lactamase gene blaCTX-M-3. Antimicrob Agents Chemother 51:3789–95.
  • Gomes C, Martinez-Puchol S, Durand D, et al. (2013a). Which mechanisms of azithromycin resistance are selected when efflux pumps are inhibited? Int J Antimicrob Agents 4:307–11.
  • Gomes C, Pons MJ, Magallon-Tejada A, et al. (2013b). In vitro development and analysis of Escherichia coli and Shigella boydii azithromycin-resistant mutants. Microb Drug Resist 19:88–93.
  • Gomes C, Ruiz L, Pons MJ, et al. (2013c). Relevant role of efflux pumps in high levels of rifaximin resistance in Escherichia coli clinical isolates. Trans R Soc Trop Med Hyg 9:545–9.
  • González-Zorn B, Teshager T, Casas M, et al. (2005). armA and aminoglycoside resistance in Escherichia coli. Emerg Infect Dis 11:954–6.
  • Gordillo ME, Singh KV, Murray BE. (1993). In vitro activity of azithromycin against bacterial enteric pathogens. Antimicrob Agents Chemother 37:1203–5.
  • Granier SA, Hidalgo L, San Millan A, et al. (2011). ArmA methyltransferase in a monophasic Salmonella enterica isolate from food. Antimicrob Agents Chemother 55:5262–6.
  • Hajduk PJ, Dinges J, Schkeryantz JM, et al. (1999). Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis. J Med Chem 42:3852–9.
  • Hansen JL, Ippolito JA, Ban N, et al. (2002). The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10:117–28.
  • Hao H, Dai M, Wang Y, et al. (2009). 23S rRNA mutation A2074C conferring high-level macrolide resistance and fitness cost in Campylobacter jejuni. Microb Drug Resist 15:239–44.
  • Harmer CJ, Holt KE, Hall RM. (2015). A type 2 A/C2 plasmid carrying the aacC4 apramycin resistance gene and the erm(42) erythromycin resistance gene recovered from two Salmonella enterica serovars. J Antimicrob Chemother 70:1021–5.
  • Hata T, Sano Y, Ohki N, et al. (1953). Leucomycin, a new antibiotic. J Antibiot 6:87–9.
  • Heiman KE, Karlsson M, Grass J, et al. (2014). Notes from the field: Shigella with decreased susceptibility to azithromycin among men who have sex with men – United States, 2002–2013. MMWR Morb Mortal Wkly Rep 63:132–3.
  • Hicks LA, Taylor TH Jr, Hunkler RJ. (2013). U.S. outpatient antibiotic prescribing, 2010. N Engl J Med 368:1461–2.
  • Hinojosa-Ahumada M, Swaminathan B, Hunter SB, et al. (1991). Restriction fragment length polymorphisms in rRNA operons for subtyping Shigella sonnei. J Clin Microbiol 29:2380–4.
  • Ho PL, Lo WU, Yeung MK, et al. (2011). Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS One 6:e17989.
  • Hong H, Demangel C, Pidot SJ, et al. (2008). Mycolactones: immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria. Nat Prod Rep 25:447–4.
  • Horiyama T, Yamaguchi A, Nishino K. (2010). TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 65:1372–6.
  • Howie RL, Folster JP, Bowen A, et al. (2010). Reduced azithromycin susceptibility in Shigella sonnei, United States. Microb Drug Resist 16:245–8.
  • Hu WS, Li PC, Cheng CY. (2005). Correlation between ceftriaxone resistance of Salmonella enterica serovar Typhimurium and expression of outer membrane proteins OmpW and Ail/OmpX-like protein, which are regulated by BaeR of a two-component system. Antimicrob Agents Chemother 49:3955–8.
  • Hue KK, Bechhofer DH. (1992). Regulation of the macrolide-lincosamide-streptogramin B resistance gene ermD. J Bacteriol 174:5860–8.
  • Jellen-Ritter AS, Kern WV. (2001). Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants Selected with a fluoroquinolone. Antimicrob Agents Chemother 45:1467–72.
  • Jimenez V, Gelderblom HC, Flueckiger RM, et al. (2015). Mass drug administration for trachoma: how long is not long enough? PLoS Negl Trop Dis 9:e0003610.
  • Kannan K, Kanabar P, Schryer D, et al. (2014). The general mode of translation inhibition by macrolide antibiotics. Proc Natl Acad Sci USA 111:15958–63.
  • Kannan K, Mankin AS. (2011). Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann N Y Acad Sci 1241:33–47.
  • Kannan K, Vázquez-Laslop N, Mankin AS. (2012). Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151:508–20.
  • Katayama J, Okada H, O'Hara K, Noguchi N. (1998). Isolation and characterization of two plasmids that mediate macrolide resistance in Escherichia coli: transferability and molecular properties. Biol Pharm Bull 21:326–9.
  • Keenan JD, Ayele B, Gebre T, et al. (2011). Childhood mortality in a cohort treated with mass azithromycin for trachoma. Clin Infect Dis 52:883–8.
  • Kim HS, Choi EC, Kim BK. (1993). A macrolide-lincosamide-streptogramin B resistance determinant from Bacillus anthracis 590: cloning and expression of ermJ. J Gen Microbiol 139:601–7.
  • Kino T, Hatanaka H, Hashimoto M, et al. (1987). FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot 40:1249–55.
  • Kishi Y. (2011). Chemistry of mycolactones, the causative toxins of Buruli ulcer. Proc Natl Acad Sci USA 108:6703–8.
  • Kobayashi N, Nishino K, Yamaguchi A. (2001). Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–44.
  • Kohanski MA, Dwyer DJ, Hayete B, et al. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810.
  • Krauland M, Harrison L, Paterson D, Marsh J. (2010). Novel integron gene cassette arrays identified in a global collection of multi-drug resistant non-typhoidal Salmonella enterica. Curr Microbiol 60:217–23.
  • Krokidis MG, Márquez V, Wilson DN, et al. (2014). Insights into the mode of action of novel fluoroketolides, potent inhibitors of bacterial protein synthesis. Antimicrob Agents Chemother 58:472–80.
  • Labeda DP. (1987). Transfer of the type strain of Streptomyces erythraeus (Waksman 1923) Waksman and Henrici 1948 to the genus Saccharopolyspora Lacey and Goodfellow 1975 as Saccharopolyspora erythraea sp. nov., and designation of a neotype strain for Streptomyces erythraeus. Int J Syst Bacteriol 37:19–22.
  • Le Hello S, Harrois D, Bouchrif B, et al. (2013). Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study. Lancet Infect Dis 13:672–9.
  • Leclercq R. (2002). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–92.
  • Lee Y, Choi JY, Fu H, et al. (2011). Chemistry and biology of macrolide antiparasitic agents. J Med Chem 54:2792–804.
  • Lepper MH, Moulton B, Dowling HF, et al. (1953). Epidemiology of erythromycin-resistant staphylococci in a hospital population – effect on therapeutic activity of erythromycin. In: Welch H, Martí-Ibañez F, eds. Antibiotics annual 1953–1954. New York: Medical Encyclopedia, 308–13.
  • Letavic MA, Bronk BS, Bertsche CD, et al. (2002). Synthesis and activity of a novel class of tribasic macrocyclic antibiotics: the triamilides. Bioorg Med Chem Lett 12:2771–4.
  • Li BB, Wu CM, Wang Y, Shen JZ. (2011). Single and dual mutations at positions 2058, 2503 and 2504 of 23S rRNA and their relationship to resistance to antibiotics that target the large ribosomal subunit. J Antimicrob Chemother 66:1983–6.
  • Li XZ, Plésiat P, Nikaido H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418.
  • Liu J, Kelan P, Bennet PM, Enne VL. (2009). Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine E. coli. J Antimicrob Chemother 63:423–6.
  • Liu M, Douthwaite S. (2002a). Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc Natl Acad Sci USA 99:14658–63.
  • Liu M, Douthwaite S. (2002b). Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Gram-positive bacteria. Mol Microbiol 44:195–204.
  • Llano-Sotelo B, Dunkle J, Klepacki D, et al. (2010). Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob Agents Chemother 54:4961–70.
  • Lluque A, Mosquito S, Gomes C, et al. (2015). Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int J Med Microbiol 305:480–90.
  • Long KS, Vester B. (2012). Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56:603–12.
  • Lovmar M, Nilsson K, Lukk E, et al. (2009a). Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. EMBO J 28:736–44.
  • Lovmar M, Nilsson K, Vimberg V, et al. (2006). The molecular mechanism of peptide-mediated erythromycin resistance. J Biol Chem 281:6742–50.
  • Lovmar M, Vimberg V, Lukk E, et al. (2009b). Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin. Biochimie 91:989–95.
  • Lubitz SA, Baran DA, Alwarshetty MM, et al. (2006). Long-term results of tacrolimus monotherapy in cardiac transplant recipients. J Heart Lung Transplant 25:699–706.
  • Luna VA, Heiken M, Judge K, et al. (2002). Distribution of mef(A) in Gram-positive bacteria from healthy Portuguese children. Antimicrob Agents Chemother 46:2513–17.
  • Macvanin M, Gonzalez de Valdivia EI, Ardell DH, Isaksson LA. (2007). Transient erythromycin resistance phenotype associated with peptidyl-tRNA drop-off on early UGG and GGG codons. J Bacteriol 188:8993–9000.
  • Mankin AS. (2008). Macrolide myths. Curr Opin Microbiol 11:414–21.
  • Mao JC, Putterman M. (1968). Accumulation in Gram-positive and Gram-negative bacteria as a mechanism of resistance to erythromycin. J Bacteriol 95:1111–17.
  • Martinez JL, Sánchez MB, Martínez-Solano L, et al. (2009). Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–49.
  • Marvig RL, Søndergaard MS, Damkiær S, et al. (2012). Mutations in 23S rRNA confer resistance against azithromycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:4519–21.
  • Maschan M, Bobrynina V, Khachatryan L, et al. (2014). Control of thrombotic thrombocytopenic purpura by sirolimus in a child with juvenile myelomonocytic leukemia and somatic N-RAS mutation. Pediatr Blood Cancer 61:1871–3.
  • Masi M, Pagès JM, Villard C, Pradel E. (2005). The eefABC multidrug efflux pump operon is repressed by H-NS in Enterobacter aerogenes. J Bacteriol 187:3894–7.
  • Matsuoka M, Inoue M, Endo Y, Nakajima Y. (2003). Characteristic expression of three genes, msr(A), mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. FEMS Microbiol Lett 220:287–93.
  • Matsuoka M, Jánosi L, Endou K, Nakajima Y. (1999). Cloning and sequences of inducible and constitutive macrolide resistance genes in Staphylococcus aureus that correspond to an ABC transporter. FEMS Microbiol Lett 181:91–100.
  • McGuire JM, Bunch RL, Anderson RC, et al. (1952). Ilotycin, ein neues antibioticum. Schweiz Med Wochenschr 82:1064–5.
  • Min YH, Kwon AR, Yoon EJ, et al. (2008). Translational attenuation and mRNA stabilization as mechanisms of erm(B) induction by erythromycin. Antimicrob Agents Chemother 52:1782–9.
  • Mitjà O, Houinei W, Moses P, et al. (2015). Mass treatment with single-dose azithromycin for yaws. N Engl J Med 372:703–10.
  • Modali SD, Zgurskaya HI. (2011). The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol Microbiol 81:937–51.
  • Moore SD, Sauer RT. (2008). Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22. Proc Natl Acad Sci USA 105:18261–6.
  • Morar M, Pengelly K, Koteva K, Wright GD. (2012). Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemistry 51:1740–51.
  • Mortensen EM, Halm EA, Pugh MJ, et al. (2014). Association of azithromycin with mortality and cardiovascular events among older patients hospitalized with pneumonia. JAMA 311:2199–208.
  • Mutak S. (2007). Azalides from azithromycin to new azalide derivatives. J Antibiot 60:85–122.
  • Mve-Obiang A, Lee RE, Umstot ES, et al. (2005). A newly discovered mycobacterial pathogen isolated from laboratory colonies of Xenopus species with lethal infections produces a novel form of mycolactone, the Mycobacterium ulcerans macrolide toxin. Infect Immun 73:3307–12.
  • Nahata M. (1996). Drug interactions with azithromycin and the macrolides: an overview. J Antimicrob Chemother 37:133–42.
  • Nakajima Y. (1999). Mechanisms of bacterial resistance to macrolide antibiotics. J Infect Chemother 5:61–74.
  • Nguyen MCP, Woerther P-L, Bouvet M, et al. (2009). Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis 15:1648–50.
  • Nikaido H, Basina M, Nguyen V, Rosenberg EY. (1998). Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains . J Bacteriol 180:4686–92.
  • Nishino K, Yamaguchi A. (2001). Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–12.
  • Novotny GW, Jakobsen L, Andersen NM, et al. (2004). Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Antimicrob Agents Chemother 48:3677–83.
  • Nunez-Samudio V, Chesneau O. (2013). Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli. Res Microbiol 164:226–35.
  • Ochoa TJ, Ruiz J, Molina M, et al. (2009). High frequency of antimicrobial drug resistance of diarrheagenic Escherichia coli in infants in Peru. Am J Trop Med Hyg 81:296–301.
  • Ogawa W, Onishi M, Ni R, et al. (2012). Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene 498:177–82.
  • O'Hara K, Kanda T, Kono M. (1988). Structure of a phosphorylated derivative of oleandomycin, obtained by reaction of oleandomycin with an extract of an erythromycin resistant strain of Escherichia coli. J Antibiot 4:823–7.
  • O'Hara K, Kanda T, Ohmiya K, et al. (1989). Purification and characterization of macrolide 2′-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob Agents Chemother 33:1354–7.
  • Ojo KK, Striplin MJ, Ulep CC, et al. (2006). Staphylococcus efflux msr(A) gene characterized in Streptococcus, Enterococcus, Corynebacterium, and Pseudomonas isolates. Antimicrob Agents Chemother 50:1089–91.
  • Ojo KK, Ulep C, Van Kirk N, et al. (2004). The mef(A) gene predominates among seven macrolide resistance genes identified in Gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrob Agents Chemother 48:3451–6.
  • Otsu K, Ishinaga H, Suzuki S, et al. (2011). Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin gene expression in a human airway epithelial cell line. Pharmacology 88:327–32.
  • Ounissi H, Courvalin P. (1985). Nucleotide sequence of the gene ereA encoding the erythromycin esterase in Escherichia coli. Gene 35:271–8.
  • Pelchovich G, Schreiber R, Zhuravlev A, Gophna U. (2013). The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics. Int J Med Microbiol 303:558–62.
  • Pereira MR, Henrich PP, Sidhu AB, et al. (2011). In vivo and in vitro antimalarial properties of azithromycin-chloroquine combinations that include the resistance reversal agent amlodipine. Antimicrob Agents Chemother 55:3115–24.
  • Pereyre S, Guyot C, Renaudin H, et al. (2004). In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumoniae. Antimicrob Agents Chemother 48:460–5.
  • Pinnert-Sindico S, Ninet L, Preud’Homme J, Cosar C. (1955). A new antibiotic-spiramycin. In: Welch H, Martí-Ibañez F, eds. Antibiotics annual 1954–1955. New York: Medical Encyclopedia, 827–30.
  • Poehlsgaard J, Douthwaite S. (2005). The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3:870–81.
  • Poirel L, Bonnin RA, Nordmann P. (2011). Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrob Agents Chemother 55:4224–9.
  • Pons MJ, Gomes C, Martinez-Puchol S, et al. (2013). Antimicrobial resistance in Shigella spp. causing traveller's diarrhea (1995–2010): a retrospective analysis. Travel Med Infect Dis 5:315–19.
  • Pons MJ, Gomes C, Ruiz J. (2013). QnrVC, a new transferable Qnr-like family. Enferm Infecc Microbiol Clin 31:191–2.
  • Pons MJ, Vubil D, Guiral E, et al. (2015). Characterization of extended spectrum β-lactamases among Klebsiella pneumoniae isolates causing bacteremia and urinary tract infection in Mozambique. J Glob Antimicrob Resist 3:19–25.
  • Poole K. (2005). Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51.
  • Putnam SD, Castanheira M, Moet GJ, et al. (2010). CEM-101, a novel fluoroketolide: antimicrobial activity against a diverse collection of Gram-positive and Gram-negative bacteria. Diagn Microbiol Infect Dis 66:393–401.
  • Ramu H, Mankin A, Vazquez-Laslop N. (2009). Programmed drug-dependent ribosome stalling. Mol Microbiol 71:811–24.
  • Ranger BS, Mahrous EA, Mosi L, et al. (2006). Globally distributed mycobacterial fish pathogens produce a novel plasmid-encoded toxic macrolide, mycolactone F. Infect Immun 74:6037–45.
  • Rasmussen JL, Odelson DA, Macrina FL. (1986). Complete nucleotide sequence and transcription of ermF, a macrolide-lincosamide-streptogramin B resistance determinant from Bacteroides fragilis. J Bacteriol 168:523–33.
  • Reeves AR, English RS, Lampel JS, et al. (1999). Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea. J Bacteriol 181:7098–106.
  • Retsema J, Girard A, Schelkly W, et al. (1987). Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against Gram-negative organisms. Antimicrob Agents Chemother 31:1939–47.
  • Reynolds ED, Cove JH. (2005). Resistance to telithromycin is conferred by msr(A), msrC and msr(D) in Staphylococcus aureus. J Antimicrob Chemother 56:1179–80.
  • Roberts MC, Sutcliffe J, Courvalin P, et al. (1999). Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–30.
  • Roberts MC. (2001). http://faculty.washington.edu/marilynr/. Modified Aug 6, 2015 [last accessed 22 Aug 2015].
  • Roberts MC. (2004). Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 28:47–62.
  • Roberts MC. (2008). Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–59.
  • Rodriguez-Cedeira C, Sanchez-Blanco E, Molares-Vila A. (2012). Clinical application of development of nonantibiotic macrolides that correct inflammation-driven immune dysfunction in inflammatory skin diseases. Mediat Inflamm 2012:563709.
  • Rolain JM, Brouqui P, Koehler JE, et al. (2004). Recommendations for treatment of human infections caused by Bartonella species. Antimicrob Agents Chemother 48:1921–33.
  • Ruiz J, Marco F, Oliveira I, et al. (2007). Trends in antimicrobial resistance in Campylobacter spp. causing traveler's diarrhea. Apmis 115:218–24.
  • Ruiz J, Ribera A, Jurado A, et al. (2005). Evidence for a reserpine-affected mechanism of resistance to tetracycline in Neisseria gonorrhoeae. Apmis 113:670–4.
  • Sáenz Y, Ruiz J, Zarazaga M, et al. (2004). Effect of the efflux pump inhibitor Phe-Arg-beta-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. J Antimicrob Chemother 53:544–5.
  • Sáenz Y, Vinué L, Ruiz E, et al. (2010). Class 1 integrons lacking qacEDelta1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Vet Microbiol 144:493–7.
  • Saha S, Savage PB, Bal M. (2008). Enhancement of the efficacy of erythromycin in multiple antibiotic-resistant Gram-negative bacterial pathogens. J Appl Microbiol 105:822–8.
  • Saini H, Chhibber S, Harjai K. (2015). Azithromycin and ciprofloxacin: a possible synergistic combination against Pseudomonas aeruginosa biofilm-associated urinary tract infections. Int J Antimicrob Agents 45:359–7.
  • Saito R, Nonaka S, Nishiyama H, Okamura N. (2012). Molecular mechanism of macrolide-lincosamide resistance in Moraxella catarrhalis. J Med Microbiol 61:1435–8.
  • Salverda ML, De Visser JA, Barlow M. (2010). Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 34:1015–36.
  • Sandegren L, Linkevicius M, Lytsy B, et al. (2012). Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother 67:74–83.
  • Saraya T, Kurai D, Nakagaki K, et al. (2014). Novel aspects on the pathogenesis of Mycoplasma pneumoniae pneumonia and therapeutic implications. Front Microbiol 5:410.
  • Schlünzen F, Harms JM, Franceschi F, et al. (2003). Structural basis for the antibiotic activity of ketolides and azalides. Structure 11:329–38.
  • Schlüter A, Szczepanowski R, Kurz N, et al. (2007). Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function. Appl Environ Microbiol 73:1952–60.
  • Schmitz H, Mibier M, Heinemann B, et al. (1957). Miamycin, a new antibiotic. Antibiot Chemother (Northfield) 7:37–9.
  • Seidman JC, Coles CL, Silbergeld EK, et al. (2014). Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control. Int J Epidemiol 43:1105–13.
  • Sgoiffo Rossi CA, Vandoni SL, Bonfanti M, Forbes AB. (2010). Effects of arrival medication with gamithromycin on bovine respiratory disease in feedlot cattle in Italy. Intern J Appl Res Vet Med 8:87–96.
  • Shen J, Wang Y, Schawrz S. (2013). Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–706.
  • Sheridan R, Mirabile J, Hafler K. (2014). Determination of six illegal antibiotics in chicken jerky dog treats. J Agric Food Chem 62:3690–6.
  • Sjölund Karlsson M, Bowen A, Reporter R, et al. (2013). Outbreak of infections caused by Shigella sonnei with reduced susceptibility to azithromycin in the United States. Antimicrob Agents Chemother 57:1559–60.
  • Sjölund-Karlsson M, Joyce K, Blickenstaff K, et al. (2011). Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother 55:3985–9.
  • Smith LK, Mankin AS. (2008). Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrob Agents Chemother 52:1703–12.
  • Sobin BA, English AR, Celmer WD. (1955). PA-105, a new antibiotic. In: Welch H, Martí-Ibañez F, eds. Antibiotics annual 1954–1955. New York: Medical Encyclopedia, 827–30.
  • Soge OO, Adeniyi BA, Roberts MC. (2006). New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J Antimicrob Chemother 58:1048–53.
  • Sothiselvam S, Liu B, Han W, et al. (2014). Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc Natl Acad Sci USA 111:9804–9.
  • Srinivasan VB, Rajamohan G. (2013). KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57:4449–62.
  • Srinivasan VB, Singh BB, Priyadarshi N, et al. (2014). Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One 9:e96288.
  • Stepanauskas R, Glenn TC, Jagoe CH, et al. (2006). Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8:1510–14.
  • Stock I, Wiedemann B. (1999). Natural antibiotic susceptibility of Escherichia coli, Shigella, E. vulneris, and E. hermannii strains. Diagn Microbiol Infect Dis 33:187–99.
  • Stock I, Wiedemann B. (2000). Natural antibiotic susceptibility of Salmonella enterica strains. Int J Antimicrob Agents 16:211–17.
  • Stoner BP. (2007). Current controversies in the management of adult syphilis. Clin Infect Dis 44:S130–S46.
  • Sugamata R, Sugawara A, Nagao T, et al. (2014). Leucomycin A3, a 16-membered macrolide antibiotic, inhibits influenza A virus infection and disease progression. J Antibiot 67:213–12.
  • Sugawara A, Sueki A, Hirose T, et al. (2011). Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents. Bioorg Med Chem Lett 21:3373–6.
  • Sugawara A, Sueki A, Hirose T, et al. (2012). Novel 12-membered non-antibiotic macrolides, EM900 series with anti-inflammatory and/or immunomodulatory activity; synthesis, structure-activity relationships and in vivo study. J Antibiot 65:487–90.
  • Sutherland AI, Akhtar MZ, Zilvetti M, et al. (2014). Alemtuzumab and sirolimus in renal transplantation: six-year results of a single-arm prospective pilot study. Am J Transplant 14:677–84.
  • Tait-Kamradt Davies T, Cronan M, et al. (2000). Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother 44:2118–25.
  • Takaya A, Watanabe M, Yamamoto T. (2006). Organization of tn2610 containing two transposition modules. Antimicrob Agents Chemother 50:1143–7.
  • Takyar S, Hickerson RP, Noller HF. (2005). mRNA helicase activity of the ribosome. Cell 120:49–58.
  • Taniguchi K, Nakamura A, Tsurubuchi K, et al. (1999). Identification of functional amino acids in the macrolide 2′-phosphotransferase II. Antimicrob Agents Chemother 43:2063–5.
  • Tanner FW Jr, English AR, Lees TM, Routien JB. (1952). Some properties of magnamycin; a new antibiotic. Antibiot Chemother (Northfield) 2:441–3.
  • Tenson T, DeBlasio A, Mankin A. (1996). A functional peptide encoded in the Escherichia coli 23S rRNA. Proc Natl Acad Sci USA 93:5641–6.
  • Tenson T, Mankin A. (2001). Short peptides conferring resistance to macrolide antibiotics. Peptides 22:1661–8.
  • Tenson T, Xiong L, Kloss P. (1997). Erythromycin resistance peptides selected from random peptide libraries. J Biol Chem 272:17425–30.
  • Toh SM, Mankin AS. (2008). An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J Mol Biol 380:593–7.
  • Toh SM, Xiong L, Bae T, Mankin AS. (2008). The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA 14:98–106.
  • Torres S, Thomson DU, Bello NM, et al. (2013). Field study of the comparative efficacy of gamithromycin and tulathromycin for the treatment of undifferentiated bovine respiratory disease complex in beef feedlot calves. Am J Vet Res 74:847–53.
  • Tripathi S, Kloss PS, Mankin AS. (1998). Ketolide resistance conferred by short peptides. J Biol Chem 273:20073–7.
  • Trivedi NA, Shah PC. (2012). A meta-analysis comparing the safety and efficacy of azithromycin over the alternate drugs used for treatment of uncomplicated enteric fever. J Postgrad Med 58:112–18.
  • Tu D, Blaha G, Moore PB, Steitz TA. (2005). Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–70.
  • Uğurlu T, Karaçiçek U, Rayaman E. (2014). Optimization and evaluation of clarithromycin floating tablets using experimental mixture design. Acta Pol Pharm 71:311–21.
  • Vaara M. (1993a). Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in Gram-negative enteric bacteria. Antimicrob Agents Chemother 37:354–6.
  • Vaara M. (1993b). Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 37:2255–60.
  • Vaishnavi C. (2015). Fidaxomicin-the new drug for Clostridium difficile infection. Indian J Med Res 141:398–407.
  • Valkiūnas G, Atkinson CT, Bensch S, et al. (2008). Parasite misidentifications in GenBank: how to minimize their number? Trends Parasitol 24:247–8.
  • Van Dijck P, Van de Voorde HP, de Somer P. (1953). Preliminary notes on griseomycin, a new antibiotic. Antibiot Chemother (Northfield) 3:1243–6.
  • van Oosterhout JJ, Laufer MK, Graham SM, et al. (2005). A community-based study of the incidence of trimethoprim-sulfamethoxazole-preventable infections in Malawian adults living with HIV. J Acquir Immune Defic Syndr 39:626–31.
  • Vanek Z, Majer J. (1967) Macrolide antibiotics. In: Gottlieb D, Shaw PD, eds. Biosynthesis. Berlin (Germany): Springer Verlag.
  • Vannuffel P, Di Giambattista M, Morgan EA, Cocito C. (1992). Identification of a single base change in ribosomal RNA leading to erythromycin resistance. J Biol Chem 267:8377–82.
  • Vázquez-Laslop N, Klepacki D, Mulhearn DC, et al. (2011). Role of antibiotic ligand in nascent peptide-dependent ribosome stalling. Proc Natl Acad Sci USA 108:10496–501.
  • Vázquez-Laslop N, Ramu H, Klepacki D, et al. (2010). The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J 29:3108–17.
  • Vazquez-Laslop N, Thum C, Mankin AS. (2008). Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30:190–202.
  • Vester B, Douthwaite S. (2001). Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45:1–12.
  • Vester B, Long KS. (2009). Antibiotic resistance in bacteria caused by modified nucleosides in 23S ribosomal RNA. In: Grosjean H, ed. DNA and RNA modification enzymes: structure, mechanism, function and evolution. Austin (TX): Landes Bioscience, 537–49.
  • Vézina C, Kudelski A, Sehgal SN. (1975). Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–6.
  • Vien LTM, Minh NN, Thuong TC, et al. (2012). The co-selection of fluoroquinolone resistance genes in the gut flora of Vietnamese children. PLoS One 7:e42919.
  • Vimberg V, Xiong L, Bailey M, et al. (2004). Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel. Mol Microbiol 54:376–85.
  • Vlieghe ER, Phe T, De Smet B, et al. (2012). Azithromycin and ciprofloxacin resistance in Salmonella bloodstream infections in Cambodian adults. PLoS Negl Trop Dis 6:e1933.
  • Wang M, Cao B, Yu Q, et al. (2008). Analysis of the 16S-23S rRNA gene internal transcribed spacer region in Klebsiella species. J Clin Microbiol 46:3555–63.
  • Wang Y, He T, Schwarz S, et al. (2012). Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J Antimicrob Chemother 67:1094–8.
  • Wang Y, Wang Y, Wu CM, et al. (2011). Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. J Antimicrob Chemother 66:2521–6.
  • Wehmeier C, Schuster S, Fähnrich E, et al. (2009). Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance. Antimicrob Agents Chemother 53:329–30.
  • Weisblum B. (1995). Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39:577–85.
  • WHO: World Health Organization. (2013a). WHO model list of essential medicines 19th list. Available from: http://www.who.int/medicines/publications/essentialmedicines/en/index.html [last accessed 29 Aug 2015].
  • WHO: World Health Organization. (2013b). WHO model list of essential medicines for children 5th list. Available from: http://www.who.int/medicines/publications/essentialmedicines/en/index.html [last accessed 29 Aug 2015].
  • Wiley PF, Baczynskyj L, Dolak LA, et al. (1987). Enzymatic phosphorylation of macrolide antibiotics. J Antibiot 40:195–201.
  • Wittmann HG, Stöffler G, Apirion D, et al. (1973). Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet 127:175–89.
  • Xiong L, Shah S, Mauvais P, Mankin AS. (1999). A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase center. Mol Microbiol 31:633–9.
  • Yap MN, Bernstein HD. (2013). Mutations in the Escherichia coli ribosomal protein L22 selectively suppress the expression of a secreted bacterial virulence factor. J Bacteriol 195:2991–9.
  • Yerushalmi H, Lebendiker M, Schuldiner S. (1995). EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H + and is soluble in organic solvents. J Biol Chem 270:6856–63.
  • Zaman S, Fitzpatrick M, Lindahl L, Zengel J. (2007). Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli. Mol Microbiol 66:1039–50.
  • Zhanel GG, Walters M, Noreddin A, et al. (2002). The ketolides: a critical review. Drugs 62:1771–804.
  • Zhang DF, Jiang B, Xiang ZM, Wang SY. (2008). Functional characterisation of altered outer membrane proteins for tetracycline resistance in Escherichia coli. Int J Antimicrob Agents 32:315–19.
  • Zhang Q, Wu J, Qian J, et al. (2011). Knocking out of tailoring genes eryK and eryG in an industrial erythromycin-producing strain of Saccharopolyspora erythraea leading to overproduction of erythromycin B, C and D at different conversion ratios. Lett Appl Microbiol 52:129–37.
  • Zhang R, Sun B, Wang Y, et al. (2015). Characterization of a cfr-carrying plasmid from porcine Escherichia coli that closely resembles plasmid pEA3 from the plant pathogen Erwinia amylovora. Antimicrob Agents Chemother 60:658–61.
  • Zhang WJ, Xu XR, Schwarz S, et al. (2014). Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. J Antimicrob Chemother 69:385–9.
  • Zuckerman JM. (2004). Macrolides and ketolides: azithromycin, clarithromycin, telithromycin. Infect Dis Clin N Am 18:621–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.