2,852
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order

, &
Pages 62-80 | Received 30 Jun 2015, Accepted 10 Mar 2016, Published online: 27 Oct 2016

References

  • Aistleitner K, Anrather D, Schott T, et al. (2015). Conserved features and major differences in the outer membrane protein composition of Chlamydiae. Environ Microbiol 17:1397–413.
  • Alijotas-Reig J, Llurba E, Gris JM. (2014). Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta 35:241–8.
  • Al-Younes HM, Paldanius M. (2014). High seroprevalence of Simkania negevensis in Jordan. Braz J Microbiol 45:1433–7.
  • Asner SA, Jaton K, Kyprianidou S, et al. (2014). Chlamydia pneumoniae: possible association with asthma in children. Clin Infect Dis 58:1198–9.
  • Bartlett EC, Levison WB, Munday PE. (2013). Pelvic inflammatory disease. BMJ 346:f3189.
  • Bas S, Neff L, Vuillet M, et al. (2008). The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J Immunol Baltim Md 180:1158–68.
  • Baud D, Goy G, Jaton K, et al. (2011a). Role of Chlamydia trachomatis in miscarriage. Emerg Infect Dis 17:1630–5.
  • Baud D, Goy G, Osterheld MC, et al. (2011b). Waddlia chondrophila: from bovine abortion to human miscarriage. Clin Infect Dis 52:1469–71.
  • Baud D, Goy G, Osterheld MC, et al. (2014). Role of Waddlia chondrophila placental infection in miscarriage. Emerg Infect Dis 20:460–4.
  • Baud D, Greub G. (2011). Intracellular bacteria and adverse pregnancy outcomes. Clin Microbiol Infect 17:1312–22.
  • Baud D, Regan L, Greub G. (2008). Emerging role of Chlamydia and Chlamydia-like organisms in adverse pregnancy outcomes. Curr Opin Infect Dis 21:70–6.
  • Baud D, Thomas V, Arafa A, et al. (2007). Waddlia chondrophila, a potential agent of human fetal death. Emerg Infect Dis 13:1239–43.
  • Bavoil P, Kaltenboeck B, Greub G. (2013). In Chlamydia veritas. Pathog Dis 67:89–90.
  • Bavoil P, Ohlin A, Schachter J. (1984). Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect Immun 44:479–85.
  • Beatty WL, Morrison RP, Byrne GI. (1994). Persistent Chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 58:686–99.
  • Bertelli C, Aeby S, Chassot B, et al. (2015). Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights. Front Microbiol 6:101.
  • Bertelli C, Collyn F, Croxatto A, et al. (2010). The Waddlia genome: a window into chlamydial biology. PLoS One 5:e10890.
  • Betts-Hampikian HJ, Fields KA. (2011). Disulfide bonding within components of the Chlamydia type III secretion apparatus correlates with development. J Bacteriol 193:6950–9.
  • Birkelund S, Morgan-Fisher M, Timmerman E, et al. (2009). Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC. FEMS Immunol Med Microbiol 55:187–95.
  • Blasi F, Tarsia P, Aliberti S. (2009). Chlamydophila pneumoniae. Clin Microbiol Infect 15:29–35.
  • Bonner CA, Byrne GI, Jensen RA. (2014). Chlamydia exploit the mammalian tryptophan-depletion defense strategy as a counter-defensive cue to trigger a survival state of persistence. Front Cell Infect Microbiol 4:17.
  • Brinkman FSL, Blanchard JL, Cherkasov A, et al. (2002). Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 12:1159–67.
  • Brunham RC, Rey-Ladino J. (2005). Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5:149–61.
  • Budd A, Devos DP. (2012). Evaluating the evolutionary origins of unexpected character distributions within the bacterial Planctomycetes-Verrucomicrobia-Chlamydiae Superphylum. Front Microbiol 3:401.
  • Caldwell HD, Kromhout J, Schachter J. (1981). Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–76.
  • Carlson JH, Whitmire WM, Crane DD, et al. (2008). The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun 76:2273–83.
  • Carlson JH, Wood H, Roshick C, et al. (2006). In vivo and in vitro studies of Chlamydia trachomatis TrpR:DNA interactions. Mol Microbiol 59:1678–91.
  • Casson N, Greub G. (2006). Resistance of different Chlamydia-like organisms to quinolones and mutations in the quinoline resistance-determining region of the DNA gyrase A- and topoisomerase-encoding genes. Int J Antimicrob Agents 27:541–4.
  • Casson N, Michel R, Müller KD, et al. (2008a). Protochlamydia naegleriophila as etiologic agent of pneumonia. Emerging Infect Dis 14:168–72. doi:10.3201/eid1401.070980.
  • Casson N, Posfay-Barbe KM, Gervaix A, Greub G. (2008b). New diagnostic real-time PCR for specific detection of Parachlamydia acanthamoebae DNA in clinical samples. J Clin Microbiol 46:1491–3.
  • Collingro A, Tischler P, Weinmaier T, et al. (2011). Unity in variety-the pan-genome of the Chlamydiae. Mol Biol Evol 28:3253–70.
  • Corsaro D, Greub G. (2006). Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria. Clin Microbiol Rev 19:283–97.
  • Corsaro D, Venditti D. (2009). Detection of Chlamydiae from freshwater environments by PCR, amoeba coculture and mixed coculture. Res Microbiol 160:547–52.
  • Corsaro D, Venditti D, Valassina M. (2002). New chlamydial lineages from freshwater samples. Microbiology (Reading, Engl.) 148:343–4.
  • Croxatto A, Greub G. (2010). Early intracellular trafficking of Waddlia chondrophila in human macrophages. Microbiology (Reading, Engl.) 156:340–55.
  • Croxatto A, Rieille N, Kernif T, et al. (2014). Presence of Chlamydiales DNA in ticks and fleas suggests that ticks are carriers of Chlamydiae. Ticks Tick-Borne Dis 5:359–65.
  • de Barsy M, Bottinelli L, Greub G. (2014). Antibiotic susceptibility of Estrella lausannensis, a potential emerging pathogen. Microbes Infect 16:746–54.
  • Derré I. (2015). Chlamydiae interaction with the endoplasmic reticulum: contact, function and consequences. Cell Microbiol 17:959–66.
  • Derré I, Swiss R, Agaisse H. (2011). The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 7:e1002092.
  • Donati M, Cremonini E, Di Francesco A, et al. (2015). Prevalence of Simkania negevensis in chlorinated water from spa swimming pools and domestic supplies. J Appl Microbiol 118:1076–82.
  • Donati M, Di Francesco A, Di Paolo M, et al. (2011). Activity of cathelicidin peptides against Simkania negevensis. Int J Pept 2011:708710.
  • Donati M, Fiani N, Di Francesco A, et al. (2013). IgG and IgA response to Simkania negevensis in sera of patients with respiratory and gastrointestinal symptoms. New Microbiol 36:303–6.
  • Dowell SF, Peeling RW, Boman J, et al. (2001). Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 33:492–503.
  • Dumke R, Schnee C, Pletz MW, et al. (2015). Mycoplasma pneumoniae and Chlamydia spp. infection in community-acquired pneumonia, Germany, 2011–2012. Emerg Infect Dis 21:426–34.
  • Efron B, Halloran E, Holmes S. (1996). Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci USA 93:13429–34.
  • Everett KD, Andersen AA. (1997). The ribosomal intergenic spacer and domain I of the 23S rRNA gene are phylogenetic markers for Chlamydia spp. Int J Syst Bacteriol 47:461–73.
  • Everett KD, Bush RM, Andersen AA. (1999a). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–40.
  • Everett KDE, Thao M, Horn M, et al. (2005). Novel Chlamydiae in whiteflies and scale insects: endosymbionts “Candidatus Fritschea bemisiae” strain Falk and “Candidatus Fritschea eriococci” strain Elm. Int J Syst Evol Microbiol 55:1581–7.
  • Everett KD, Hatch TP. (1995). Architecture of the cell envelope of Chlamydia psittaci 6BC. J Bacteriol 177:877–82.
  • Everett KD, Kahane S, Bush RM, Friedman MG. (1999b). An unspliced group I intron in 23S rRNA links Chlamydiales, chloroplasts, and mitochondria. J Bacteriol 181:4734–40.
  • Fan T, Lu H, Hu H, et al. (1998). Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187:487–96.
  • Fasoli L, Paldanius M, Don M, et al. (2008). Simkania negevensis in community-acquired pneumonia in Italian children. Scand J Infect Dis 40:269–72.
  • Fehr A, Walther E, Schmidt-Posthaus H, et al. (2013). Candidatus Syngnamydia venezia, a novel member of the phylum Chlamydiae from the broad nosed pipefish, Syngnathus typhle. PLoS One 8:e70853.
  • Forhan SE, Gottlieb SL, Sternberg MR, et al. (2009). Prevalence of sexually transmitted infections among female adolescents aged 14 to 19 in the United States. Pediatrics 124:1505–12.
  • Frandi A, Jacquier N, Théraulaz L, et al. (2014). FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens. Nat Commun 5:4200. doi:10.1038/ncomms5200.
  • Friedman MG, Galil A, Greenberg S, Kahane S. (1999). Seroprevalence of IgG antibodies to the chlamydia-like microorganism “Simkania Z” by ELISA. Epidemiol Infect 122:117–23.
  • Friedman MG, Kahane S, Dvoskin B, Hartley JW. (2006). Detection of Simkania negevensis by culture, PCR, and serology in respiratory tract infection in Cornwall, UK. J Clin Pathol 59:331–3.
  • Gimenes F, Souza RP, Bento JC, et al. (2014). Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol 11:672–87.
  • Gottlieb SL, Xu F, Brunham RC. (2013). Screening and treating Chlamydia trachomatis genital infection to prevent pelvic inflammatory disease: interpretation of findings from randomized controlled trials. Sex Transm Dis 40:97–102.
  • Goy G, Croxatto A, Greub G. (2008). Waddlia chondrophila enters and multiplies within human macrophages. Microbes Infect Inst Pasteur 10:556–62.
  • Goy G, Croxatto A, Posfay-Barbe KM, et al. (2009). Development of a real-time PCR for the specific detection of Waddlia chondrophila in clinical samples. Eur J Clin Microbiol Infect Dis 28:1483–6.
  • Goy G, Greub G. (2009). Antibiotic susceptibility of Waddlia chondrophila in Acanthamoeba castellanii amoebae. Antimicrob Agents Chemother 53:2663–6.
  • Greenberg D, Banerji A, Friedman MG, et al. (2003). High rate of Simkania negevensis among Canadian inuit infants hospitalized with lower respiratory tract infections. Scand J Infect Dis 35:506–8.
  • Greub G. (2013). Pathogenesis and cell corruption by intracellular bacteria. Microbes Infect Inst Pasteur 15:969–70.
  • Greub G. (2010). International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of the Chlamydiae: minutes of the inaugural closed meeting, 21 March 2009, Little Rock, AR, USA. Int J Syst Evol Microbiol 60:2691–3.
  • Greub G. (2009). Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin Microbiol Infect 15:18–28.
  • Greub G, Boyadjiev I, La Scola B, et al. (2003a). Serological hint suggesting that Parachlamydiaceae are agents of pneumonia in polytraumatized intensive care patients. Ann N Y Acad Sci 990:311–19.
  • Greub G, Collyn F, Guy L, Roten CA. (2004a). A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system. BMC Microbiol 4:48.
  • Greub G, Kebbi-Beghdadi C, Bertelli C, et al. (2009). High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS One 4:e8423.
  • Greub G, La Scola B, Raoult D. (2004b). Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Infect Dis 10:470–7.
  • Greub G, La Scola B, Raoult D. (2003b). Parachlamydia acanthamoeba is endosymbiotic or lytic for Acanthamoeba polyphaga depending on the incubation temperature. Ann N Y Acad Sci 990:628–34.
  • Greub G, Mege JL, Gorvel JP, et al. (2005). Intracellular trafficking of Parachlamydia acanthamoebae. Cell Microbiol 7:581–9.
  • Greub G, Mege JL, Raoult D. (2003c). Parachlamydia acanthamoebae enters and multiplies within human macrophages and induces their apoptosis [corrected]. Infect Immun 71:5979–85.
  • Greub G, Raoult D. (2004). Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–33.
  • Greub G, Raoult D. (2002a). Parachlamydiaceae: potential emerging pathogens. Emerg Infect Dis 8:625–30.
  • Greub G, Raoult D. (2002b). Crescent bodies of Parachlamydia acanthamoebae and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl Environ Microbiol 68:3076–84.
  • Hammerschlag MR, Kohlhoff SA. (2012). Treatment of chlamydial infections. Expert Opin Pharmacother 13:545–52.
  • Heiskanen-Kosma T, Paldanius M, Korppi M. (2008). Simkania negevensis may be a true cause of community acquired pneumonia in children. Scand J Infect Dis 40:127–30.
  • Herweg JA, Pons V, Becher D, et al. (2016). Proteomic analysis of the Simkania-containing vacuole: the central role of retrograde transport. Mol Microbiol 99:151–71.
  • Heuer D, Rejman Lipinski A, Machuy N, et al. (2009). Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731–5.
  • Horn M. (2008). Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62:113–31.
  • Horn M, Collingro A, Schmitz-Esser S, et al. (2004). Illuminating the evolutionary history of Chlamydiae. Science 304:728–30.
  • Hovis KM, Mojica S, McDermott JE, et al. (2013). Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog Dis 69:213–22.
  • Hsia RC, Pannekoek Y, Ingerowski E, Bavoil PM. (1997). Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol 25:351–9.
  • Husain S, Kahane S, Friedman MG, et al. (2007). Simkania negevensis in bronchoalveolar lavage of lung transplant recipients: a possible association with acute rejection. Transplantation 83:138–43.
  • Hybiske K, Stephens RS. (2007). Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci USA 104:11430–5.
  • Ibana JA, Belland RJ, Zea AH, et al. (2011). Inhibition of indoleamine 2,3-dioxygenase activity by levo-1-methyl tryptophan blocks gamma interferon-induced Chlamydia trachomatis persistence in human epithelial cells. Infect Immun 79:4425–37.
  • Israelsson O. (2007). Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). J Invertebr Pathol 96:213–20.
  • Jacquier N, Aeby S, Lienard J, Greub G. (2013). Discovery of new intracellular pathogens by amoebal coculture and amoebal enrichment approaches. J Vis Exp JoVE e51055.
  • Jacquier N, Frandi A, Pillonel T, et al. (2014). Cell wall precursors are required to organize the chlamydial division septum. Nat Commun 5:3578.
  • Jacquier N, Viollier P, Greub G. (2015). The role of peptidoglycans in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 39:262–75.
  • Johnsen S, Birkebaek N, Andersen PL, et al. (2005). Indirect immunofluorescence and real time PCR for detection of Simkania negevensis infection in Danish adults with persistent cough and in healthy controls. Scand J Infect Dis 37:251–5.
  • Kahane S, Dvoskin B, Friedman MG. (2008). The role of monocyte/macrophages as vehicles of dissemination of Simkania negevensis: an in vitro simulation model. FEMS Immunol Med Microbiol 52:219–27.
  • Kahane S, Dvoskin B, Mathias M, Friedman MG. (2001). Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl Environ Microbiol 67:4789–95.
  • Kahane S, Everett KD, Kimmel N, Friedman MG. (1999). Simkania negevensis strain ZT: growth, antigenic and genome characteristics. Int J Syst Bacteriol 49:815–20.
  • Kahane S, Fruchter D, Dvoskin B, Friedman MG. (2007a). Versatility of Simkania negevensis infection in vitro and induction of host cell inflammatory cytokine response. J Infect 55:e13–21.
  • Kahane S, Gonen R, Sayada C, et al. (1993). Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol Lett 109:329–33.
  • Kahane S, Greenberg D, Friedman MG, et al. (1998). High prevalence of “‘Simkania Z’ a novel Chlamydia-like bacterium, in infants with acute bronchiolitis”. J Infect Dis 177:1425–9.
  • Kahane S, Greenberg D, Newman N, et al. (2007b). Domestic water supplies as a possible source of infection with Simkania. J Infect 54:75–81.
  • Kahane S, Kimmel N, Friedman MG. (2002). The growth cycle of Simkania negevensis. Microbiology (Reading, Engl.) 148:735–42.
  • Kahane S, Metzer E, Friedman MG. (1995). Evidence that the novel microorganism “Z” may belong to a new genus in the family Chlamydiaceae. FEMS Microbiol Lett 126:203–7.
  • Kahane S, Platzner N, Dvoskin B, et al. (2004). Evidence for the presence of Simkania negevensis in drinking water and in reclaimed wastewater in Israel. Appl Environ Microbiol 70:3346–51.
  • Kari L, Whitmire WM, Olivares-Zavaleta N, et al. (2011). A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. J Exp Med 208:2217–23.
  • Karunakaran K, Mehlitz A, Rudel T. (2011). Evolutionary conservation of infection-induced cell death inhibition among Chlamydiales. PLoS One 6:e22528.
  • Kearse M, Moir R, Wilson A, et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinform Oxf Engl 28:1647–9.
  • Kebbi-Beghdadi C, Cisse O, Greub G. (2011). Permissivity of Vero cells, human pneumocytes and human endometrial cells to Waddlia chondrophila. Microbes Infect Inst Pasteur 13:566–74.
  • Kebbi-Beghdadi C, Domröse A, Becker E, et al. (2015). OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila. Pathog Dis 73:ftv035.
  • Knab S, Mushak TM, Schmitz-Esser S, et al. (2011). Nucleotide parasitism by Simkania negevensis (Chlamydiae). J Bacteriol 193:225–35.
  • Knittler MR, Sachse K. (2015). Chlamydia psittaci: update on an underestimated zoonotic agent. Pathog Dis 73:1–15.
  • Korppi M, Paldanius M, Hyvärinen A, Nevalainen A. (2006). Simkania negevensis and newly diagnosed asthma: a case-control study in 1- to 6-year-old children. Respirol Carlton Vic 11:80–3.
  • Kostanjsek R, Strus J, Drobne D, Avgustin G. (2004). “Candidatus Rhabdochlamydia porcellionis”, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol 54:543–9.
  • Kropf P, Baud D, Marshall SE, et al. (2007). Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 37:935–45.
  • Kumar S, Kohlhoff SA, Gelling M, et al. (2005). Infection with Simkania negevensis in Brooklyn, New York. Pediatr Infect Dis J 24:989–92.
  • Kuo CC, Jackson LA, Campbell LA, Grayston JT. (1995). Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8:451–61.
  • Lagkouvardos I, Weinmaier T, Lauro FM, et al. (2014). Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae. ISME J 8:115–25.
  • Lamoth F, Greub G. (2010). Amoebal pathogens as emerging causal agents of pneumonia. FEMS Microbiol Rev 34:260–80.
  • Lieberman D, Dvoskin B, Lieberman DV, et al. (2002). Serological evidence of acute infection with the Chlamydia-like microorganism Simkania negevensis (Z) in acute exacerbation of chronic obstructive pulmonary disease. Eur J Clin Microbiol Infect Dis 21:307–9.
  • Lieberman D, Kahane S, Lieberman D, Friedman MG. (1997). Pneumonia with serological evidence of acute infection with the Chlamydia-like microorganism “Z”. Am J Respir Crit Care Med 156:578–82.
  • Liechti GW, Kuru E, Hall E, et al. (2014). A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–10.
  • Lienard J, Croxatto A, Aeby S, et al. (2011a). Development of a new chlamydiales-specific real-time PCR and its application to respiratory clinical samples. J Clin Microbiol 49:2637–42.
  • Lienard J, Croxatto A, Gervaix A, et al. (2014). Undressing of Waddlia chondrophila to enrich its outer membrane proteins to develop a new species-specific ELISA. New Microbes New Infect 2:13–24.
  • Lienard J, Croxatto A, Prod’hom G, Greub G. (2011b). Estrella lausannensis, a new star in the Chlamydiales order. Microbes Infect Inst Pasteur 13:1232–41.
  • Liu Y, Huang Y, Yang Z, et al. (2014). Plasmid-encoded Pgp3 is a major virulence factor for Chlamydia muridarum to induce hydrosalpinx in mice. Infect Immun 82:5327–35.
  • Li Z, Chen D, Zhong Y, et al. (2008). The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun 76:3415–28.
  • Lundemose AG, Kay JE, Pearce JH. (1993a). Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506 and rapamycin and is implicated in initiation of chlamydial infection. Mol Microbiol 7:777–83.
  • Lundemose AG, Rouch DA, Penn CW, Pearce JH. (1993b). The Chlamydia trachomatis Mip-like protein is a lipoprotein. J Bacteriol 175:3669–71.
  • Matsumoto A, Manire GP. (1970). Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol 101:278–85.
  • Mehlitz A, Karunakaran K, Herweg JA, et al. (2014). The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. Cell Microbiol 16:1224–43.
  • Miyairi I, Mahdi OS, Ouellette SP, et al. (2006). Different growth rates of Chlamydia trachomatis biovars reflect pathotype. J Infect Dis 194:350–7.
  • Nascimento-Carvalho CM, Cardoso MRA, Paldanius M, et al. (2009). Simkania negevensis infection among Brazilian children hospitalized with community-acquired pneumonia. J Infect 58:250–3.
  • Nesbø CL, Doolittle WF. (2003). Active self-splicing group I introns in 23S rRNA genes of hyperthermophilic bacteria, derived from introns in eukaryotic organelles. Proc Natl Acad Sci USA 100:10806–11.
  • Niemi S, Greub G, Puolakkainen M. (2011). Chlamydia-related bacteria in respiratory samples in Finland. Microbes Infect Inst Pasteur 13:824–7.
  • Nylund S, Steigen A, Karlsbakk E, et al. (2015). Characterization of “Candidatus Syngnamydia salmonis” (Chlamydiales, Simkaniaceae). A bacterium associated with epitheliocystis in Atlantic Salmon (Salmo salar L.). Arch Microbiol 197:17–25.
  • O’Connell CM, Ingalls RR, Andrews CW, et al. (2007). Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol Baltim Md 1950 179:4027–34.
  • Ogata H, La Scola B, Audic S, et al. (2006). Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet 2:e76.
  • Omsland A, Sixt BS, Horn M, Hackstadt T. (2014). Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 38:779–801.
  • Packiam M, Weinrick B, Jacobs WR, Maurelli AT. (2015). Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc Natl Acad Sci USA 112:11660–5.
  • Pellati D, Mylonakis I, Bertoloni G, et al. (2008). Genital tract infections and infertility. Eur J Obstet Gynecol Reprod Biol 140:3–11.
  • Pérez LM, Codony F, Ríos K, et al. (2011). Prevalence study of Simkania negevensis in cooling towers in Spain. J Water Health 9:312–16.
  • Pérez LM, Codony F, Ríos K, et al. (2012). Searching Simkania negevensis in environmental waters. Folia Microbiol (Praha) 57:11–14.
  • Pilhofer M, Aistleitner K, Biboy J, et al. (2013). Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun 4:2856. doi:10.1038/ncomms3856..
  • Pilhofer M, Aistleitner K, Ladinsky MS, et al. (2014). Architecture and host interface of environmental Chlamydiae revealed by electron cryotomography. Environ Microbiol 16:417–29.
  • Pillonel T, Bertelli C, Salamin N, Greub G. (2015). Taxogenomics of the Chlamydiales. Int J Syst Evol Microbiol 65:1381–93.
  • Pilloux L, Aeby S, Gaümann R, et al. (2015). The high prevalence and diversity of Chlamydiales DNA within Ixodes ricinus ticks suggest a role for ticks as reservoirs and vectors of Chlamydia-related bacteria. Appl Environ Microbiol 81:8177–82.
  • Pletz MW, Rohde G, Schütte H, et al. (2011). Epidemiology and aetiology of community-acquired pneumonia (CAP). Dtsch Med Wochenschr 1946 136:775–80.
  • Porcella SF, Carlson JH, Sturdevant DE, et al. (2015). Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis. Infect Immun 83:534–43.
  • Principi N, Esposito S. (2001). Emerging role of Mycoplasma pneumoniae and Chlamydia pneumoniae in paediatric respiratory tract infections. Lancet Infect Dis 1:334–44.
  • Raulston JE. (1997). Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun 65:4539–47.
  • Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H. (2002). The role of IFN-gamma in the outcome of chlamydial infection. Curr Opin Immunol 14:444–51.
  • Rusconi B, Greub G. (2013). Discovery of catalases in members of the Chlamydiales order. J Bacteriol 195:3543–51.
  • Rusconi B, Lienard J, Aeby S, et al. (2013). Crescent and star shapes of members of the Chlamydiales order: impact of fixative methods. Antonie Van Leeuwenhoek 104:521–32.
  • Sagaram US, DeAngelis KM, Trivedi P, et al. (2009). Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Appl Environ Microbiol 75:1566–74.
  • Saitou N, Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–25.
  • Santelli CM, Orcutt BN, Banning E, et al. (2008). Abundance and diversity of microbial life in ocean crust. Nature 453:653–6.
  • Sauvadet AL, Le Panse S, Roussel EG, et al. 2011. Tripartite interactions between Cirratulidae (Polychaeta), Durchoniella (Ciliophora, Astomatia) and Bacteria: A Russian Doll complex in anoxic coastal environments.
  • Schachter J. (1986). Chlamydia psittaci – ‘reemergence’ of a forgotten pathogen. N Engl J Med 315:189–91.
  • Senn L, Jaton K, Fitting JW, Greub G. (2011). Does respiratory infection due to Chlamydia pneumoniae still exist? Clin Infect Dis 53:847–8.
  • Sixt BS, Hiess B, König L, Horn M. (2012). Lack of effective anti-apoptotic activities restricts growth of Parachlamydiaceae in insect cells. PLoS One 7:e29565.
  • Soldati G, Lu ZH, Vaughan L, et al. (2004). Detection of mycobacteria and Chlamydiae in granulomatous inflammation of reptiles: a retrospective study. Vet Pathol 41:388–97.
  • Song L, Carlson JH, Whitmire WM, et al. (2013). Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect Immun 81:636–44.
  • Steinhoff D, Lode H, Ruckdeschel G, et al. (1996). Chlamydia pneumoniae as a cause of community-acquired pneumonia in hospitalized patients in Berlin. Clin Infect Dis 22:958–64.
  • Stephens RS, Kalman S, Lammel C, et al. (1998). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–9.
  • Stride MC, Polkinghorne A, Miller TL, et al. (2013). Molecular characterization of “Candidatus Parilichlamydia carangidicola,” a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, “Candidatus Parilichlamydiaceae” fam. nov. (order Chlamydiales). Appl Environ Microbiol 79:1590–7.
  • Sun G, Pal S, Sarcon AK, et al. (2007). Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol 189:6222–35.
  • Tamura K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition–transversion and G + C-content biases. Mol Biol Evol 9:678–87.
  • Taylor MW, Feng GS. (1991). Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–22.
  • Thao ML, Baumann L, Hess JM, et al. (2003). Phylogenetic evidence for two new insect-associated Chlamydia of the family Simkaniaceae. Curr Microbiol 47:46–50.
  • Thomas V, Casson N, Greub G. (2006). Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ Microbiol 8:2125–35.
  • Vouga M, Diabi H, Boulos A, et al. (2015). Antibiotic susceptibility of Neochlamydia hartmanellae and Parachlamydia acanthamoebae in amoebae. Microbes Infect Inst Pasteur 17:761–5.
  • Walker DH, Ismail N. (2008). Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 6:375–86.
  • Wellinghausen N, Straube E, Freidank H, et al. (2006). Low prevalence of Chlamydia pneumoniae in adults with community-acquired pneumonia. Int J Med Microbiol 296:485–91.
  • Xue X, Li SJ, Ahmed MZ, et al. (2012). Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS One 7:e48148.
  • Yamaguchi T, Yamazaki T, Inoue M, et al. (2005). Prevalence of antibodies against Simkania negevensis in a healthy Japanese population determined by the microimmunofluorescence test. FEMS Immunol Med Microbiol 43:21–7.