1,208
Views
269
CrossRef citations to date
0
Altmetric
Review Article

Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?

, &
Pages 653-670 | Received 13 Nov 2009, Accepted 14 May 2010, Published online: 21 Jul 2010

References

  • Adams LK, Lyon DY, Alvarez PJJ. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532.
  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.
  • Asharani PV, Serina NGB, Nurmawati MH, Wu YL, Gong Z, Valiyaveettil S. (2008). Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8:3603–3609.
  • Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR. (2008). Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environ Toxicol Chem 27:1875–1882.
  • Barber D, Garcia N, Denslow N, Hyndman K, Evans D, Freedman J. (2005). Effects of Aluminum Nanoparticle Exposure in Zebrafish (Danio rerio). Baltimore: SETAC.
  • Benn TM, Westerhoff P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139.
  • Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA. (2008). Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem 27:1958–1963.
  • Boxall ABA, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C. (2008). Current and future predicted environmental exposure to engineered nanoparticles. Report by Central Science Laboratory for Department for Environment, Food and Rural Affairs, Her Majesty’s Government, UK.
  • Bradford A, Handy RD, Readman JW, Atfield A, Muhling M. (2009). Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43:4530–4536.
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199.
  • Brunet L, Lyon DY, Hotze EM, Alvarez PJJ, Wiesner MR. (2009). Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43:4355–4360.
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limback LK, Bruinink A, Stark WJ. (2006). In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381.
  • Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ. (1999). In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci U S A 96:5182–5187.
  • Caruso BS, Dawson HE. (2009). Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream. Environ Monit Assess 153:405–425.
  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. (2007). Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055.
  • Chen X, Schluesener HJ. (2008). Nanosilver: A nanoproduct in medical application. Toxicol Lett 176:1–12.
  • Cheng J, Flahaut E, Cheng SH. (2007). Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–716.
  • Choi O, Deng KK, Kim N-J Ross, L Jr, Surampalli RY, Hu Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth Water Res. 42:3066–3074.
  • Choi O, Hu ZQ. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588.
  • Churg A, Stevens B, Wright JL. (1998). Comparison of the uptake of fine and ultrafine TiO2 in a tracheal explant system. Am J Physiol 274(1 Pt 1):L81-L86.
  • Clift MJ, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V. (2008). The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427.
  • Cole JJ. (1999). Aquatic microbiology for ecosystem scientists: New and recycled paradigms in ecological microbiology. Ecosystems 2:215–225.
  • Colvin VL. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170.
  • Derjaguin BV, Landau LD. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim U R S S 14:633–662.
  • Domingos RF, Tufenkji N, Wilkinson KJ. (2009). Aggregation of titanium dioxide nanoparticles: Role of a fulvic acid. Environ Sci Technol 43:1282–1286.
  • Donaldson K, Brown GM, Brown DM, Robertson MD, Slight J, Cowie H, Jones AD, Bolton RE, Davis JMG. (1990). Contrasting bronchoalveolar leukocyte responses in rats inhaling coal mine dust, quartz, or titanium dioxide: Effects of coal rank, airborne mass concentration, and cessation of exposure. Environ Res 52:62–76.
  • Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’Neill O, Pethica J, Pidgeon N, Porritt J, Ryan J, Seaton A, Tendler S, Welland M, Whatmore R. (2004). Nanoscience and Nanotechnologies: Opportunities and Uncertainties. London: The Royal Society, The Royal Academy of Engineering.
  • Driscoll KE, Hassenbein DG, Carter JM, Kunkel SL, Quinlan TR, Mossman BT. (1995). TNF[alpha] and increased chemokine expression in rat lung after particle exposure. Toxicol Lett 82-83:483–489.
  • Driscoll KE, Lindenschmidt RC, Maurer JK, Perkins L, Perkins M, Higgins J. (1991). Pulmonary response to inhaled silica or titanium dioxide. Toxicol Appl Pharmacol 111:201–210.
  • Dubascoux S, Von Der Kammer F, Le Hecho I, Gautier MP, Lespes G. (2008). Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation. J Chromatogr 1206:160–165.
  • Dutta D, Sundaram SK, Teeguarden jG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ. (2007). Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100:303–315.
  • Elmes PC, McCaughey WTE, Wade OL. (1965). Diffuse mesothelioma of the pleura and asbestos. Br Med J 1:350–353.
  • European Commission. (2007). Communication from the Commission to the Council, the European Parliament and the European Economic and Social Commitee: Nanosciences and Nanotechnologies: An action plan for Europe 2005–2009. First Implementation Report 2005–2007. Communities CotE, ed. Brussels: European Commission.
  • Fang J, Shan XQ, Wen B, Lin JM, Owens G. (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109.
  • Federici G, Shaw BJ, Handy RD. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430.
  • Fowler PBS, Sloper JC, Warner EC. (1964). Exposure to asbestos and mesothelioma of the pleura. Br Med J 2:211–213.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ Sci Technol 41):8484–8490.
  • Gagné F, Maysinger D, André C, Blaise C. (2008). Cytotoxicity of aged cadmium-telluride quantum dots to rainbow trout hepatocytes. Nanotoxicology 2:113–120.
  • Gaiser B, Fernandes TF, Jepson MA, Lead J, Tyler CR, Baalousha M, Biswas A, Britton G, Cole P, Johnston B, Ju-Nam Y, Rosenkranz P, Scown T, Stone V. Interspecies assessment reveals common patterns of toxicity and uptake of silver and cerium dioxide nanoparticles. Environ Health Perspect Submitted.
  • Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F. (2009). Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut In press.
  • Giasuddin ABM, Kanel SR, Choi H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027.
  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS. (2009). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415.
  • Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978.
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science and Technology 41(23):8178–8186.
  • Gu YJ, Cheng J, Lin CC, Lam YW, Cheng SH, Wong WT. (2009). Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol 237:196–204.
  • Gulson B, Wong H. (2006). Stable isotopic tracing—A way forward for nanotechnology. Environ Health Perspect 114:1486–1488.
  • Gulson B, Wong H, McCall M, Casey P, Trotter J, McCulloch M, Greenoak G, Stauber J. (2008). Dermal absorption of ZnO nanoparticles in sunscreen using the stable isotope approach Toxicol Lett 180(S1):S222.
  • Gurr J-R, Wang ASS, Chen C-H Jan, K-Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73.
  • Hall S, Bradley T, Moore JT, Kuykindall T, Minella L. (2009). Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97.
  • Handy R, Ramsden C, Smith T, Shaw B. (2008) Toxicology of dietary titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 150:S60–S61.
  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR. (2008). Manufactured nanoparticles: Their uptake and effects on fish-a mechanistic analysis. Ecotoxicology 17:396–409.
  • Hassellöv M, Readman JW, Ranville JF, Tiede K. (2008). Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361.
  • Hassellöv M, Stolpe B. (2007). Conference Proceedings: Development of methods for single nanoparticle detection and monitoring in the aquatic environment exploiting field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry. 2nd International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, London. 24–25 September 2007.
  • Henry TB, Menn F-M Fleming, JT, Wilgus J, Compton RN, Sayler GS. (2007). Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115:1059–1065.
  • Hirano S, Kanno S, Furuyama A. (2008). Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232:244–251.
  • Hu X, Liu J, Mayer P, Jiang G. (2008). Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27:1868–1874.
  • Hund-Rinke K, Simon M. (2006). Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232.
  • Inoue KI, Takano H, Yanagisawa R, Koike E, Shimada A. (2009). Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 234:68–76.
  • Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vrajes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V. (2006). Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183.
  • Jayesh P, Chatterjeec AK, Duttaguptab SP, Mukherji S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716.
  • Johansen A, pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A. (2008). Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903.
  • Johnston BD, Scown TM, Moger J, Cumberland S, Baalousha M, Linge K, van Aerle R, Jarvis K, Lead JR, Tyler CR. (2010). Bioavailability of nanoscale metal oxides, TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44:1144–1151.
  • Jones N, Ray B, Ranjit KT, Manna AC. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76.
  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239.
  • Kang S, Pinault M, Pfefferle LD, Elimelech M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673.
  • Karlsson HL, Gustafsson J, Cronholm P, Moller L. (2009). Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol Lett 188:112–118.
  • Kashiwada S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114:1697–1702.
  • Keller A, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967.
  • King-Heiden TC, Wiecinski PN, Mangham AN, Metz KM, Nesbit D, Pedersen JA, Hamers RJ, Heideman W, Peterson RE. (2009). Quantum dot nanotoxicity assessment using the zebrafish embryo. Environm Sci Technol 43:1605–1611.
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability and effects Environ Toxicol Chem 27:1825–1851.
  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530.
  • Kuhn KP, Chaberny IF, Massholder K, Stickler M, Benz VW, Sonntag H-G, Erdinger L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77.
  • Kusaka Y, Brown GM, Donaldson K. (1990). Alveolitis caused by exposure to coal mine dusts: Production of interleukin-1 and immunomodulation by bronchoalveolar leukocytes. Environ Res 53:76–89.
  • Lam HF, Conner MW, Rogers AE, Fitzgerald S, Amdur MO. (1985). Functional and morphologic changes in the lungs of guinea pigs exposed to freshly generated ultrafine zinc oxide. Toxicol Appl Pharmacol 78:29–38.
  • Lead JR, Wilkinson KJ. (2006). Aquatic colloids and nanoparticles: Current knowledge and future trends. Environ Chem 3:159–171.
  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN. (2007). In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143.
  • Lee SW, Kim SM, Choi J. (2009). Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 28:86–91.
  • Li D, Lyon DY, Li Q, Alvarez MP. (2008). Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ Toxicol Chem 27:1888–1894.
  • Li Q, Xiu Y, Zhang X, Liu R, Du Q, Shun X, Chen S, Li W. (2002). Preparation of 99mTc-C60(OH)x and its biodistribution studies. Nucl Med Biol 29:707–710.
  • Limbach LK, Bereiter R, Müller E, Krebs R, Gälli R, Stark WJ. (2008). Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on cleaning efficiency. Environ Sci Technol 42:5828–5833.
  • Limbach LK, Li Y-C Grass, RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ. (2005). Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration and diffusion at low concentrations. Environ Sci Technol 39:9370–9376.
  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. (2007). Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163.
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. (2004). Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641.
  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu, W-Y, Sun H, Tam PKH, Chiu J-F Che, C-M. (2007). Silver nanoparticles: Partial oxidation and antibacterial activities. J Biol Inorgan Chem 12:527–534.
  • Lovern SB, Klaper R. (2006). Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137.
  • Lovern SB, Strickler JR, Klaper R. (2007). Behavioural and physiological changes in Daphnia magna when exposed to nanoparticle suspension (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41:4465–4470.
  • Lux Research Inc. (2009). NewYork: Lux Research Inc. http://www.luxresearchinc.com Access date: 12/05/2009.
  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ. (2006). Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ Sci Technol 40:4360–4366.
  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L. (2006). Cellular toxicity of carbon-based nanomaterials Nano Lett 6:1121–1125.
  • Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Frohlich E. (2009). The role of nanoparticle size in hemocompatibility. Toxicology 256:139–147.
  • Moger J, Johnston BD, Tyler CR. (2008). Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Optics Express 16:3408–3419.
  • Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L. (2008). Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87:127–137.
  • Mueller NC, Nowack N. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453.
  • Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA. (2009). Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257:161–171.
  • Nanotechnology Knowledge Transfer Network. (2009). Nanotechnology Knowledge Transfer Network. (2009). The Nanotechnology KTN, Gateshead. https://ktn.innovateuk.org/web/nanoktn Access date: 12/05/2009.
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964.
  • Oberdörster E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062.
  • Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML. (2006). Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120.
  • Oberdörster G. (1996). Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol 8:73–89.
  • Oberdörster G. (2000). Toxicology of ultrafine particles: In vivo studies. Philos Trans R Soc Lond A Math Phys Eng Sci 358:2719–2740.
  • Oberdörster G. (2001). Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8.
  • Oberdörster G, Oberdörster E, Oberdörster J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol 16:437–445.
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C. (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health Part A 65:1531–1543.
  • OECD. (2009). OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials. Manufactured Nanomaterials: Roadmap for Activities During 2009 and 2010. Paris.
  • Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL. (2008). Biodistribution of titanium dioxide from biologic compartments. J Mater Sci Mater Med 19:3049–3056.
  • Owen R, Handy R. (2007). Formulating the problems for environmental risk assessment of nanomaterials. Environ Sci Technol 41:5582–5588.
  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. (2007). Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949.
  • Park E-J, Choi J, Park Y-K, Park K. (2008). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100.
  • Peters A, Wichmann H, Tuch T, Heinrich J, Heyder J. (1997). Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383.
  • Phenrat T, Long TC, Lowry GV, Veronesi B. (2009). Partial oxidation (“aging’’) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. (2008). Carbon nanotubes introduced into the abdominal cavity ofbmice show asbestosblike pathogenicity in a pilot study. Nat Nanotechnol 3:423–428
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. (2007). Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51.
  • Renwick LC, Brown D, Clouter A, Donaldson K. (2004). Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61:442–447.
  • Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, Warheit DB, Colvin VL. (2006). Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185.
  • Sayes MS, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887.
  • Schaller MF, Fan Y. (2009). River basins as groundwater exporters and importers: Implications for water cycle and climate modeling. J Geophys Res Atmos 114:D04103 (22 PP).
  • Schmidt CW. (2009). Nanotechnology-related environmental, health and safety research: Examining the national strategy. Environ Health Perspect 117:A158–A161.
  • Scown TM, Santos D, Johnston BD, Gaiser B, Baalousha M, Lead JR, Stone V, Fernandes T, Jepson M, van Aerle R, Tyler CR. (2009). Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534.
  • Shinohara N, Matsumoto T, Gamo M, Miyauchi A, Endo S, Yonezawa Y, Nakanishi J. (2009). Is lipid peroxidation induced by the aqueous suspension of fullerene C60 nanoparticles in the brains of Cyprinus carpio? Environ Sci Technol 43:948–953.
  • Shwe TTW, Yamamoto S, Ahmed S, Kakeyama M, Kobayashi T, Fujimaki H. (2006). Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett 163:153–160.
  • Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime H, Menguy N, Reynaud C, Gouget B, Carriere M. (2009). Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429.
  • Singh S, Shi T, Hohr D, Martra G, Fubini B, Borm P, Schins R. (2004). Interleukin-8 expression by titanium dioxide in A549 cells: Effects of particle surface area and surface coating. Toxicol Appl Pharmacol 197:137–375.
  • Sioutas C, Delfino RJ, Singh M. (2005). Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955.
  • Smith CJ, Shaw BJ, Handy RD. (2007). Toxicity of single walled carbon nanotubes on rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:93–109.
  • Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE. (2005). Comparative in vitro cytotoxicity of some manufactureed nanoparticulate materials characterized by transmission electron microscopy. J Nanoparticle Res 7:145–169.
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. (2006). Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–333.
  • Sugibayashi K, Todo H, Kimura E. (2008). Safety evaluation of titanium dioxide nanoparticles by their absorption and elimination profiles. J Toxicol Sci 33:293–298.
  • Sun H, Zhang X, Niu Q, Chen Y, Crittenden JC. (2007). Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut 178:245–254.
  • Sun H, Zhang X, Zhang Z, Chen Y, Crittenden JC. (2009). Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite. Environ Pollut 157:1165–1170.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J. (2008). Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116.
  • Tamura K, Takashi N, Akasaka T, Roska ID, Uo M, Totsuka Y, Watari F. (2004). Effects of micro/nano particle size on cell function and morphology. Key Eng Mater 254-256:919–922.
  • Technology Transfer Centre, Institute of Nanotechnology. (2007). Government funding, companies and applications in nanotechnology worldwide 2007. Technology Transfer Centre, Institute of Nanotechnology, Stirling, UK. http://www.nano.org.uk/reports.htm Access date 12/05/2009.
  • Templeton RC, Ferguson PL, Washbum KM, Scrivens WA, Chandler GT. (2006). Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40:7387–7393.
  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. (2006). Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156.
  • Tratnyek PG, Johnson RL. (2006). Nanotechnologies for environmental cleanup. Nanotoday 1:44–48.
  • Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N. (1996). Novel Harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 393:139–145.
  • Velzeboer I, Hendriks AJ, Ragas AMJ, van de Meent D. (2008). Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942–1947.
  • Verran J, Sandoval G, Allen NS, Edge M, Stratton J. (2007). Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes Pigments 73:298–304.
  • Verwey EJW, Overbeek JTG. 1948. Theory of the Stability of Lyophobic Colloids. Amsterdam: Elsevier.
  • Vevers WF, Jha AN. (2008). Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420.
  • Vileno B, Lekka M, Sienkiewicz A, Jeney S, Stoessel G, Lekki J, Forró L, Stachura Z. (2007). Stiffness alterations of single cells induced by UV in the presence of NanoTiO2. Environ Sci Technol 41:5149–5153.
  • Wamer WG, Yin J-J Wei, RR. (1997). Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med 23:851–858.
  • Wang X, Lu J, Xu M, Xing B. (2008a). Sorption of pyrene by regular and nanoscaled metal oxide particles: Influence of adsorbed organic matter. Environ Sci Technol 42:7267–7272.
  • Wang Y, Li Y, Pennell KD. (2008b). Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ Toxicol Chem 27:1860–1867.
  • Warheit DB. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101:183–185.
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125.
  • Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. (2007a). Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: Toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95:270–280.
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. (2007b). Pulmonary toxicity study in rats with three forms of ultrafine TiO2 particles: Differential responses related to surface properties. Toxicology 230:90–104.
  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. (2006). Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236.
  • Wasado SC, Barber DS, Denslow ND, Powers KW, Palazuelos M, Stevens SM Jr, Moudgil BM, Roberts SM. (2008). Differential binding of serum proteins to nanoparticles. Int J Nanotechnol 5:92–95.
  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. (2007). The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131.
  • Williams D, Amman M, Autrup H, Bridges J, Cassee F, Donaldson K, Fattal E, Janssen C., De Jong W, Jung T, Marty J-P, Rydzynski K. (2005). The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Report for the European Commission Health and Consumer Protection Directorate General by the Scientific Committee on Emerging and Newly Identified Health Risks. Brussels.
  • Wittmaack K. (2007). In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: Particle number, surface area, or what? Environ Health Perspect 115:187–194.
  • Wörle-Knirsch JM, Kern K, Schleh C, Adelhelm C, Feldmann C, Krug HF. (2007). Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells. Environ Sci Technol 41:331–336.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.
  • Yamamoto S, Shwe TTW, Ahmed S, Kobayashi T, Fujimaki H. (2006). Effect of ultrafine carbon black particles on lipoteichoic acid-induced early pulmonary inflammation in BALB/c mice. Toxicol Appl Pharmacol 213:256–266.
  • Yang K, Lin D, Xing B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:3571–3576.
  • Yang K, Xing B. (2009). Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO. Environ Sci Technol 43:1845–1851.
  • Yeo MK, Kang M. (2008). Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184.
  • Zhang L, Jiang Y, Ding Y, Povey M, York D. (2007a). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9:479–489.
  • Zhang W-X. (2003). Nanoscale iron particles for environmental remediation: An overview. J Nanoparticle Res 5:323–332.
  • Zhang X, Sun H, Zhang Z, Niu Q, Chen Y, Crittenden JC. (2007b). Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166.
  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. (2008). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Toxic Hazard Subst Environ Eng 43:278–284.
  • Zhu Z, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ. (2007). Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26:976–979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.