1,020
Views
124
CrossRef citations to date
0
Altmetric
Review Articles

Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review

, , , &
Pages 837-872 | Received 26 Nov 2014, Accepted 02 Jun 2015, Published online: 03 Jul 2015

References

  • Aalapati S, Ganapathy S, Manapuram S, Anumolu G, Prakya BM. (2014). Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice. Nanotoxicology, 8, 786–98.
  • Abid AD, Anderson DS, Das GK, Van Winkle LS, Kennedy IM. (2013). Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation. Part Fibre Toxicol, 10, 1.
  • Adachi K, Yamada N, Yamamoto K, Yoshida Y, Yamamoto Y. (2010). In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology, 4, 296–306.
  • Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT, et al (2014). Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol, 11, 15.
  • Adjei IM, Sharma B, Labhasetwar V. (2014). Nanoparticles: cellular uptake and cytotoxicity. Adv Exp Med Biol, 811, 73–91.
  • Aiso S, Kubota H, Umeda Y, Kasai T, Takaya M, Yamazaki K, et al (2011). Translocation of intratracheally instilled multiwall carbon nanotubes to lung-associated lymph nodes in rats. Ind Health, 49, 215–20.
  • Alessandrini F, Semmler-Behnke M, Jakob T, Schulz H, Behrendt H, Kreyling W. (2008). Total and regional deposition of ultrafine particles in a mouse model of allergic inflammation of the lung. Inhal Toxicol, 20, 585–93.
  • Almeida JP, Chen AL, Foster A, Drezek R. (2011). In vivo biodistribution of nanoparticles. Nanomedicine, 6, 815–35.
  • Apostoli P, Porru S, Alessio L. (1994). Urinary cobalt excretion in short time occupational exposure to cobalt powders. Sci Total Environ, 150, 129–32.
  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, et al (2010). Review of carbon nanotubes toxicity and exposure-appraisal of human health risk assessment based on open literature. Crit Rev Toxicol, 40, 759–90.
  • Asgharian B, Price OT, Oldham M, Chen LC, Saunders EL, Gordon T, et al (2014). Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhal Toxicol, 26, 829–42.
  • Bai R, Zhang L, Liu Y, Li B, Wang L, Wang P, et al (2014). Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicol Lett, 226, 70–80.
  • Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdorster G, Elder A. (2014). Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol, 11, 5.
  • Balasubramanian SK, Poh KW, Ong CN, Kreyling WG, Ong WY, Yu LE. (2013). The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials, 34, 5439–52.
  • Ballou B, Lagerholm C, Ernst LA, Bruchez MP, Waggoner AS. (2004). Noninvasive imaging of quantum dots. Bioconjug Chem, 15, 79–86.
  • Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. (2007). Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol, 127, 1701–12.
  • Barua S, Mitragotri S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today, 9, 223–43.
  • Becker HM, Bertschinger MM, Rogler G. (2012). Microparticles and their impact on intestinal immunity. Dig Dis, 30, 47–54.
  • Bhattacharya K, Hoffmann E, Schins RF, Prantl EM, Alink GM, Byrne HJ, et al (2012). Comparison of micro- and nanoscale Fe3+ containing (hematite) particles for their toxicological properties in human lung cells in vitro. Toxicol Sci, 126, 173–82.
  • Blank F, Stumbles PA, Seydoux E, Holt PG, Fink A, Rothen-Rutishauser B, et al (2013). Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol, 49, 67–77.
  • Bos JD, Meinardi MMHM. (2000). The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol, 9, 165–9.
  • Bourdon JA, Halappanavar S, Saber AT, Jacobsen NR, Williams A, Wallin H, et al (2012b). Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol Sci, 127, 474–84.
  • Bourdon JA, Saber AT, Jacobsen NR, Jensen KA, Madsen AM, Lamson JS, et al (2012a). Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol, 9, 5.
  • Braakhuis HM, Gosens I, Krystek P, Boere JAF, Cassee FR, Fokkens PHB, et al (2014). Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol, 11, 49.
  • Braakhuis HM, Park MVDZ, Gisen I, deJong WH, Cassee FR. (2014). Physiochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol, 11, 18.
  • Brown JS, Zeman KL, Bennett WD. (2002). Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med, 166, 1240–7.
  • Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chanéac C, et al (2014). Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol, 11, 13.
  • Buesen R, Landsiedel R, Sauer UG, Wohlleben W, Groeters S, Strauss V, et al (2014). Effects of SiO2, ZrO2, and BaSO4 nanomaterials with or without surface functionalization upon 28day oral exposure to rats. Arch Toxicol, 88, 1881–906.
  • Campbell CSJ, Contreras-Rojas LR, Delgado-Charro MB, Guy RH. (2012). Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. J Control Release, 162, 201–7.
  • Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, et al (2014). Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells. Toxicol Sci, 138, 104–16.
  • Card JW, Jonaitis TS, Tafazoli S, Magnuson BA. (2011). An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Crit Rev Toxicol, 41, 22–49.
  • Cassee FR, Campbell A, Boere AJF, McLean SG, Duffin R, Krystek P, et al (2012). The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice. Environ Res, 115, 1–10.
  • Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J, Dreher K. (2011). Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol, 41, 213–29.
  • Chen J, Tan M, Nemmar A, Song W, Dong M, Zhang G, Li Y. (2006). Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide. Toxicology, 222, 195–201.
  • Chithrani BD, Chan WC. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7, 1542–50.
  • Cho M, Cho WS, Choi M, Kim SJ, Han BS, Kim SH, et al (2009). The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett, 189, 177–83.
  • Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH. (2013). Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol, 10, 9.
  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty IB, et al (2007). Renal clearance of quantum dots. Nature Biotechnol, 25, 1165–70.
  • Chuang HC, Juan HT, Chang CN, Yan YH, Yuan TH, et al (2014). Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology, 8, 593–604.
  • Cohen D, Soroka Y, Ma'or Z, Oron M, Portugal-Cohen M, Bregegere FM, et al (2013). Evaluation of topically applied copper (II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol In Vitro, 27, 292–8.
  • CPI home page. 2015. Available at http://www.nanotechproject.org/cpi/- accessed 13–5-2015.
  • Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Filon Larese F. (2009). Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health, 82, 1043–55.
  • Czarny B, Georgin D, Berthon F, Plastow G, Pinault M, Patriarche G, et al (2014). Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ (14)C-radiolabeling and tissue radioimaging. ACS Nano, 8, 5715–24.
  • Danielsen PH, Loft S, Jacobsen NR, Jensen KA, Autrup H, Ravanat JL, et al (2010). Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter. Toxicol Sci, 118, 574–85.
  • Delie F. (1998). Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev, 34, 221–33.
  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. (2013a). Pulmonary toxicity of carbon nanotubes and asbestos–similarities and differences. Adv Drug Deliv Rev, 65, 2078–86.
  • Donaldson K, Schinwald A, Murphy F, Cho WS, Duffin R, Tran L, Poland C. (2013b). The biologically effective dose in inhalation nanotoxicology. Acc Chem Res, 46, 723–32.
  • dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. (2011). Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small, 7, 3341–9.
  • Elder E, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect, 114, 1172–8.
  • Florence AT. (2005). Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discov Today -Technologies, 2, 75–81.
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. (2009). Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Prespect, 117, 703–8.
  • Folkmann JK, Vesterdal LK, Sheykhzade M, Loft S, Møller P. (2012). Endothelial dysfunction in normal and prediabetic rats with metabolic syndrome exposed by oral gavage to carbon black nanoparticles. Toxicol Sci, 129, 98–107.
  • Fu C, Liu T, Li L, Liu H, Chen D, Tang F. (2013). The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials, 34, 2565–75.
  • Furukawa F, Doi Y, Suguro M, Morita O, Kuwahara H, Masunaga T, et al (2011). Lack of skin carcinogenicity of topically applied titanium dioxide nanoparticles in the mouse. Food and Chem Toxicol, 49, 744–9.
  • Gantedi S, Anreddy RNR. (2012). Toxicological studies of zinc oxide nanomaterials in rats. Toxicol Environ Chem, 94, 1768–79.
  • Geiser M, Kreyling WG. (2010). Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol, 7, 2.
  • Geiser M, Stoeger T, Casaulta M, Chen S, Semmler-Behnke M, Bolle I, et al (2014). Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Part Fibre Toxicol, 11, 19.
  • Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B. (2012). Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicologic Pathology, 40, 1004–13.
  • Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, et al (2014). Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol, 11, 30.
  • Geraets L, Oomen AG, Schroeter JD, Coleman VA, Cassee FR. (2012). Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study. Toxicol Sci, 127, 463–73.
  • Gillespie PA, Kang GS, Elder A, Gelein R, Chen L, Moreira AL, et al (2010). Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: short and long-term studies in mice. Nanotoxicology, 4, 106–19.
  • Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I, et al (2004). Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol, 195, 35–44.
  • Godin B, Touitou E. (2007). Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev, 59, 1152–61.
  • Gontier E, Ynsa MD, Biro T, Hunyadi J, Kiss B, Gaspar K, et al (2008). Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology, 2, 218–31.
  • Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Latendresse JR, et al (2009). Quantitative determination of skin penetration of PEG-coated CdSe quantum dots in dermabraded but not intact SKH-1 hairless mouse skin. Toxicol Sci, 111, 37–48.
  • Gosens I, Kermanizadeh A, Jacobsen NR, Lenz AG, Bokkers B, de Jong WH, et al (2015). Comparative hazard identification of zinc oxide and silver nanomaterials in mice. Plos One, 10, e0126934.
  • Graham UM, Tseng MT, Jasinski JB, Yokel RA, Unrine JM, Davis BH, et al . (2014). In vivo processing of ceria nanoparticles inside liver: impact on free-radical scavenging activity and oxidative stress. Chem Plus Chem, 79, 1083–8.
  • Gunawan C, Lim M, Marquis CP, Amal R. (2014). Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles. J Mat Chem, 2, 2060–83.
  • Hadrup N, Lam HR. (2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Reul Toxicol Pharmacol, 68, 1–7.
  • Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJAM. (2007). What do we (need to) know about the linetic properties of nanoparticles in the body? Regul Toxicol Pharmacol, 49, 217–29.
  • Han SG, Lee JS, Ahn K, Kim YS, Kim JK, Lee JH, et al (2014). Size-dependent clearance of gold nanoparticles from lungs of Sprague-Dawley rats after short-term inhalation exposure. Arch Toxicol, 89:1083–94.
  • He X, Zhang H, Ma Y, Bai W, Zhang Z, Lu K, et al (2010). Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology, 21, 285103.
  • Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, et al (2011). Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm, 77, 407–16.
  • Hoet PHM, Hohlfeld IB, Salata OV. (2004). Nanoparticles–known and unknown health risks. J Nanobiotechnology, 2, 12–27.
  • Hougaard KS, Jackson P, Kyjovska ZO, Birkedal RK, De Temmerman PJ, Brunelli A, et al (2013). Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod Toxicol, 41, 86–97.
  • Hubbell J, Chilkoti A. (2012). Chemistry. Nanomaterials for drug delivery. Science, 337, 303–5.
  • Hussain S, Vanoirbeek JAJ, Haenen S, Haufroid V, Boland S, Marano F, et al (2013). Prior lung inflammation impacts on body distribution of gold nanoparticles. Biomed Res Int, 2013, 923475.
  • Jackson P, Hougaard KS, Vogel U, Wu D, Casavant L, Williams A, et al (2012). Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring. Mutat Res, 745, 73–83.
  • Jacobsen NR, Møller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. (2009). Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Part Fibre Toxicol, 6, 2.
  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, et al (2007). Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol, 19, 857–71.
  • Ji JH, Yu IJ. (2012). Estimation of human equivalent exposure from rat inhalation toxicity study of silver nanoparticles using multi-path particle dosimetry model. Toxicol Res, 3, 206–10.
  • Johnston H, Brown D, Kermanizadeh A, Gubbins E, Stone V. (2012). Investigating the relationship between nanomaterial hazard and physicochemical properties: informing the exploitation of nanomaterials with therapeutic and diagnosis applications. J Control Release, 164, 307–13.
  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, et al (2013). Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol, 43, 1–20.
  • Jones K, Morton J, Smith I, Jurkschat K, Harding AH, Evans G. (2015). Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol Lett, 233, 95–101.
  • Jung S, Patzelt A, Otberg N, Thiede G, Sterry W, Landemann J. (2009). Strategy of topical vaccination with nanoparticles. J Biomed Opt, 14, 021001.
  • Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. (2000). Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm, 50, 147–60.
  • Kagen VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al (2010). Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol, 5, 354–9.
  • Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilaničová D, Wallin H, et al (2013). In vitro assessment of engineered nanomaterials using C3A cells: Cytotoxicity, pro-inflammatory cytokines and function markers. Nanotoxicology, 7, 301–13.
  • Khandoga A, Stoeger T, Khandoga AG, Bihari P, Karg E, Ettehadieh D, et al (2010). Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J Thromb Haemost, 8, 1632–40.
  • Kim YR, Lee SY, Lee EJ, Park SH, Seong NW, Seo HS, et al (2014). Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int J Nanomed, 9, 67–78.
  • Kimura E, Kawano Y, Todo H, Ikarashi Y, Sugibayashi K. (2012). Measurement of skin permeation/penetration of nanoparticles for their safety evaluation. Biol Pharm Bull, 35, 1476–86.
  • Konduru N, Murdaugh K, Sotiriou G, Donaghey T, Demokritou P, Brain J, Molina R. (2014). Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol, 11, 44.
  • Korani M, Rezayat SM, Arabi Bidgoli S. (2013). Sub-chronic dermal toxicity of silver nanoparticles in Guinea Pig: Special emphasis to heart, bone and kidney toxicities. Iran J Pharm Res, 12, 511–19.
  • Korani M, Rezayat SM, Gilani K, Arbabi Bidgoli S, Adeli S. (2011). Acute and subchronic dermal toxicity of nanosilver in guinea pigs. Int J Nanomedicine, 6, 855–62.
  • Kraehenbuhl JP, Neutra MR. (2000). Epithelial M cells: Differentiation and function. Ann Rev Cell Devel Biol, 16, 301–32.
  • Kreyling WG, Hirn S, Møller W, Schleh C, Wenk A, Celik G, et al (2014). Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano, 8, 222–33.
  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A, 65, 1513–30.
  • Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, et al (2009). Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol, 21, 55–60.
  • Kreyling WG, Semmler-Behnke M, Takenaka S, Moller W. (2013). Differences in the biokinetics of inhaled nano–versus micrometer-sized particles. Acc Chem Res, 46, 714–22.
  • Kuehl PJ, Anderson TL, Candelaria G, Gershman B, Harlin K, Hesterman JY, Holmes T, (2012). Regional particle size dependent deposition of inhaled aerosols in rats and mice. Inhal Toxicol, 24, 27–35.
  • Kuempel ED, Tran CL, Castranova V, Bailer AJ. (2006). Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans. Inhal Toxicol, 18, 717–24.
  • Kumari M, Kumari SI, Grover P. (2014a). Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis, 29, 467–79.
  • Kumari M, Kumari SI, Kamal SSK, Grover P. (2014b). Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure. Mutat Res Genet Toxicol Environ Mutagen, 775–776, 7–19.
  • Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, et al (2011). Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol, 253, 81–93.
  • Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, et al (2008). Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health, 50, 1–6.
  • Labouta HI, Liu DC, Lin LL, Butler MK, Grice JE, Raphael AP, et al (2011). Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm Res, 28, 2931–44.
  • Labouta HI, Schneider M. (2013). Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine, 9, 39–54.
  • Lacerda L, Soundararajan A, Singh R, Pastorin G, Al-Jamal KT, Turton J, et al (2008). Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mat, 20, 225–30.
  • Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Steery W. (2006). Hair follicles–a long-term reservoir for drug delivery. Skin pharmacol Physiol, 19, 232–6.
  • Lam CW, James JT, McCluskey R, Hunter RL. (2003). Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci, 77, 117–25.
  • Landsiedel R, Fabian R, Ma-Hock L, van Ravenzwaay B, Wohlleben W, Wiench K, Oesch F. (2012). Toxico-/biokinetics of nanomaterials. Arch Toxicol, 86, 1021–60.
  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G. (2009). Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology, 255, 33–7.
  • Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, et al (2013a). Bio-persistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol, 10, 36.
  • Lee O, Jeong SH, Shin WU, Lee G, Oh C, Son SW. (2013b). Influence of surface charge of gold nanorods on skin penetration. Skin Res Technol, 19, e390–6.
  • Levard C, Hotze EM, Lowry GV. (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol, 46, 6900–14.
  • Li M, Al-Jamal KT, Kostarelos K, Reinke J. (2010). Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano, 4, 6303–017.
  • Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, et al (2010). Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31, 6574–81.
  • Liu DC, Raphael AP, Sundh D, Grice JE, Soyer HP, Roberts MS, Prow TW. (2012a). The human stratum corneum prevents small gold nanoparticle penetration and their Potential toxic metabolic consequences. J Nanomat, DOI: 10.1155/2012/721706.
  • Liu H, Liu T, Li L, Hao N, Tan L, Meng X, et al (2012b). Size dependent cellular uptake, in vivo fate and light-heat conversion efficiency of gold nanoshells on silica nanorattles. Nanoscale, 4, 3523–9.
  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al (2011). Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol, 8, 18.
  • Lynch I, Dawson KA. (2008). Protein-nanoparticle interactions. Nano Today, 3, 40–7.
  • Ma T, Wang L, Yang T, Ma G, Wang S. (2014). M-cell targeted polymeric lipid nanoparticles containing a toll-like receptor agonist to boost oral immunity. Int J Pharm, 473, 296–303.
  • MacNicoll A, Kelly M, Aksoy H, Kramer E, Bouwmeester H, Chaudhry Q. (2015). A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake. J Nanopart Res, 17, 66.
  • Madl AK, Pinkerton KE. (2009). Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol, 39, 629–58.
  • Magari SR, Hauser R, Schwartz J, Williams PL, Smith TJ, Christiani DC. (2001). Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation, 104, 986–91.
  • Magnusson BM, Walters KA, Roberts MS. (2001). Veterinary drug delivery: potential for skin penetration enhancement. Adv Drug Deliv Rev, 50, 205–27.
  • Ma-Hock L, Brill S, Wohlleben W, Farias PMA, Chaves CR, Tenório DPLA, et al (2012). Short term inhalation toxicity of a liquid aerosol of CdS/Cd(OH)2 core shell quantum dots in male Wistar rats. Toxicol Lett, 208, 115–24.
  • Mailander V, Landfester K. (2009). Interaction of nanoparticles with cells. Biomacromolecules, 10, 2379–400.
  • Marasini N, Skwarczynski M, Toth I. (2014). Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines, 13, 1361–76.
  • Maynard MA. (2007). Nanotechnology: The next big thing, or much ado about nothing? Ann Occup Hyg, 51, 1–12.
  • Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, et al (2013). Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol, 10, 38.
  • Miao W, Shim G, Lee S, Oh YK. (2014). Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials, 35, 4058–65.
  • Miserocchi G, Sancini G, Mantegazza F, Chiappino G. (2008). Translocation pathways for inhaled asbestos fibers. Environ Health, 7, 4.
  • Mitchev K, Dumortier P, De Vuyst P. (2002). ‘Black Spots’ and hyaline pleural plaques on the parietal pleura of 150 urban necropsy cases. Am J Surg Pathol, 26, 1198–206.
  • Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. (2013). Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol, 43, 96–118.
  • Møller P, Folkmann JK, Danielsen PH, Jantzen K, Loft S. (2012). Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles. Curr Mol Med, 12, 732–45.
  • Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. (2011). Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci, 123, 264–80.
  • Mortensen LJ, Jatana S, Gelein R, De Benedetto A, De Mesy Bentley KL, Beck LA, et al (2013). Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology, 7, 1386–98.
  • Mortensen LJ, Oberdorster G, Pentland AP, DeLouise LA. (2008). In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett, 8, 2779–87.
  • Muhlfeld C, Gehr P, Rothen-Rutishauser B. (2008). Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly, 138, 387–91.
  • Murphy FA, Poland CA, Duffin R, Donaldson K. (2013). Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology, 7, 1157–67.
  • Murphy FA, Schinwald A, Poland CA, Donaldson K. (2012). The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol, 9, 8.
  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Matsuo K, Arimori A, et al (2011). Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials, 32, 2713–24.
  • Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T. (2007). Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm, 342, 215–21.
  • Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne NDPK, Katta A, et al (2011). Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomedicine, 6, 2327–35.
  • Nel A, Xia T, Madler L, Li N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–7.
  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasdundaran P, et al (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 8, 543–57.
  • Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, et al (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105, 411–14.
  • Netzlaff F, Schaefer UF, Lehr CM, Meiers P, Stahl J, Kietzmann M, Niedorf F. (2006). Comparison of bovine udder skin with human and porcine skin in percutaneous permeation experiments. Altern Lab Anim, 34, 499–513.
  • Niwa Y, Hiura Y, Murayama T, Yokode M, Iwai N. (2007). Nano-sized carbon black exposure exacerbates atherosclerosis in LDL-receptor knockout mice. Circ J, 71, 1157–61.
  • Niwa Y, Hiura Y, Sawamura H, Iwai N. (2008). Inhalation exposure to carbon black induces inflammatory response in rats. Circ J, 72, 144–9.
  • Nohynek GJ, Dufour EK, Roberts MS. (2008). Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol, 21, 136–49.
  • Oakes JM, Scadeng M, Breen EC, Prisk GK, Darquenne C. (2013). Regional distribution of aerosol deposition in rat lungs using magnetic resonance imaging. Ann Biomed Eng, 41, 967–78.
  • Oberdörster G. (2002). Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol, 14, 29–56.
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al (2005a). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol, 2, 8.
  • Oberdorster G, Oberdorster E, Oberdorster J. (2005b). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113, 823–39.
  • Osmond-McLeod JJ, Oytam Y, Kirby JK, Gomez-Fernandez L, Baxter B, McCall MJ. (2014). Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology, 8, 72–84.
  • Oszlánczi G, Papp A, Szabó A, Nagymajtényi L, Sápi A, Kónya Z, et al (2011). Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal Toxicol, 23, 173–81.
  • Paek HJ, Lee YJ, Chung HE, Yoo NH, Lee JA, Kim MK, et al (2013). Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale, 5, 11416–27
  • Papp T, Schiffmann D, Weiss D, Castronova V, Vallyathan V, Rahman Q. (2008). Human health implications of nanomaterial exposure. Nanotoxicology, 2, 9–27.
  • Park HS, Kim SJ, Lee TJ, Kim GY, Meang GY, Hong JS, et al (2014). A 90-day study of sub-chronic oral toxicity of 20 nm positively charged zinc oxide nanoparticles in Sprague Dawley rats. Int J Nanomedicine, 9, 93–107.
  • Pauluhn J. (2011). Poorly soluble particulates: Searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology, 279, 176–88.
  • Pauluhn J. (2014). Derivation of occupational exposure levels (OELs) of low-toxicity isometric biopersistent particles: how can the kinetic lung overload paradigm be used for improved inhalation toxicity study design and OEL-derivation? Part Fibre Toxicol, 11, 72.
  • Petitot F, Lestaevel P, Tourlonias E, Mazzucco C, Jacquinot S, Dhieux B, et al (2013). Inhalation of uranium nanoparticles: respiratory tract deposition and translocation to secondary target organs in rats. Toxicol Lett, 217, 217–25.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol, 3, 423–8.
  • Prow TW, Monteiro-Riviere NA, Inman AO, Grice JE, Chen X, Zhao X, et al (2012). Quantum dot penetration into viable human skin. Nanotoxicology, 6, 173–85.
  • Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD. (1996). Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother, 40, 2262–5.
  • Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, et al (2012). Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano, 6, 6829–42.
  • Ravenzwaay B, Leibold E. (2004). A comparison between in vitro rat and human and in vivo skin penetration studies. Hum Exp Toxicol, 23, 412–30.
  • Ravenzwaay BV, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. (2009). Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett, 186, 152–9.
  • Ravichandran S, Mortensen LJ, DeLouise LA. (2011). Quantification of human skin barrier function and susceptibility to quantum dot skin penetration. Nanotoxicology, 5, 675–86.
  • Reddy ARN, Krishna DR, Reddy N, Himabindu V. (2010). Translocation and extrapulmonary toxicities of multi wall carbon nanotubes in rats. Toxicol Mech Methods, 20, 267–72.
  • Roberts JR, Antonini JM, Porter DW, Chapman RS, Scabilloni JF, Young SH, et al (2013). Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Part Fibre Toxicol, 10, 5.
  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. (2007). Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Letters, 7, 155–60.
  • Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G, Hougaard KS, Nyendi AN, et al (2013). Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. Plos One, 8, e69020.
  • Sadauskas E, Jacobson NR, Danscher G, Soltenberg M, Larsen A, Kreyling W, Wallin H. (2009). Bio-disruption of gold nanoparticles in mouse lung following intratracheal instillation. Chem Cent J, 3, 16–23.
  • Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, et al (2010). Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci, 115, 156–66.
  • Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. (2010). Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect, 118, 407–13.
  • Sanwlani S, Rawat K, Pal M, Bohidar HB, Verma AK. (2014). Cellular uptake induced biotoxicity of surface-modified CdSe quantum dots. J Nanoparticle Res, 16, 2382.
  • Saptarshi SR, Duschl A, Lopata AL. (2013). Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology, 11, 26.
  • Sárközi L, Horváth E, Kónya Z, Kiricsi I, Szalay B, Vezér T, Papp A. (2009). Subacute intratracheal exposure of rats to manganese nanoparticles: Behavioural, electrophysiological, and general toxicological effects. Inhal Toxicol, 21, 83–91.
  • Sarlo K, Blackburn KL, Clark ED, Grothaus J, Chaney J, Neu S, et al (2009). Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology, 263, 117–26.
  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al (2008). Biodistribution of 1.4- and 18-nm gold particles in rats. Small, 4, 2108–11.
  • Simon L, Shine G, Dayan AD. (1994). Effect of animal age on the uptake of large particulates across the epithelium of the rat small intestine. Int J Exp Pathol, 75, 369–73.
  • Sharma V, Singh P, Pandey AK, Dhawan A. (2012). Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res, 745, 84–91.
  • Shinohara N, Nakazato T, Tamura M, Endoh S, Fukui H, Morimoto Y, et al (2010). Clearance kinetics of fullerene C60 nanoparticles from rat lungs after intratracheal C60 and Inhalation C60 exposure. Toxicol Sci, 118, 564–73.
  • Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS. (2014). Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol, 37, 336–47.
  • Silva ACA, Silva MJB, da Luz FAC, Silva DP, de Dues SLV, Dantes NO. (2014). Controlling the cytotoxicity of CeSe magic-sized quantum dots as a function of surface defect density. Nano Lett, 14, 5452–7.
  • Simon GA, Maibach HI. (1998). Relevance of hairless mouse as an experimental model of percutaneous penetration in man. Skin Pharmacol Appl Skin Physiol, 11, 80–6.
  • Simon GA, Maibach HI. (2000). The pig as an experimental animal model of percutaneous permeation: qualitative and quantitative observations–an overview. Skin Pharmacol Appl Skin Physiol, 13, 229–34.
  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp G, Parto M, et al (2006). Tissue bio-distribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA, 103, 3357–62.
  • Staroňová K, Nielsen JB, Roursgaard M, Knudsen LE. (2012). Transport of SiO2 nanoparticles through human skin. Basic Clin Pharmacol Toxicol, 111, 142–4.
  • Stern ST, Adiseshaiah PP, Crist RM. (2012). Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol, 9, 20.
  • Stradling N, Etherington G, Hodgson A, Bailey MR, Hodgson S, Pellow P, et al (2002). Comparison between biokinetics of inhaled plutonium nitrate and gadolinium oxide in humans and animals. J Radioanal Nucl Chem, 252, 315–25.
  • Sung JH, Ji JH, Park JD, Song MY, Song KS, Ryu HR, et al (2011). Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol, 8, 16.
  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, et al (2009). Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci, 108, 452–61.
  • Surekha P, Kishore AS, Srinivas A, Selvam G, Goparaju A, Reddy PN, Murthy PB. (2012). Repeated dose dermal toxicity study of nano zinc oxide with Sprague-Dawley rats. Cutan Ocul Toxicol, 31, 26–32.
  • Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA, Krivtsova EK, Durnev AD. (2011). Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res, 726, 8–14.
  • Szikszai Z, Kertsz Z, Bodnar E, Borbiro E, Angyal A, Csedreki L, et al (2011). Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis. Nucl Instr Meth Phys Res B, 269, 2278–80.
  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, et al (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect, 109, 547–51.
  • Talukdar Y, Rashkow JT, Lalwani G, Kanakia S, Sitharaman B. (2014). The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials, 35, 4863–77.
  • Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y. (2013). The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluidics, 14, 77–87.
  • Tao L, Hu W, Liu Y, Huang G, Sumer BD, Gao J. (2011). Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp Biol Med, 236, 20–9.
  • Tassinari R, Cubadda F, Moracci G, Aureli F, D’Amato M, Valeri M, et al (2014). Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology, 8, 654–62.
  • Teow Y, Asharani PV, Hande PM, Valiyaveetil S. (2011). Health impacts of engineered nanomaterials. Chem Commun, 47, 7025–38.
  • Thakur M, Gupta H, Singh D, Mohanty IR, Maheswari U, Vanage G, Joshi DS. (2014). Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (chronic study) of repeated oral administration. J Nanobiotechnology, 12, 42.
  • Treuel L, Jiang X, Nienhaus GU. (2013). New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface, 10, 20120939.
  • van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Rivera ZEH, Rasmussen K, et al (2014). Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol, 11, 8.
  • van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al (2012). Distribution, elimination and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano, 6, 7427–42.
  • Verma A, Stellacci F. (2010). Effect of surface properties on nanoparticle-cell interactions. Small, 6, 12–21.
  • Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Aguilar-Pelaez K, Roursgaard M, et al (2014). Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol, 274, 350–60.
  • Vesterdal LK, Folkmann JK, Jacobsen NR, Sheykhzade M, Wallin H, Loft S, Møller P. (2010). Pulmonary exposure to carbon black nanoparticles and vascular effects. Part Fibre Toxicol, 7, 33.
  • Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al (2006). 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol, 126, 1316–22.
  • Vranic S, Gosens I, Schins R, Jensen KA, Jacobson NR, Bokkers B, et al (2015). The role of serum used to disperse TiO2 nanoparticles in their in vitro and in vivo effects. Submitted to Archives of Toxicology.
  • Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, et al (2008). Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 254, 82–90.
  • Wang T, Bai J, Jiang X, Mienhaus GU. (2012). Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano, 28, 1251–9.
  • Wohlleben W, Ma-Hock L, Boyko V, Cox G, Egenolf H, Freiberger H, et al (2013). Nanospecific Guidance in REACH: A Comparative Physical-Chemical Characterization of 15 Materials with Methodical Correlations. J Ceramic Sci Technol, 4, 93–104.
  • Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al (2009a). Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett, 191, 1–8.
  • Wu X, Griffin P, Price GJ, Guy RH. (2009b). Preparation and in vitro evaluation of topical formulations based onp-poly-2-hydroxyl methacrylate nanoparticles. Mol Pharm, 6, 1449–56.
  • Xia XR, Monteiro-Riviere NA, Riviere JE. (2010). Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol, 242, 29–37.
  • Xu J, Sagawa Y, Futakuchi M, Fukamachi K, Alexander DB, Furukawa F, et al (2011). Lack of promoting effect of titanium dioxide particles on ultraviolet B-initiated skin carcinogenesis in rats. Food Chem Toxicol, 49, 1298–302.
  • Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, et al (1995). In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol, 2, 385–9.
  • Yoshida T, Yoshioka Y, Takahashi H, Misato K, Mori T, Hirai T, et al (2014). Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res Lett, 9, 532.
  • Yu LE, Yung LL, Ong C, Tan Y, Balasubramaniam KS, Hartono D, et al (2007). Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology, 1, 235–42.
  • Zhan QL, Tang M. (2014). Research advances on apoptosis caused by quantum dots. Biol Trace Elem Res, 161, 3–12.
  • Zhang J, Nie X, Ji Y, Liu Y, Wu X, Chen C, Fang X. (2014). Quantitative biokinetics and systemic translocation of various gold nanostructures are highly dependent on their size and shape. J Nanosci Nanotechnol, 14, 4124–38.
  • Zhang L, Bai R, Li B, Ge C, Du JF, Liu Y, et al (2011). Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol Lett, 207, 73–81.
  • Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z. (2010). Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett, 198, 237–43.
  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. (2011). Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 7, 1322–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.