103
Views
164
CrossRef citations to date
0
Altmetric
Research Article

The Toxicology of Molecular Oxygen

, &
Pages 315-342 | Published online: 26 Sep 2008

References

  • Kaye D. Effect of hyperbaric oxygen on aerobic bacteria. in vitro and in vivo, Proc. Soc. Exp. Biol. Med. 1967; 124: 1090
  • Gregory E. M., Goscin S. A., Fridovich I. Superoxide dismutase and oxygen toxicity in a eukaryote. J. Bacteriol. 1974; 117: 456
  • Pulich W. M., Jr. Resistance to high oxygen tension, streptonigrin, and ultraviolet irradiation in the green alga. Chlorella sorokiniana strain ORS, J. Cell Biol. 1974; 62: 904
  • Fenn W. O., Gerschman R., Gilbert D. L., Terwilliger D. E., Cothran F. V. Mutagenic effects of high oxygen tensions on. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1957; 43: 1027
  • Bruyninckx W. J., Mason H. S., Morse S. A. Are physiological oxygen concentrations mutagenic. Nature (London) 1978; 274: 606
  • Soloway A. H., LeQuesne P. W. Potential endogenous mutagens/carcinogens. J. Theor. Biol. 1980; 85: 153
  • Harley J. B., Flaks J. G., Goldfine H., Bayer M. E., Rasmussen H. Hyperbaric oxygen toxicity and ribosome destruction inEscherichia coli K12. Can. J. Microbiol. 1981; 27: 44
  • Elstner E. F. Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. 1982; 33: 73
  • Rabinowitch H., Fridovich I. Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 1983; 37: 679
  • Perrins D. J. D., Davis J. C. Enhancement of healing in soft tissue wounds. Hyperbaric Oxygen Therapy, J. E. Davis, T. K. Hunt. Undersea Medical Society, , Maryland 1977; 229
  • Silver I. A. Oxygen tension in the clinical situation. Oxygen and Living Processes, D. L. Gilbert. Springer-Verlag, New York 1981; 358
  • Huber G. L., Drath D. P. Pulmonary oxygen toxicity. Oxygen and Living Processes, D. L. Gilbert. Springer-Verlag, New York 1981; 273
  • Terry T.-L. Extreme prematurity and fibroblastic overgrowth of persistent vascular sheath behind each crystalline lens. Am. J. Ophthalmol. 1942; 25: 203
  • Patz A. Retrolental fibroplasia. Survey Ophthalmol. 1969; 14: 1
  • Ngai S. H., Levy A., Finck A. D., Yang J. C., Spector S. Central nervous system toxicity of hyperbaric oxygen—effects of light, norepinephrine depletion and beta-adrenergic blockade. Neuropharm. 1977; 16: 675
  • Balentine J. D. Experimental pathology of oxygen toxicity. Oxygen and Physiological Function, F. F. Jobsis. Professional Information Library, Dallas, Tex. 1978; 331
  • Kovachich G. B., Haugaard N. Biochemical aspects of oxygen toxicity in the metazoa. Oxygen and Living Processes, D. L. Gilbert. Springer-Verlag, New York 1981; 210
  • Bean I. W., Johnson P. C. Epinephrine and neurogenic factors in pulmonary edema and CNS reactions induced by oxygen at high pressure. Am. J. Physiol. 1955; 180: 438
  • Taylor D. W. Effects of high oxygen pressures on adrenalectomized, treated and untreated rats. J. Physiol. 1954; 125: 46P
  • Mitchell J. S. Some clinical and laboratory studies of chemical radiosensitizers. Acta Unio. Int. Cancer 1957; 13: 450
  • Misra H. P., Fridovich I. Superoxide dismutase and the oxygen enhancement of radiation lethality. Arch. Biochem. Biophys. 1976; 176: 577
  • Hassan H. M., Fridovich I. Paraquat andEscherichia coli. Mechanism of production of extracellular superoxide radical. J. Biol. Chem. 1979; 254: 10846
  • Oshida R., Takehashi T. Increased DNA chain breakage by combined action of bleomycin and superoxide radical. Biochem. Biophys. Res. Commun. 1975; 66: 1432
  • Onishi T., Iwata H., Takagi K. Effects of reducing and oxidizing agents on the action of bleomycin. J. Biochem. (Tokyo) 1975; 77: 745
  • Sausville E. A., Peisach P., Horwitz S. A role for ferrous ion and oxygen in the degradation of DNA by bleomycin. Biochem. Biophys. Res. Commun. 1976; 73: 814
  • Winterbourn C. C. Evidence for the production of hydroxyl radicals from the adriamycin semiquinone and H2O2. FEBS Lett. 1981; 136: 89
  • Buettner G. R., Oberley L. W. The production of hydroxyl radical by tallysomycin and copper(II). FEBS Lett. 1979; 101: 333
  • Boveris A., Docampo R., Turrens J. F., Stoppani A. O. M. Effect of β-lapachone on superoxide anion and hydrogen peroxide production in. Trypanosoma cruzi, Biochem. J. 1978; 175: 431
  • White H. L., White J. R. Lethal action and metabolic effects of streptonigrin on, Escherichia coli. Mol. Pharm. 1968; 4: 549
  • Lown J. W., Joshua A. V., Lee J. S. Molecular mechanisms of binding and single-strand scission of deoxyribonucleic acid by the antitumor antibiotics Saframycins A and C. Biochemistry 1982; 21: 419
  • Bonikos D. S., Bensch K. G., Northway W. H., Jr. Oxygen toxicity in the newborn. The effect of chronic continuous 100 percent oxygen exposure on the lungs of newborn mice. Am. J. Pathol. 1976; 85: 623
  • Baeyens D. A., Hoffert J. R., Fromm P. O. A comparative study of oxygen toxicity in the retina, brain and liver of the teleost, amphibian and mammal. Comp. Biochem. Physiol. 1973; 45A: 925
  • Tierney D. F., Ayers L., Kasuyama R. S. Altered sensitivity to oxygen toxicity. Am. Rev. Resp. Dis. 1977; 115: 59, Suppl.
  • Munkres K. D. Ageing ofNeurospora crassa. VIII. Lethality and mutagenicity of ferrous ions, ascorbic acid, and malondialdehyde. Mech. Ageing Dev. 1979; 10: 249
  • Kehrer H. P., Autor A. P. The effect of dietary fatty acids on the composition of adult rat lung lipids: relationship to oxygen toxicity. Toxicol. Appl. Pharmacol. 1978; 44: 423
  • Morris J. G. Oxygen and the obligate anaerobe. J. Appl. Bacteriol. 1976; 40: 229
  • Drozd J., Postgate J. R. Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of. Azotobacter chroococcum, J. Gen. Microbiol. 1970; 63: 63
  • Stadie W. C., Haugaard N. Oxygen poisoning. V. J. Biol. Chem. 1945; 161: 153
  • Stadie W. C., Haugaard N. Oxygen poisoning. VII. J. Biol. Chem. 1945; 161: 175
  • Wood J. D., Watson W. J., Stacey N. E. A comparative study of hyperbaric oxygen-induced and drug-induced convulsions with particular reference to γ-aminobutyric acid metabolism. J. Neurochem. 1966; 13: 361
  • Alderman J. L., Culver B. W., Shellenberger M. K. An examination of the role of γ-aminobutyric acid (Gaba) in hyperbaric oxygen-induced convulsions in the rat. I. Effects of increased γ-aminobutyric acid and protective agents. J. Pharmacol. Exp. Ther. 1974; 190: 334
  • Arias I. M., Jakoby W. B. Glutathione: Metabolism and Function. Raven Press, New York 1976
  • Brown O. R., Yein F. Sensitivity to and site of oxygen poisoning in. Escherichia coli, Am. J. Clin. Nutr. 1979; 32: 267
  • Chance B., Sies H., Boveris A. Hydrogen peroxide metabolism in mammalian organs. Physiol. Rev. 1979; 59: 527
  • Hildebrandt A. G., Roots I. Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Arch. Biochem. Biophys. 1975; 171: 385
  • Nohl H., Hegner D. Do mitochondria produce oxygen radicals in vivo. Eur. J. Biochem. 1978; 82: 563
  • Asada K., Takahashi M., Tanaka K., Nakano Y. Formation of active oxygen and its fate in chloroplasts. Biochemical and Medical Aspects of Active Oxygen, O. Hayaishi, K. Asada. University of Tokyo Press, Tokyo 1977; 45
  • Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 1981; 68: 714
  • Holmberg K., Hallender H. O. Production of bactericidal concentrations of hydrogen peroxide by. Streptococcus sanguis, Arch. Oral. Biol. 1973; 18: 423
  • Malke H., Starke R., Jacob H. E., Kohler W. Bacteriocine-like activity of group-A streptococci due to the production of peroxide. J. Med. Microbiol. 1974; 7: 367
  • Oshino N., Jaieson D., Sugano T., Chance B. Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production. in situ, Biochem. J. 1975; 146: 67
  • Walling C. Fenton's reagent revisited. Acc. Chem. Res. 1975; 8: 125
  • Gifford G. D. Toxicity of hyperbaric oxygen to bacteria in relation to the cell cycle and catalase synthesis. J. Gen. Microbiol. 1968; 52: 375
  • Gerschman R., Gilbert D. L., Nye S. W., Dwyer P., Fenn W. O. Oxygen poisoning and X-irradiation: a mechanism in common. Science 1954; 119: 623
  • McCord J. M., Fridovich I. The reduction of cytochromec by milk xanthine oxidase. J. Biol. Chem. 1968; 243: 5753
  • McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969; 244: 6049
  • Antonini E., Brunori M., Greenwood C., Malmstrom B. G. Catalytic mechanism of cytochrome oxidase. Nature (London) 1970; 228: 936
  • Taube H. Mechanisms of oxidation with oxygen. J. Gen. Physiol. 1965; 49: 29, (Suppl.)
  • Misra H. P., Fridovich I. The univalent reduction of oxygen by reduced flavins and quinones. J. Biol. Chem. 1972; 247: 188
  • Ballou D., Palmer G., Massey V. Direct demonstration of superoxide anion production during the oxidation of reduced flavin and of its catalytic decomposition by erythrocuprein. Biochem. Biophys. Res. Commun. 1969; 36: 898
  • Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972; 247: 3170
  • Cohen G., Heikkila R. E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J. Biol. Chem. 1974; 249: 2447
  • Misra H. P. Generation of superoxide free radical during the autoxidation of thiols. J. Biol. Chem. 1974; 249: 2151
  • Al-Thannon A. A., Barton J. P., Packer J. E., Sims R. J., Trumbore C. N., Winchester R. V. The radiolysis of aqueous solutions of cysteine in the presence of oxygen. Int. J. Radiat. Phys. Chem. 1974; 6: 233
  • Lal M. 60 Co-gamma radiolysis of cysteine in aerated solutions at pH 5.5 to 6.0. Rad. Effects 1974; 22: 237
  • Baccanari D. P. Coupled oxidation of NADPH with thiols at neutral pH. Arch. Biochem. Biophys. 1978; 191: 351
  • Fisher D. B., Kaufman S. Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase. J. Biol. Chem. 1973; 248: 4300
  • Heikkila R. E., Cohen G. The generation of the superoxide radical by 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropterin (DMPH4). Experientia 1975; 31: 169
  • Nishikimi M. The generation of superoxide anion in the reaction of tetrahydropteridines with molecular oxygen. Arch. Biochem. Biophys. 1975; 166: 273
  • Hasegawa H., Nakanishi N., Akino M. Stoichiometric studies on the oxidation of tetrahydropterin with ferric-cytochromec. J. Biochem. 1978; 84: 499
  • Orme-Johnson W. H., Beinert H. On the formation of the superoxide anion radical during the reaction of reduced iron-sulfur proteins with oxygen. Biochem. Biophys. Res. Commun. 1969; 36: 905
  • Nilsson R., Pick F. M., Bray R. C. EPR studies on reduction of oxygen to superoxide by some biochemical systems. Biochim. Biophys. Acta 1969; 192: 145
  • Misra H. P., Fridovich I. The generation of superoxide radical during the autoxidation of ferredoxins. J. Biol. Chem. 1971; 246: 6086
  • Nakamura S., Kimura T. Studies on aggregated multienzyme systems. Stimulation of oxygen uptake of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase-ferredoxin complex by cytochrome. c, J. Biol. Chem. 1972; 247: 6462
  • Allen J. F. A two-step mechanism for the photosynthetic reduction of oxygen by ferredoxin. Biochem. Biophys. Res. Commun. 1975; 66: 36
  • Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974; 47: 469
  • Cassell R. H., Fridovich I. The role of superoxide radical in the autoxidation of cytochrome. c, Biochemistry. 1975; 14: 1866
  • Berman M. C., Adnams C. M., Ivanetich K. M., Kench J. E. Autoxidation of soluble trypsincleaved microsomal ferrocytochrome b5 and formation of superoxide radicals. Biochem. J. 1976; 157: 237
  • Gotoh T., Shikama K. Generation of the superoxide radical during autoxidation of oxymyoglobin. J. Biochem. 1976; 80: 397
  • Auclair C., DeProst D., Hakim J. Superoxide anion production by liver microsomes from phenobarbital treated rats. Biochem. Pharm. 1978; 27: 355
  • Felix C. C., Hyde J. S., Sarna T., Sealy R. C. Melanin photoreactions in aerated media: electron spin resonance evidence for production of superoxide and hydrogen peroxide. Biochem. Biophys. Res. Commun. 1978; 84: 335
  • Buettner G. R., Oberley L. W. The apparent production of superoxide and hydroxyl radicals by hematoporphyrin and light as seen by spin-trapping. FEBS Lett. 1980; 121: 161
  • Inoue K., Matsuura T., Saito I. Photogeneration of superoxide ion and hydrogen peroxide from tryptophan and its photooxidation products: the role of 3-α-hydroperoxypyrrolidinoindole. Photochem. Photobiol. 1982; 35: 133
  • Carrell R. W., Krisnamoorthy R., Winterbourne C. C. Haemoglobin autoxidation. The risk to the red cell and the contribution of copper. The Red Cell, G. J. Brewer. Alan R. Liss, New York 1979; 687
  • Rajagopalan K. V., Fridovich I., Handler P. Aldehyde oxidase. I. J. Biol. Chem. 1962; 237: 922
  • Badwey J. A., Robinson J. M., Karnovsky M. J., Karnovsky M. L. Superoxide production by an unusual aldehyde oxidase in guinea pig granulocytes. J. Biol. Chem. 1981; 256: 3479
  • Forman H. J., Kennedy J. Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J. Biol. Chem. 1975; 250: 4322
  • Miller R. W. A high molecular weight dihydro-orotate dehydrogenase ofNeurospora crassa. Purification and properties of the enzyme. Can. J. Biochem. 1975; 53: 1288
  • Taniguchi T., Hirata F., Hayaishi O. Intracellular utilization of superoxide anion by indoleamine 2,3-dioxygenase of rabbit enterocytes. J. Biol. Chem. 1977; 252: 2774
  • Hirata F., Ohnishi T., Hayaishi O. Indoleamine 2,3-dioxygenase. J. Biol. Chem. 1977; 252: 4637
  • Kido T., Soda K. A new oxygenase, 2-nitropropane dioxygenase ofHansenula mrakii. Enzymologic and spectrophotometric properties. J. Biol. Chem. 1976; 251: 6994
  • Kido T., Hashizume K., Soda K., Asada K. Generation and participation of O2-in 2-nitropropane dioxygenase reaction. Photochem. Photobiol. 1978; 28: 729
  • Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980; 191: 421
  • Bosterling B., Trudell J. R. Spin trap evidence for production of superoxide radical anions by purified NADPH-cytochrome P-450 reductase. Biochem. Biophys. Res. Commun. 1981; 98: 569
  • Ingelman-Sundberg M., Johansson I. The mechanism of cytochrome P-450-dependent oxidation of ethanol in reconstituted membrane vesicles. J. Biol. Chem. 1981; 256: 6321
  • Loschen G., Azzi A., Richter C., Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 1974; 42: 68
  • Boveris A., Cadenas E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 1975; 54: 311
  • Azzi A., Montecucco C., Richter C. The use of acetylated ferricytochromec for the detection of superoxide radicals produced in biological membranes. Biochem. Biophys. Res. Commun. 1975; 65: 597
  • Tyler D. D. A protective function of superoxide dismutase during respiratory chain activity. Biochim. Biophys. Acta 1975; 396: 335
  • Boveris A., Cadenas E., Stoppani A. O. M. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 1976; 156: 435
  • Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. M. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochromec reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 1977; 180: 248
  • Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol. 1977; 78: 67
  • Huq S., Palmer J. M. Superoxide and hydrogen peroxide production in cyanide-resistantArum maculatum mitochondria. Plant Sci. Lett. 1978; 11: 351
  • Rich P. R., Bonner W. D., Jr. The sites of superoxide anion generation in higher plant mitochondria. Arch. Biochem. Biophys. 1978; 188: 206
  • Boveris A., Sanchez R. A., Beconi M. T. Antimycin- and cyanide-resistant respiration and superoxide anion production in fresh and aged potato tuber mitochondria. FEBS Lett. 1978; 92: 333
  • Turrens J. F., Freeman B. A., Levitt J. G., Crapo J. D. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 1982; 217: 401
  • Patton S. E., Rosen G. M., Rauckman E. J. Superoxide production by purified hamster hepatic nuclei. Mol. Pharm. 1980; 18: 588
  • Epel B. L., Neumann J. The mechanism of the oxidation of ascorbate and Mn2+ by choloroplasts. The role of the radical superoxide. Biochim. Biophys. Acta 1973; 325: 520
  • Asada K., Kiso K., Yoshikawa K. Univalent reduction of molecular oxygen spinach by chloroplasts on illumination. J. Biol. Chem. 1974; 249: 2175
  • Allen J. F., Hall D. O. The relationship of oxygen uptake to electron transport in photosystem I of isolated chloroplasts: the role of superoxide and ascorbate. Biochem. Biophys. Res. Commun. 1974; 58: 579
  • Harbour J. R., Bolton J. R. Superoxide formation in spinach chloroplasts: electron spin resonance detection by spin trapping. Biochem. Biophys. Res. Commun. 1975; 64: 803
  • Halliwell B. The chloroplast at work. A review of recent developments in our understanding of chloroplast metabolism. Prog. Biophys. Molec. Biol. 1978; 33: 1
  • Montgomery M. R. Paraquat toxicity and pulmonary superoxide dismutase: an enzymic deficiency of lung microsomes. Res. Commun. Chem. Pathol. Pharmacol. 1977; 16: 155
  • Richter C., Azzi A., Weser U., Wendel A. Hepatic microsomal dealkylations. J. Biol. Chem. 1977; 252: 5061
  • Kuthan H., Tsuji H., Graf H., Ullrich V. Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system. FEBS Lett. 1978; 91: 343
  • Talcott R. E., Shu H., Wei E. T. Dissociation of microsomal oxygen reduction and lipid peroxidation with the electron acceptors, paraquat and menadione. Biochem. Pharmacol. 1979; 28: 665
  • Sasame H. A., Boyd M. R. Superoxide and hydrogen peroxide production and NADPH oxidation stimulated by nitrofurantoin in lung microsomes: possible implications for toxicity. Life Sci. 1979; 24: 1091
  • Kuthan H., Ullrich V., Estabrook R. W. A quantitative test for superoxide radicals produced in biological systems. Biochem. J. 1982; 203: 551
  • Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 1973; 52: 741
  • Stokes S. H., Davis W. B., Sorber W. A. Effect of phagocytosis on superoxide anion production and superoxide dismutase levels in BCG-activated and normal rabbit alveolar macrophages. J. Reticuloendothel. Soc. 1978; 24: 101
  • Markert M., Allaz M.-J., Frei J. Continuous monitoring of oxygen consumption and superoxide production by particle-stimulated human polymorphonuclear leukocytes. FEBS Lett. 1980; 113: 225
  • Nakagawara A., Nathan C. F., Cohn Z. A. Hydrogen peroxide metabolism in human monocytes during differentiation. in vitro, J. Clin. Invest. 1981; 68: 1243
  • Hoffman M., Autor A. P. Production of superoxide anion by an NADPH-oxidase from rat pulmonary macrophages. FEBS Lett. 1980; 121: 352
  • Simchowitz L., Atkinson J. P., Spilberg I. Stimulus-specific deactivation of chemotactic factorinduced cyclic AMP response and superoxide generation by human neutrophils. J. Clin. Invest. 1980; 66: 736
  • Babior B. M., Peters W. A. The O2-producing enzyme of human neutrophils. Further properties. J. Biol. Chem. 1981; 256: 2321
  • Light D. R., Walsh C., O'Callaghan A. M., Goetzl E. J., Tauber A. I. Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry 1981; 20: 1468
  • Babior G. L., Rosin R. E., McMurrich B. J., Peters W. A., Babior B. M. Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil. J. Clin. Invest. 1981; 67: 1724
  • Andrew P. W., Lowrie D. B., Jackett P. S., Peters T. J. Analytical subcellular fractionation of rabbit alveolar macrophages with particular reference to the subcellular localisation of pyridine nucleotide dependent superoxide-generating systems and superoxide dismutase. Biochim. Biophys. Acta 1980; 611: 61
  • Curnutte J. T., Whitten D. M., Babior B. M. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N. Engl. J. Med. 1974; 290: 593
  • Babior B. M. Oxygen dependent microbial killing by phagocytes. N. Engl. J. Med. 1978; 298: 659, 298, 721, 1978
  • Britton L., Malinowski D. P., Fridovich I. Superoxide dismutase and oxygen metabolism inStreptococcus faecalis and comparisons with other organisms. J. Bacteriol. 1978; 134: 229
  • Bielski B. H. J., Allen A. O. Mechanism of the disproportionation of superoxide radicals. J. Phys. Chem. 1977; 81: 1048
  • Takahashi M., Asada K. A flash-photometric method for determination of reactivity of superoxide: application to superoxide dismutase assay. J. Biochem. 1982; 91: 889
  • Klug-Roth D., Fridovich I., Rabani J. Pulse radiolytic investigations of superoxide catalysed disproportionation. Mechanism for bovine superoxide dismutase. J. Am. Chem. Soc. 1973; 95: 2786
  • Pick M., Rabani J., Yost F., Fridovich I. The catalytic mechanism of the manganese-containing superoxide dismutase ofEscherichia coli studied by pulse radiolysis. J. Am. Chem. Soc. 1974; 96: 7329
  • Lavelle F., McAdam M. E., Fielden E. M., Roberts P. B. A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from. Photobacterium leiognathi, Biochem. J. 1977; 161: 3
  • Koppenol W. H. The physiological role of the charge distribution of superoxide dismutase. Oxygen and Oxy-Radicals in Chemistry and Biology, M. A. J. Rodgers, E. L. Powers. Academic Press, New York 1981; 671
  • Malinowski D. P., Fridovich I. Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase. Biochemistry 1979; 18: 5909
  • Cudd A., Fridovich I. Electrostatic interactions in the reaction mechanism of bovine erythrocyte superoxide dismutase. J. Biol. Chem. 1982; 257: 11443
  • Steinman H. M., Naik V. R., Abernethy J. L., Hill R. L. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J. Biol. Chem. 1974; 249: 7326
  • Forman H. J., Fridovich I. On the stability of bovine superoxide dismutase. The effects of metals. J. Biol Chem. 1973; 248: 2645
  • Goscin S. A., Fridovich I. The purification and properties of superoxide dismutase from. Saccharomyces cerevisiae, Biochim. Biophys. Acta 1972; 289: 276
  • Misra H. P., Fridovich I. The purification and properties of superoxide dismutase from. Neurospora crassa, J. Biol. Chem. 1972; 247: 3410
  • Asada K., Urano M., Takahashi M. Subcellular location of superoxide dismutase in spinach leaves and preparation and properties of crystalline spinach superoxide dismutase. Eur. J. Biochem. 1973; 36: 257
  • Beauchamp C. O., Fridovich I. Isozymes of superoxide dismutase from wheat germ. Biochim. Biophys. Acta 1973; 317: 50
  • Weisiger R. A., Fridovich I. Superoxide dismutase. Organelle specificity. J. Biol. Chem. 1973; 248: 3582
  • Bannister J. V., Anastasi A., Bannister W. H. Cytosol superoxide-dismutase from swordfish (Xiphico-gladius L.) liver. Comp. Biochem. Physiol. 1977; 56B: 235
  • Puget K., Michelson A. M. Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochem. Biophys. Res. Commun. 1974; 58: 830
  • Steinman H. M. Copper-zinc superoxide dismutase fromCaulobacter crescentus CBI5. A novel bacteriocuprein form of the enzyme. J. Biol. Chem. 1982; 257: 10283
  • Martin J. P., Jr., Fridovich I. Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont. Photobacter leiognathi, J. Biol. Chem. 1981; 256: 6080
  • Frants R. Occurrence of two superoxide dismutase systems in bovine tissues. Acta Acad. Abo. Ser. B 1973; 33: 17
  • McCord J. M., Boyle J. A., Day E. D., Jr., Rizzolo L. L., Salin M. L. A manganese-containing superoxide dismutase from human liver. Superoxide and Superoxide Dismutases, M. A. Michelson, J. M. McCord, I. Fridovich. Academic Press, London 1977; 129
  • Marklund S. Purification and characterization of a manganese containing superoxide dismutase from bovine heart mitochondria. Int. J. Biochem. 1978; 9: 299
  • Sevilla F., Lopez-Gorge J., Del Rio L. A. Preliminary characterization of a Mn-containing superoxide dismutase from a higher plant (Pisum sativum L.). Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase, J. V. Bannister, H. A. O. Hill. Elsevier/North-Holland, New York 1980; 185
  • Baum J. A., Scandalios J. G. Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize. Arch. Biochem. Biophys. 1981; 206: 249
  • Steinman H. M., Hill R. L. Sequence homologies among bacterial and mitochondrial superoxide dismutases. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 3725
  • Uzzell T., Spolsky C. Mitochondria and plastids as endosymbionts: a revival of special creation. Am. Sci. 1974; 62: 334
  • Chikata Y., Kusunose E., Ichihara K. Purification of superoxide dismutases from. Mycobacterium phlei, Osaka City Med. J. 1975; 21: 127
  • Sato S., Harris J. I. Superoxide dismutase fromThermus aquaticus. Isolation and characterization of manganese and apo enzymes. Eur. J. Biochem. 1977; 73: 373
  • Keele B. B., Jr., McCord J. M., Fridovich I. Superoxide dismutase fromEscherichia coli B; a new manganese-containing enzyme. J. Biol. Chem. 1970; 245: 6176
  • Lavelle F., Durosay P., Michelson A. M. Purification et proprietes de la superoxyde dismustase du champignon. Pleurotus olearius, Biochimie 1974; 56: 451
  • Ravindranath S. D., Fridovich I. Isolation and characterization of a manganese-containing superoxide dismutase from yeast. J. Biol. Chem. 1975; 250: 6107
  • Salin M. L., Day E. D., Jr., Crapo J. D. Isolation and characterization of a manganese-containing superoxide dismutase from rat liver. Arch. Biochem. Biophys. 1978; 187: 223
  • Kirby T., Blum J., Khane I., Fridovich I. Distinguishing between Mn-containing and Fe-containing superoxide dismutases in crude extracts of cells. Arch. Biochem. Biophys. 1980; 201: 551
  • Kanematsu S., Asada K. Ferric and manganic superoxide dismutases in. Euglena gracilis, Arch. Biochem. Biophys. 1979; 195: 535
  • Bridges S. M., Salin M. L. Distribution of iron-containing superoxide dismutase in vascular plants. Plant Physiol. 1981; 68: 275
  • Gregory E. M., Dapper C. H. Chemical and physical differentiation of superoxide dismutases in anaerobes. J. Bacteriol. 1980; 144: 967
  • Steinman H. Superoxide dismutases: protein chemistry and structure-function relationships. Superoxide Dismutase, L. W. Oberley. CRC Press, Boca Raton, Fla. 1982; Vol. 1: 11
  • Gregory E. M., Dapper C. H. Characterization of iron superoxide dismutase from. Bacteroides fragilis, Fed. Proc. 1982; 41: 889
  • Meier B., Barra D., Bossa F., Calabrese L., Rotilio G. Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied. J. Biol. Chem. 1982; 257: 13977
  • Ichihara K., Kasoaka I., Kusunose E., Kusunose M. A manganese and iron containing superoxide dismutase from. Rhodococcus bronchialis, J. Gen. Appl. Microbiol. 1980; 26: 387
  • Hassan H. M., Fridovich I. Enzymatic defenses against the toxicity of oxygen and of streptonigrin inEscherichia coli K12. J. Bacteriol. 1977; 129: 1574
  • Dougherty H. W., Sadowski S. J., Baker E. E. A new iron-containing superoxide dismutase from. Escherichia coli, J. Biol. Chem. 1978; 253: 5220
  • Marklund S. L., Holme E., Hellner L. Superoxide dismutase in extracellular fluids. Clin. Chim. Acta 1982; 126: 41
  • Marklund S. L. Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 7634
  • Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. Superoxide dismutases from a blue-green alga. Plectonema boryanum, J. Biol. Chem. 1975; 250: 2801
  • Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 1975; 14: 5294
  • Kono Y., Fridovich I. Superoxide radical inhibits catalase. J. Biol. Chem. 1982; 257: 5751
  • Odajima T., Yamazaki I. Myeloperoxidase of the leukocyte of normal blood. III. The reaction of ferric myeloperoxidase with superoxide anion. Biochim. Biophys. Acta 1972; 284: 355
  • Rotilio G., Bray R. C., Fielden E. M. A pulse radiolysis study of superoxide dismutase. Biochim. Biophys. Acta 1972; 268: 605
  • Misra H. P., Fridovich I. Inhibition of superoxide dismutases by azide. Arch. Biochem. Biophys. 1978; 189: 317
  • Heikkila R. E., Cabbat F. S., Cohen G. In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate. J. Biol. Chem. 1976; 251: 2182
  • Pottathil R., Chandrabose K. A., Cuatrecasas P., Lang D. J. Establishment of the interferonmediated antiviral state: possible role of superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 3343
  • Goldberg B., Stern A. Superoxide anion as a mediator of drug-induced oxidative hemolysis. J. Biol. Chem. 1976; 251: 6468
  • McCord J. M., Keele B. B., Jr., Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 1024
  • Lindmark D. G., Muller M. Superoxide dismutase in the anaerobic flagellatesTritrichomonas foetus and Monocercomonas sp. J. Biol. Chem. 1974; 249: 4634
  • Hewitt J., Morris J. G. Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett. 1975; 50: 315
  • Carlsson J., Wrethen J., Beckman G. Superoxide dismutase in bacteroides species. J. Clin. Microbiol. 1977; 6: 280
  • Kirby T. W., Lancaster J. R., Jr., Fridovich I. Isolation and characterization of the iron-containing superoxide dismutase of. Methanobacterium bryantii, Arch. Biochem. Biophys. 1981; 210: 140
  • Uesugi I., Yajima M. Oxygen and strictly anaerobic intestinal bacteria. II. Oxygen metabolism in strictly anaerobic bacteria. Z. Allg. Microbiol. 1978; 18: 593
  • Tally F. P., Goldin B. R., Jacobus N. V., Gorbach S. L. Superoxide dismutase in anaerobic bacteria of clinical significance. Infect. Immunol. 1977; 16: 20
  • Lynch R. E., Cole B. C. Mycoplasma pneumoniae: a prokaryote which consumes oxygen and generates superoxide but which lacks superoxide dismutase. Biochem. Biophys. Res. Commun. 1980; 96: 98
  • Norrod P., Morse S. A. Absence of superoxide dismutase in some strains of. Neisseria gonorrhoeae, Biochem. Biophys. Res. Commun. 1979; 90: 1287
  • Archibald F. S., Fridovich I. Manganese and defenses against oxygen toxicity in. Lactobacillus plantarum, J. Bacteriol. 1981; 145: 442
  • Archibald F. S., Fridovich I. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 1981; 146: 928
  • Archibald F. S., Fridovich I. The scavenging of superoxide radical by manganous complexes. in vitro, Arch. Biochem. Biophys. 1982; 214: 452
  • Pasternack R. F., Halliwell B. Superoxide dismutase activities of an iron porphyrin and other iron complexes. J. Am. Chem. Soc. 1979; 101: 1026
  • Leuthauser S. W. C., Oberley L. W., Oberley T. D., Sorenson J. R. J., Ramakrishna K. Antitumor effect of a copper coordination compound with superoxide dismutase-like activity. J. Natl. Cancer Inst. 1981; 66: 1077
  • Kimura E., Sakonaka A., Nakamoto M. Superoxide dismutase activity of macrocyclic polyamine complexes. Biochim. Biophys. Acta 1981; 678: 172
  • Halliwell B. The superoxide dismutase activity of iron complexes. FEBS Lett. 1975; 56: 34
  • Younes M., Weser U. Superoxide dismutase activity of copper-penicillamine: possible involvement of Cu(I) stabilized sulphur radical. Biochem. Biophys. Res. Commun. 1977; 78: 1247
  • Robertson P., Jr., Fridovich I. Does copper-D-penicillamine catalyze the dismutation of O2-. Arch. Biochem. Biophys. 1980; 203: 830
  • DiGuiseppi J., Fridovich I. Putative superoxide dismutase activity of iron-EDTA: a reexamination. Arch. Biochem. Biophys. 1980; 203: 145
  • Butler J., Halliwell B. Reaction of iron-EDTA chelates with the superoxide radical. Arch. Biochem. Biophys. 1982; 218: 174
  • Wardman P. Specificity of superoxide dismutase in catalyzing redox reactions: a pulse radiolysis study. Stud. Phys. Theor. Chem. 1979; 6: 189
  • O'Neill P., Fielden E. M. Pulse radiolysis investigation of the interaction of bovine superoxide dismutase with organic free radicals. Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase, J. V. Bannister, H. A. O. Hill. Elsevier/North-Holland, New York 1980; 357
  • Gregory E. M., Fridovich I. Induction of superoxide dismutase by molecular oxygen. J. Bacteriol. 1973; 114: 543
  • Welch D. F., Sword C. P., Brehm S., Dusanic D. Relationship between superoxide dismutase and pathogenic mechanisms of. Listeria monocytogenes, Infect. Immunol. 1979; 23: 863
  • Ghosh S., Chatterjee G. C. Superoxide dismutase activity inVibrio eltor in relation to oxygen toxicity and bactericidal action of nitrofurantoin. J. Gen. Appl. Microbiol. 1979; 25: 367
  • Privalle C. T., Gregory E. M. Superoxide dismutase and O2 lethality in. Bacteroides fragilis, J. Bacteriol. 1979; 138: 139
  • Stowers M. D., Elkan G. H. An inducible iron-containing superoxide dismutase in. Rhizobium japonicum, Can. J. Microbiol. 1981; 27: 1202
  • Moody C. S., Hassan H. M. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 2855
  • Samah O. A., Wimpenny J. W. T. Some effects of oxygen on the physiology ofSelenomonas ruminantium WPL 151/1 grown in continuous culture. J. Gen. Microbiol. 1982; 128: 355
  • DiGuiseppi J., Fridovich I. Oxygen toxicity inStreptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. J. Biol. Chem. 1982; 257: 4046
  • Hassan H. M., Fridovich I. Physiological function of superoxide dismutase in glucose-limited chemostat cultures of. Escherichia coli, J. Bacteriol. 1977; 130: 805
  • Hassan H. M., Fridovich I. Regulation of superoxide dismutase synthesis inEscherichia coli: glucose effect. J. Bacteriol. 1977; 132: 505
  • Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch. Biochem. Biophys. 1979; 196: 385
  • Hassan H. M., Fridovich I. Superoxide radical and the oxygen enhancement of the toxicity of paraquat in. Escherichia coli, J. Biol. Chem. 1978; 253: 8143
  • Hassan H. M., Fridovich I. Regulation of the synthesis of superoxide dismutase inEscherichia coli. Induction by methyl viologen. J. Biol. Chem. 1977; 252: 7667
  • Blum J., Fridovich I. Superoxide, hydrogen peroxide and oxygen toxicity in two free-living nematode species. Arch. Biochem. Biophys, in press
  • Housset B., Junod A. F. Enzyme response of cultured endothelial cells to hyperoxia. Bull. Eur. Physiopathol. Resp. 1981; 17: 107, Suppl.
  • Crapo J. D., Tierney D. F. Superoxide dismutase and pulmonary oxygen toxicity. Am. J. Physiol. 1974; 226: 1401
  • Stevens J. B., Autor A. P. Induction of superoxide dismutase by oxygen in neonatal rat lung. J. Biol. Chem. 1977; 252: 3509
  • Morris S. M., Albright J. T. Superoxide dismutase, catalase, and glutathione peroxidase in the swim bladder of the physoclistous fishOpsanus tau L. Cell Tissue Res. 1981; 220: 739
  • Dykens J. A., Shick J. M. Oxygen production by endosymbiotic algae controls superoxide dismutase activity in their animal host. Nature (London) 1982; 297: 579
  • Asada K., Kanematsu S., Takahashi M., Kono Y. Superoxide dismutases in photosynthetic organisms. Adv. Exp. Med. Biol. 1976; 74: 551
  • Fuller E. C., Crist R. H. The rate of oxidation of sulfite ions by oxygen. J. Am. Chem. Soc. 1941; 63: 1644
  • Hayon E., Treinin A., Wilf J. Electronic spectra, photochemistry and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2-, SO3-, SO4- and SO5- radicals. J. Am. Chem. Soc. 1972; 94: 47
  • Forman H. J., Fisher A. B. Antioxidant defenses. Oxygen and Living Processes, D. L. Gilbert. Springer-Verlag, New York 1981; 235
  • Chen L. H., Thacker R. R., Chow C. K. Tissue anti-oxidant status and related enzymes in rats with long-term vitamin E deficiency. Nutr. Rep. Int. 1980; 22: 873
  • Shatzman A. R., Kosman D. J. The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus. Dactylium dendroides, Biochim. Biophys. Acta 1978; 544: 163
  • De Rosa G., Keen C. L., Leach R. M., Hurley L. S. Regulation of superoxide dismutase activity by dietary manganese. J. Nutr. 1980; 110: 795
  • Del Rio L. A., Sevilla F., Gomez M., Yance J., Lopez J. Superoxide dismutase: an enzyme system for the study of micronutrient interaction in plants. Planta 1978; 140: 221
  • Gregory E. M., Fridovich I. Oxygen toxicity and the superoxide dismutase. J. Bacteriol. 1973; 114: 1193
  • Friedberg D., Fine M., Oren A. Effect of oxygen on the cyanobacterium. Oscillatoria limnetica, Arch. Microbiol. 1979; 123: 311
  • Hassan H. M., Fridovich I. Mechanism of the antibiotic action of pyocyanine. J. Bacteriol. 1980; 141: 156
  • Lavelle F., Michelson A. M., Dimitrijevic L. Biological protection by superoxide dismutase. Biochem. Biophys. Res. Commun. 1973; 55: 350
  • Babior B. M., Curnutte J. T., Kipnes R. S. Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J. Lab. Clin. Med. 1975; 85: 235
  • Kellogg E. W., Yost M. G., Barthakur N., Kreuger A. P. Superoxide involvement in the bactericidal effects of negative air ionisers on. Staphylococcus albus, Nature (London) 1979; 281: 400
  • Cope P. A., Dawson M. The effects of interactions between sodium ascorbate and superoxide radicals generated by hypoxanthine and xanthine oxidase on 3T3 cells. Cell Biol. Int. Rep. 1980; 4: 748
  • Michelson A. M., Buckingham M. E. Effects of superoxide radicals on myoblast growth and differentiation. Biochem. Biophys. Res. Commun. 1974; 58: 1079
  • Petkau A., Kelly K., Chelack W. S., Pleskach S. D., Barefoot C., Meeker B. E. Radioprotection of bone marrow stem cells by superoxide dismutase. Biochem. Biophys. Res. Commun. 1975; 67: 1167
  • Van Hemmen J. J., Meuling W. J. A. Inactivation of biologically active DNA by γ-ray-induced superoxide radicals and their dismutation products singlet molecular oxygen and hydrogen peroxide. Biochim. Biophys. Acta 1975; 402: 113
  • Petkau A., Chelack W. S. Radioprotective effect of superoxide dismutase on model phospholipid membranes. Biochim. Biophys. Acta 1976; 433: 445
  • Nordenson I., Beckman G., Beckman L. The effect of superoxide dismutase and catalase on radiation-induced chromosome breaks. Hereditas 1976; 82: 125
  • Petkau A., Chelack W. S., Pleskach S. D. Protection of postirradiated mice by superoxide dismutase. Int. J. Radiat. Biol. 1976; 29: 297
  • Oberley L. W., Lindgren L. A., Baker S. A., Stevens R. H. Superoxide ion as the cause of the oxygen effect. Radiat. Res. 1976; 68: 320
  • McLennan G., Oberley L. W., Autor A. P. The role of oxygen-derived free radicals in radiation-induced damage and death of nondividing eukaryotic cells. Radiat. Res. 1980; 84: 122
  • Emerit I., Michelson A. M. Chromosome instability in human and murine autoimmune disease: anticlastogenic effect of superoxide dismutase. Acta Physiol. Scand. 1980; 492: 59, Suppl.
  • Emerit I., Levy A., Michelson A. M. Effect of superoxide dismutase on the chromosomal instability of New Zealand black mice. Cytogenet. Cell Genet. 1981; 30: 65
  • Nagasawa H., Little J. B. Factors influencing the induction of sister chromatid exchanges in mammalian cells by 12-o-tetradecanoyl-phorbol-13-acetate. Carcinogenesis 1981; 2: 601
  • Birnboim H. C. DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate. Science 1982; 215: 1247
  • Brawn K., Fridovich I. DNA strand scission by enzymically generated oxygen radicals. Arch. Biochem. Biophys. 1981; 206: 414
  • Lesko S. A., Drocourt J. L., Yang S. U. Deoxyribonucleic acid-protein and deoxyribonucleic acid interstrand cross-links induced in isolated chromatin by hydrogen peroxide and ferrous ethylenedi-aminetetraacetate chelates. Biochemistry 1982; 21: 5010
  • Weitzman S. A., Stossel T. P. Mutation caused by human phagocytes. Science 1981; 212: 546
  • Yamaguchi T. Mutagenicity of low molecular substances in various superoxide generating systems. Agric. Biol. Chem. 1981; 45: 327
  • Emerit I., Cerutti P. A. Tumor promotor phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action. Nature (London) 1981; 293: 144
  • Docampo R., Moreno S. N. J., Stoppani A. O. M. Nitrofuran enhancement of microsomal electron transport, superoxide anion production and lipid peroxidation. Arch. Biochem. Biophys. 1981; 207: 316
  • Greenstock C. L., Miller R. W. The oxidation of tiron by superoxide anion: kinetics of the reaction in aqueous solution and in chloroplasts. Biochim. Biophys. Acta 1975; 396: 11
  • Lynch R. E., Lee G. R., Cartwright G. E. Inhibition by superoxide dismutase of methemoglobin formation from oxyhemoglobin. J. Biol. Chem. 1976; 251: 1015
  • Elstner E. F., Heupel A. Inhibition of nitrite formation from hydroxylammonium-chloride: a simple assay for superoxide dismutase. Anal. Biochem. 1976; 70: 616
  • Misra H. P., Fridovich I. The oxidation of phenylhydrazine: superoxide and mechanism. Biochemistry 1976; 15: 681
  • Nishikimi M., Yamada H., Yagi K. Oxidation by superoxide of tocopherols dispersed in aqueous media with deoxycholate. Biochim. Biophys. Acta 1980; 627: 101
  • Hassan H. M., Dougherty H., Fridovich I. Inhibitors of superoxide dismutases: a cautionary tale. Arch. Biochem. Biophys. 1980; 199: 349
  • Li J. R., Kim D. N. Effects of superoxide dismutase on cholesterol 7α-hydroxylation in swine. Steroids 1980; 35: 459
  • Robertson P., Jr., Fridovich I. A reaction of the superoxide radical with tetrapyrroles. Arch. Biochem. Biophys. 1982; 213: 353
  • Thomas M. J., Mehl K. S., Pryor W. A. The role of superoxide in xanthine oxidase-induced autoxidation of linoleic acid. J. Biol. Chem. 1982; 257: 8343
  • Frimer A. A., Rosenthal I., Hoz S. The reaction of superoxide anion radical with electron poor olefins. Tet. Lett. 1977; 52: 4631
  • Asami S., Akazawa T. Enzymic formation of glycolate inChromatium. Role of superoxide radical in a transketolase-type mechanism. Biochemistry 1977; 16: 2202
  • Schneider K., Schlegel H. G. Production of superoxide radicals by soluble hydrogenase fromAlcaligenes eutrophus H16. Biochem. J. 1981; 193: 99
  • Bielski B. H. J., Chan P. C. Kinetic study by pulse radiolysis of the lactate dehydrogenase-catalyzed chain oxidation of nicotinamide adenine dinucleotide by HO2 and O2- radicals. J. Biol. Chem. 1975; 250: 318
  • Ross F., Ross A. B. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions, NSRDS-NBS 59. U.S. Government Printing Office, Washington, D.C. 1977
  • Gebicki J., Bielski B. H. J. Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid. J. Am. Chem. Soc. 1981; 103: 7020
  • Trauble H. Membrane electrostatics. Structure of Biological Membranes, S. Abrahamsson, I. Pascher. Plenum Press, New York 1976; 509
  • Talcott R. E., Shu H., Wei E. T. Lipid peroxidation and paraquat toxicity. Fed. Proc. 1977; 36: 998
  • Beauchamp C., Fridovich I. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J. Biol. Chem. 1970; 245: 4641
  • Haber F., Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London Ser. A 1934; 147: 332
  • Gibian M. J., Ungermann T. The unlikelihood of an electron-transfer (Haber-Weiss) reaction between superoxide and peroxides. J. Am. Chem. Soc. 1979; 101: 1291
  • Rigo A., Stevanato R., Rotilio G., Finazzi-Agro A. An attempt to evaluate the rate of the Haber-Weiss reaction by using OH radical scavengers. FEBS Lett. 1977; 80: 130
  • McClune G. J., Fee J. A. Stopped flow spectrophotometric observation of superoxide dismutation in aqueous solution. FEBS Lett. 1976; 67: 294
  • Halliwell B. An attempt to demonstrate a reaction between superoxide and hydrogen peroxide. FEBS Lett. 1976; 72: 8
  • Weinstein J., Bielski B. H. J. Kinetics of the interaction of HO2 and O2- radicals with hydrogen peroxide. The Haber-Weiss reaction. J. Am. Chem. Soc. 1979; 101: 58
  • Masuda T., Nakano S., Kondo M. Reactivities of enzyme toward hydroxyl radicals. J. Radiat. Res. 1974; 15: 171
  • Nohl H., Breuninger V., Hegner D. Influence of mitochondrial radical formation on energy-linked respiration. Eur. J. Biochem. 1978; 90: 385
  • Schuh J., Fairclough G. F., Jr., Haschemeyer R. H. Oxygen-mediated heterogeneity of apo-low-density lipoprotein. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 3173
  • Tozum S. R. D., Gallon J. R. The effects of methyl viologen onGloeocapsa sp. LB795 and their relationship to the inhibition of acetylene reduction (nitrogen fixation) by oxygen. J. Gen. Microbiol. 1979; 111: 313
  • Meneghini R., Hoffmann M. E. The damaging action of hydrogen peroxide on DNA of human fibroblasts is mediated by a non-dialyzable compound. Biochim. Biophys. Acta 1980; 608: 167
  • Fischer L. J., Hamburger S. A. Inhibition of alloxan action in isolated pancreatic islets by superoxide dismutase, catalase, and a metal chelator. Diabetes 1980; 29: 213
  • De Vries J., Verboom C. N. Effects of scavengers of superoxide radicals, hydrogen peroxide, singlet oxygen and hydroxyl radicals on malondialdehyde generation from arachidonic acid by bovine seminal vesicle microsomes. Experientia 1980; 36: 1339
  • Videla L. A., Fernandez V., Ugarte G., Valenzuela A. Effect of acute ethanol intoxication on the content of reduced glutathione of the liver in relation to its lipoperoxidative capacity in the rat. FEBS Lett. 1980; 111: 6
  • Valenzuela A., Fernandez N., Fernandez V., Ugarte G., Videla L. A. Effect of acute ethanol ingestion on lipoperoxidation and on the activity of the enzymes related to peroxide metabolism in rat liver. FEBS Lett. 1980; 111: 11
  • Perez H. D., Weksler B. B., Goldstein I. M. Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system. Inflammation 1980; 4: 313
  • Rosen H., Klebanoff S. J. Role of iron and ethylenediaminetetraacetic acid in the bactericidal activity of a superoxide anion-generating system. Arch. Biochem. Biophys. 1981; 208: 512
  • Heikkila R. E., Cabbat F. S. Inhibition of iron-stimulated catecholamine degradation by the iron-chelators DETAPAC and Desferal. Potentially useful laboratory agents. Biochem. Pharm. 1981; 30: 2945
  • Bradley M. O., Erickson L. C. Comparison of the effects of hydrogen peroxide and X-ray irradiation on toxicity, mutation, and DNA damage/repair in mammalian cells (V-79). Biochim. Biophys. Acta 1981; 654: 135
  • Fujita S., Steenken S. Pattern of OH radical addition to uracil and methyl- and carboxyl-substituted uracils. Electron transfer of OH adducts with N,N,N′,N′-tetramethyl-p-phenylenediamine and tetranitromethane. J. Am. Chem. Soc. 1981; 103: 2540
  • Taniguchi M., Aikawa M., Sakagami T. A simple and effective method for homolysis with a hypoxanthine-xanthine oxidase system and alteration of erythrocyte phospholipid composition during the hemolysis. J. Biochem. 1981; 89: 795
  • Fridovich S. E., Porter N. A. Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide. J. Biol. Chem. 1981; 256: 260
  • Repine J. E., Fox R. B., Berger E. M. Hydrogen peroxide killsStaphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J. Biol. Chem. 1981; 256: 7094
  • Wong S. F., Halliwell B., Richmond R., Skowroneck W. R. The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J. Inorg. Biochem. 1981; 14: 127
  • Trelstad R. L., Lawley K. R., Holmes L. B. Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives. Nature (London) 1981; 289: 310
  • Repine J. R., Pfenninger O. W., Talmage D., Berger E. M., Pettijohn D. E. Dimethyl sulfoxide prevents DNA nicking mediated by ionizing radiation or iron/hydrogen peroxide-generated hydroxyl radical. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 1001
  • Hertzberg R. P., Dervan P. B. Cleavage of double helical DNA by (methidiumpropyl-EDTA) iron (II). J. Am. Chem. Soc. 1982; 104: 312
  • Gutteridge J. M. C. Free radical damage to lipids, amino acids, carbohydrates and nucleic acids determined by thiobarbituric acid reactivity. Int. J. Biochem. 1982; 14: 649
  • Weiss S. J. Neutrophil-mediated methemoglobin formation in the etythrocyte. The role of superoxide and hydrogen peroxide. J. Biol. Chem. 1982; 257: 2947
  • Forney L. J., Reddy C. A., Tien M., Aust S. D. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus. Phanerochaete chrysosporium, J. Biol. Chem. 1982; 257: 11455
  • McCord J. M., Day E. D., Jr. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978; 86: 139
  • Fenton H. J. H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. 1894; 65: 899
  • DiGuiseppi J., Fridovich I. Ethylene from 2-keto-4-thiomethyl butyric acid: the Haber-Weiss reaction. Arch. Biochem. Biophys. 1980; 205: 323
  • Gutteridge J. M. C., Richmond R., Halliwell B. Inhibition of the iron-catalyzed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem. J. 1979; 184: 469
  • Ambruso D. R., Johnston R. B., Jr. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J. Clin. Invest. 1981; 67: 352
  • Bannister J. V., Bannister W. H., Hill H. A. O., Thornalley P. J. Enhanced production of hydroxyl radicals by the xanthine oxidase reaction in the presence of lactoferrin. Biochim. Biophys. Acta 1982; 715: 116
  • Kono Y., Sugiura Y. Electron spin resonance studies on the oxidation of rifamycin SV catalyzed by metal ions. J. Biochem. 1982; 91: 397
  • Gutteridge J. M. C. Identification of malondialdehyde as the TBA-reactant formed by bleomycin-iron free radical damage to DNA. FEBS Lett. 1979; 105: 278
  • Sugiura Y., Ogawa S., Morishima I. Unusual interaction of iron-bleomycin with cyanide. J. Am. Chem. Soc. 1980; 102: 7944
  • Kuramochi H., Takahashi K., Takita T., Umezawa H. An active intermediate formed in the reaction of bleomycin-Fe(II) complex with oxygen. J. Antibiot. 1981; 34: 576
  • Gutteridge J. M. C., Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Biochem. J. 1981; 199: 263
  • Gutteridge J. M. C., Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Biochem. J. 1982; 206: 605
  • Milas N. A., Kurz P. F., Anslow W. P., Jr. The photochemical addition of hydrogen peroxide to the double bonds. J. Am. Chem. Soc. 1937; 59: 543
  • Cahill A. E., Taube H. The use of heavy oxygen in the study of reactions of hydrogen peoxide. J. Am. Chem. Soc. 1952; 74: 2312
  • Gutteridge J. M. C., Wilkins S. Copper-dependent hydroxyl radical damage to ascorbic acid. Formation of a thiobabituric acid-reaction product. FEBS Lett. 1982; 137: 327
  • Nohl H., Jordan W., Hegner D. Mitochondrial formation of OH radicals by an ubisemiquinone-dependent reaction; an alternative pathway to the iron-catalysed Haber-Weiss cycle. Hoppe-Seyler's Z. Physiol. Chem. 1982; 363: 599
  • Winterbourn C. C. Evidence for the production of hydroxyl radicals from the adriamycin semiquinone and H2O2. FEBS Lett. 1981; 136: 89
  • Youngman R. J., Elstner E. F. Oxygen species in paraquat toxicity: the crypto-OH radical. FEBS Lett. 1981; 129: 265
  • Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds. FEBS Lett. 1982; 138: 33
  • Nohl H., Jordan W., Hegner D. Identification of free hydroxyl radicals in respiring rat heart mitochondria by spin trapping with the nitrone DMPO. FEBS Lett. 1981; 123: 241
  • Elstner E. F., Konze J. R. Light-dependent ethylene production by isolated chloroplasts. FEBS Lett. 1974; 45: 18
  • Konze J. R., Elstner E. F. Pyridoxal phosphate-dependent ethylene production from methionine by isolated chloroplasts. FEBS Lett. 1976; 66: 8
  • Cohen G., Cederbaum A. I. Chemical evidence for production of hydroxyl radicals during microsomal electron transfer. Science 1979; 204: 66
  • Cohen G., Cederbaum A. I. Microsomal metabolism of hydroxyl radical scavenging agents relationship to the microsomal oxidation of alcohols. Arch. Biochem. Biophys. 1980; 199: 438
  • Cederbaum A. I., Cohen G. Inhibition of the microsomal oxidation of ethanol and I-butanol by the free-radical, spin-trapping agent 5,5-dimethyl-1-pyrroline-1-oxide. Arch. Biochem. Biophys. 1980; 204: 397
  • Cederbaum A. I., Dicker E., Cohen G. Role of hydroxyl radicals in the iron-ethylenediamine-tetraacetic acid mediated stimulation of microsomal oxidation of ethanol. Biochemistry 1980; 19: 3698
  • Ingelman-Sundberg M., Ekstrom G. Aniline is hydroxylated by the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism. Biochem. Biophys. Res. Commun. 1982; 106: 625
  • Weiss S. J., King G. W., LoBuglio A. F. Evidence for hydroxyl radical generation by human monocytes. J. Clin. Invest. 1977; 60: 370
  • Tauber A. I., Babior B. M. Evidence for hydroxyl radical production by human neutrophils. J. Clin. Invest. 1977; 60: 374
  • Weiss S. J., Rustagi P. K., LoBuglio A. F. Human granulocyte generation of hydroxyl radical. J. Exp. Med. 1978; 147: 316
  • Klebanoff S. J., Rosen H. Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase. J. Exp. Med. 1978; 148: 490
  • Repine J. E., Eaton J. W., Anders M. W., Hoidal J. R., Fox R. B. Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes in vitro. Detection with the anti-inflammatory agent, dimethyl sulfoxide. J. Clin. Invest. 1979; 64: 1642
  • Sagone A. L., Jr., Decker M. A., Wells R. M., Democko C. A new method for the detection of hydroxyl radical production by phagocytic cells. Biochim. Biophys. Acta 1980; 628: 90
  • Heikkila R. E., Winston B., Cohen G. Alloxan-induced diabetes-evidence for hydroxyl radical as a cytotoxic intermediate. Biochem. Pharm. 1976; 25: 1085
  • Grankvist K., Marklund S., Taljedal I.-B. Superoxide dismutase is a prophylactic against alloxan diabetes. Nature (London) 1981; 294: 158
  • Grankvist K., Marklund S., Sehlin J., Taljedal I.-B. Superoxide dismutase, catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem. J. 1979; 182: 17
  • Fischer L. J., Hamburger S. A. Inhibition of alloxan action in isolated pancreatic islets by superoxide dismutase, catalase and a metal chelator. Diabetes 1980; 29: 213
  • Ishibashi F., Howard B. V. Alloxan and H2O2, action on glucose metabolism in cultured fibroblasts. J. Biol. Chem. 1981; 256: 12134
  • Dillard C. J., Kunert K. J., Tappel A. L. Effects of vitamin E, ascorbic acid and mannitol on alloxan-induced lipid peroxidation in rats. Arch. Biochem. Biophys. 1982; 216: 204
  • Klein S. M., Cohen G., Cederbaum A. I. Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical generating systems. Biochemistry 1981; 20: 6006
  • Menander-Hube K. B., Huber W. Orgotein, the drug version of bovine Cu-Zn superoxide dismutase. II. A summary account of clinical trials in man and animals. Superoxide and Superoxide Dismutases, A. M. Michelson, J. M. McCord, I. Fridovich. Academic Press, London 1977; 537
  • McCord J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 1974; 185: 529
  • Salin M. L., McCord J. M. Free radicals and inflammation. Protection of phagocytosing leukocytes by superoxide dismutase. J. Clin. Invest. 1975; 56: 1319
  • Abuchowski A., McCoy J. R., Palczuk N. C., Van Es T., Davis F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 1977; 252: 3582
  • Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An invitro model of immune vascular damage. J. Clin. Invest. 1978; 61: 1161
  • McCord J. M., Wong K. Phagocyte-produced free radicals: roles in cytotoxicity and inflammation. Ciba Found. Symp. 1979; 65: 343
  • Blake D. R., Hall N. D., Bacon P. A., Dieppe P. A., Halliwell B., Gutteridge J. M. C. The importance of iron in rheumatoid disease. Lancet 1981; 21: 1142
  • McCormick J. R., Harkin M. M., Johnson K. J., Ward P. A. Suppression by superoxide dismutase of immune-complex-induced pulmonary alveolitis and dermal inflammation. Am. J. Pathol. 1981; 102: 55
  • Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1159
  • Goetzl E. J., Hill H. R., Gorman R. R. Unique aspects of the modulation of human neutrophil function by 12-L-hydroperoxy-5,8,10,14-eicosatetraenoic acid. Prostaglandins 1980; 19: 71
  • Fridovich I. Hypoxia and oxygen toxicity. Cerebral Hypoxia and Its Consequences, Advances in Neurology, S. Fahn, J. N. Davis, L. P. Rowland. Raven Press, New York 1979; Vol. 26: 255
  • Bailie M. B., Jolly S. R., Lucchesi B. R. Reduction of myocardial ischemic injury by superoxide dismutase plus catalase. Fed. Proc. 1982; 41: 1736
  • Granger D. N., Rutili G., McCord J. M. Superoxide radicals in feline intestinal ischemia. Gastroenterology 1981; 81: 22
  • Parks D. A., Bulkley G. B., Granger D. N., Hamilton S. R., McCord J. M. Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 1982; 82: 9
  • Parks D. A., Granger D. N., Bulkley G. B. Superoxide radicals and mucosal lesions of the ischemic small intestine. Fed. Proc 1982; 41: 1742
  • Lin P.-F., Slate D. L., Lawyer F. C., Ruddle F. H. Assignment of the murine interferon sensitivity and cytoplasmic superoxide dismutase genes to chromosome 16. Science 1980; 209: 285
  • Peskin A. V., Koen Y. M., Zbarsky I. B. Superoxide dismutase and glutathione peroxidase activities in tumors. FEBS Lett. 1977; 78: 41
  • Oberley L. W., Bize I. B., Sahu S. K., Leuthauser S. W. H. C., Gruber H. E. Superoxide dismutase activity of normal murine liver, regenerating liver, and H6 hepatoma. J. Natl. Cancer Inst. 1978; 61: 375
  • Bartkowiak A., Bartkowiak J. Superoxide dismutase and catalase activities in normal and cancerous tissues. Comp. Biochem. Physiol. 1981; 70B: 819
  • Oberley L. W., Buettner G. R. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979; 39: 1141
  • Reiss U., Gershon D. Rat-liver superoxide dismutase. Purification and age-related modifications. Eur. J. Biochem. 1976; 63: 617
  • Massie H. R., Aiello V. R., Iodice A. A. Changes with age in copper and superoxide dismutase levels in brains of C57BL/6J mice. Mech. Ageing Dev. 1979; 10: 93
  • Kellogg E. W., III, Fridovich I. Superoxide dismutase in the rat and mouse as a function of age and longevity. J. Gerontol. 1976; 31: 405
  • Tolmasoff J. M., Ono T., Cutler R. G. Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 2777
  • McArthur M. C., Sohal R. S. Relationship between metabolic rate, aging, lipid peroxidation, and fluorescent age pigment in milkweed bugOncopeltus fasciatus (Hemiptera). J. Gerontol. 1982; 37: 268
  • Ragland S., Sohal R. S. Mating behavior, physical activity and life span in the adult housefly. Musca domestica, Exp. Gerontol. 1973; 8: 135
  • Sohal R. S. Metabolic rate, aging, and lipofuscin accumulation. Age Pigments, R. S. Sohal. Elsevier/North-Holland, Amsterdam 1981; 303
  • Sohal R. S., Buchan P. B. Relationship between fluorescent age pigment, physiological age and physical activity in the housefly. Musca domestica, Mech. Ageing Dev. 1981; 15: 243
  • Packer L., Fuchr K. Low oxygen concentration extends the life-span of cultured human diploid cells. Nature (London) 1977; 267: 423
  • Pryor W. A. Free radicals in biology. The involvement of radical reactions in aging and carcinogenesis. Medicinal Chemistry, W. A. Pryor. Elsevier, New York 1977; Vol. 5: 331
  • Miller D. S., Payne P. R. Longevity and protein intake. Exp. Gerontol. 1968; 3: 231
  • Barrows C. H., Jr., Kokkonen G. C. Diet and life extension in animal model systems. Age 1978; 1: 131
  • Harmon D. The aging process. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 7124

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.