40
Views
61
CrossRef citations to date
0
Altmetric
Research Article

The Role of Mitotic Recombination in Carcinogenesis

Pages 323-353 | Published online: 25 Sep 2008

References

  • Kamp P., Chow L. T., Broker T. R., Kwoh D., Zipser D., Kahmann R. Site-specific recombination in phage Mu. Cold Spring Harbor Symp. Quant. Biol. 1979; 49: 301
  • Iida S., Meyer J., Kennedy K. E., Arber W. A site-specifiC., conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982; 1: 1445
  • Iida S., Huber H., Hiestand N. R., Meyer J., Bickle T. A., Arber W. The bacteriophage P1 site-specific recombinase cin: recombination events and DNA recognition sequences. Cold Spring Harbor Symp. Quant. Biol. 1984; 49: 769
  • Iida S., Hiestand N. R. Localized conversion at the crossover sequences in the site-specific DNA inversion system of bacteriophage P1. Cell 1986; 45: 71
  • Iida S., Hiestand N. R. Role of the central dinucleotide at the crossover sites for the selection of quasi sites in DNA inversion mediated by the site-specific Cin recombinase of phage P1. Mol. Gen. Genet. 1987; 208: 464
  • Craig N. L. Site-specific inversion: enhancers, recombination proteins, and mechanism. Cell 1985; 41: 649
  • Johnson R. C., Simon M. I. Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell 1985; 41: 781
  • Arber W. A beginner's guide to lambda biology. Lamda II, R. W. Hendrix. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1983; 381
  • Iida S., Meyer J., Arber W. Prokaryotic IS elements. Mobile Genetic Elements, J. A. Shapiro. Academic Press, New York 1983; 159
  • Sengstag C., Shepherd J. C., Arber W. The sequence of the bacteriophage PI genome region serving as hot target for IS2 insertion. EMBO J. 1983; 2: 1777
  • Grindley N. D., Lauth M. R., Wells R. G., Wityk R. J., Salvo J. J., Reed R. R. Transposon-mediated site-specific recombination: identification of three binding sites for resolvase at the res sites of gamma delta and Tn3. Cell 1982; 30: 19
  • Stark W. M., Boocock M. R., Sherratt D. J. Catalysis by site-specific recombinases. Trends Genet. 1992; 8: 432
  • Cox M. M. DNA inversion in the 2 μ plasmid of Saccharomyces cerevisiae. Mobile DNA, D. E. Berg, M. M. Howe. American Society for Microbiology, Washington, DC 1989; 661
  • Haber J. E. Mating-type gene switching in. Saccharomyces cerevisiae, Trends Genet. 1992; 8: 446
  • Strathern J. N., Spatola E., Mc Gill C., Hicks J. B. Structure and organization of transposable mating type cassettes in Saccharomyces yeasts. Proc. Natl. Acad. Sci. U.SA. 1980; 77: 2839
  • Borst P. Discontinuous transcription and antigenic variation in trypanosomes. Annu. Rev. Biochem. 1986; 55: 701
  • Boothroyd J. C. Antigenic variation in African trypanosomes. Annu. Rev. Microbiol. 1985; 39: 475
  • Van der Ploeg L. H. T., Gottesdiener K., Lee M. G. S. Antigenic variation in African trypanosomes. Trends Genet. 1992; 8: 452
  • Van der Ploeg L., Valerio D., De Lange T., Bernards A., Borst P., Grosveld F. G. An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Res. 1982; 10: 5905
  • De Lange T., Borst P. Genomic environment of the expression-linked extra copies of genes for surface antigens of Trypanosoma brucei resembles the end of a chromosome. Nature (London) 1982; 299: 451
  • Cully D. F., Ip H. S., Cross G. A. Coordinate transcription of variant surface glycoprotein genes and an expression site associated gene family in. Trypanosoma brucei, Cell 1985; 42: 173
  • Bernards A., Van der Ploeg L. H. T., Frasch A. C. C., Borst P., Boothroyd J. C., Coleman S., Cross G. A. M. Activation of trypanosome surface glycoprotein genes involves a duplication-transposition leading to altered 3′ end. Cell 1981; 27: 497
  • Borst P., Greaves D. R. Programmed gene rearrangements altering gene expression. Science 1987; 235: 658
  • Pays E. Pseudogenes, chimaeric genes and the timing of antigen variation in African trypanosomes. Trends Genet. 1989; 5: 389
  • Tonegawa S. Somatic generation of antibody diversity. Nature (London) 1983; 302: 575
  • Gellert M. V(D)J recombination gets a break. Trends Genet. 1992; 8: 408
  • Schatz D. G., Baltimore D. Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 1988; 53: 107
  • Oettinger M. A., Schatz D. G., Gorka C., Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 249: 1517
  • Oettinger M. A. Activation of V(D)J recombination byRAG1 and. RAG2, Trends Genet. 1992; 8: 413
  • Roth D. B., Menetski J. P., Nakajima P. B., Bosma M. J., Gellert M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 1992; 70: 983
  • Lieber M. R. The mechanism of V(D)J recombination: a balance of diversity, specificity, and stability. Cell 1992; 70: 873
  • Taylor A. F. RecBCD enzyme ofEscherichia coli. Genetic Recombination, R. Kucherlapati, G. R. Smith. American Society for Microbiology, Washington, DC 1988; 231
  • Lovett S. T., Kolodner R. D. Identification and purification of a single-stranded-DNA-specific exo-nuclease encoded by the recJ gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 1989; 86: 2627
  • Takahagi M., Iwasaki H., Nakata A., Shinagawa H. Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease. J. Bacteriol. 1991; 173: 5747
  • Connolly B., Parsons C. A., Benson F. E., Dunderdale H. J., Sharpies G. J., Lloyd R. G., West S. C. Resolution of Holliday junctions in vitro requires theEscherichia coli ruvC gene product. Proc. Natl. Acad. Sci. USA 1991; 88: 6063
  • Griffin T. J., Kolodner R. D. Purification and preliminary characterization of theEscherichia coli K-12 recF protein. J. Bacteriol. 1990; 172: 6291
  • Kowalczykowski S. C. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 1991; 20: 539
  • Lloyd R. G., Sharpies G. J. Dissociation of synthetic Holliday junctions byE. coli recG protein. EMBO J. 1993; 12: 17
  • Umezu K., Nakayama K., Nakayama H. Escherichia coli RecQ protein is a DNA helicase. Proc. Natl. Acad. Sci. USA 1990; 87: 5363
  • Clark A. J. Rec genes and homologous recombination proteins in. Escherichia coli, Biochimie 1991; 73: 523
  • Tsaneva I. R., Müller B., West S. C. ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins of E. coli. Cell. 1992; 69: 1171
  • Walker G. C. Inducible DNA repair systems. Annu. Rev. Biochem. 1985; 54: 425
  • Waldman A. S., Liskay R. M. Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells. Proc. Natl. Acad. Sci. USA 1987; 84: 5340
  • Szybalski W., Szybalska E. H., Ragni G. Genetic studies with human cell lines. Natl. Cancer Inst. Monogr. 1962; 7: 75
  • Wong E. A., Capecchi M. R. Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol. Cell. Biol. 1987; 7: 2294
  • Liskay R. M., Letsou A., Stachelek J. L. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 1987; 115: 161
  • Ayares D., Chekuri L., Song K. Y., Kucherlapati R. Sequence homology requirements for intermolecular recombination in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 5199
  • Waldman A. S., Liskay R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 1988; 8: 5350
  • Rubnitz J., Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol. Cell. Biol. 1984; 4: 2253
  • Bollag R. J., Waldman A. S., Liskay R. M. Homologous recombination in mammalian cells. Annu. Rev. Genet. 1989; 23: 199
  • Marshall C. J. Tumor suppressor genes. Cell 1991; 64: 313
  • Nowell P. C., Hungerford D. A. A minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497
  • Rowley J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature (London) 1973; 243: 290
  • Kurzrock R., Gutterman J. U., Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 1988; 319: 990
  • Diekmann D., Brill S., Garrett M. D., Totty N., Hsuan J., Monfries C., Hall C., Lim L., Hall A. Bcr encodes a GTPase-activating protein for p21raC. Nature (London) 1991; 351: 400
  • Konopka J. B., Watanabe S. M., Witte O. N. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984; 37: 1035
  • Heisterkamp N., Jenster G., Ten Hoeve J., Zovich D., Pattengale P. K., Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature (London) 1990; 344: 251
  • Haas O. A., Argyriou T. A., Lion T. Parental origin of chromosomes involved in the translocation t(9;22). Nature (London) 1992; 359: 414
  • Reik W. Cancer genetics. Imprinting in leukaemia. Nature (London) 1992; 359: 362
  • Solomon E., Borrow J., Goddard A. D. Chromosome aberrations and cancer. Science 1991; 254: 1153
  • Borrow J., Goddard A. D., Sheer D., Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990; 249: 1577
  • de The H., Chomienne C., Lanotte M., Degos L., Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature (London) 1990; 347: 558
  • Pandolfi P. P., Grignani F., Alcalay M., Mencarelli A., Biondi A., Lo Coco F., Grignani F., Pelicci P. G. Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 1991; 6: 1285
  • Kakizuka A., Miller W. J., Umesono K., Warrell R. J., Frankel S. R., Murty V. V., Dmitrovsky E., Evans R. M. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663
  • de The H., Lavau C., Marchio A., Chomienne C., Degos L., Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675
  • Kamps M. P., Murre C., Sun X. H., Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(l;19) translocation protein in pre-B ALL. Cell 1990; 60: 547
  • Nourse J., Mellentin J. D., Galili N., Wilkinson J., Stanbridge E., Smith S. D., Cleary M. L. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 1990; 60: 535
  • Prendergast G. C., Ziff E. B. A new bind for myC. Trends Genet. 1992; 8: 91
  • Leder P., Battey J., Lenoir G., Moulding C., Murphy W., Potter H., Stewart T., Taub R. Translocations among antibody genes in human cancer. Science 1983; 222: 765
  • Erikson J., Nishikura K., Ar Rushdi A., Finan J., Emanuel B., Lenoir G., Nowell P. C., Croce C. M. Translocation of an immunoglobulin kappa locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc. Natl. Acad. Sci. U.SA. 1983; 80: 7581
  • Cesarman E., Daila F. R., Bentley D., Groudine M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 1987; 238: 1272
  • Erikson J., Finger L., Sun L., Ar Rushdi A., Nishikura K., Minowada J., Finan J., Emanuel B. S., Nowell P. G, Croce C. M. Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Science 1986; 232: 884
  • Finger L. R., Harvey R. C., Moore R. C., Showe L. C., Croce C. M. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 1986; 234: 982
  • Tsujimoto Y., Jaffe E., Cossman J., Gorham J., Nowell P. C., Croce C. M. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature (London) 1985; 315: 340
  • Tsujimoto Y., Gorham J., Cossman J., Jaffe E., Croce C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985; 229: 1390
  • Vaux D. L., Aguila H. L., Weissman I L. Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing. Int. Immunol. 1992; 4: 821
  • McDonnell T. J., Deane N., Piatt F. M., Nunez G., Jaeger U., McKearn J. P., Korsmeyer S. J. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lympho-proliferation. Cell 1989; 57: 79
  • Gu Y., Cimino G., Alder H., Nakamura T., Prasad R., Canaani O., Moir D. T., Jones C., Nowell P. C., Croce C. M., Canaani E. The (4;ll)(q21;q23) chromosome translocations in acute leukemias involve the VDJ recombinase. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 10464
  • Barr F. G., Galili N., Holick J., Biegel J. A., Rovera G., Emanuel B. S. Rearrangement of the PAX3 paired box gene in paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet. 1993; 3: 113
  • Trent J. M., Meltzer P. S. The last shall be the first. Nature Genet. 1993; 3: 101
  • Dalla Favera R., Wong S. F., Gallo R. C. One gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient. Nature (London) 1982; 299: 61
  • Escot C., Theillet C., Lidereau R., Spyratos F., Champeme M. H., Gest J., Callahan R. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 4834
  • Libermann T. A., Nusbaum H. R., Razon N., Kris R., Lax I., Soreq H., Whittle N., Waterfield M. D., Ullrich A., Schlessinger J. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature (London) 1985; 313: 144
  • Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., Mc Guire W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177
  • Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. J., Stuart S. G., Udove J., Ullrich A., Press M. F. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707
  • Theillet C., Adnane J., Szepetowski P., Simon M. P., Jeanteur P., Birnbaum D., Gaudray P. BCL-1 participates in the 11 q 13 amplification found in breast cancer. Oncogene 1990; 5: 147
  • Gaudray P., Szepetowski P., Escot C., Birnbaum D., Theillet C. DNA amplification at 11ql3 in human cancer: from complexity to perplexity. Mutat. Res. 1992; 276: 317
  • Kohl N. E., Gee C. E., Alt F. W. Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science 1984; 226: 1335
  • Amler L. C., Schwab M. Amplified N-myc in human neuroblastoma cells is often arranged as clustered tandem repeats of differently recombined DNA. Mol. Cell. Biol. 1989; 9: 4903
  • Blackwood E. M., Eisenman R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with MyC. Science 1991; 251: 1211
  • Amler L. C., Shibasaki Y., Savelyeva L., Schwab M. Amplification of the N-myc gene in human neuroblastomas: tandemly repeated amplicons within homogeneously staining regions on different chromosomes with the retention of single copy gene at the resident site. Mutat. Res. 1992; 276: 291
  • Amler L. C., Schwab M. Multiple amplicons of discrete sizes encompassing N-myc in neuroblastoma cells evolve through differential recombination from a large precursor DNA. Oncogene 1992; 7: 807
  • Biedler J. L., Spengler B. A. Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science 1976; 191: 185
  • Cox D., Yuncken C., Spriggs A. I. Minute chromatin bodies in malignant tumours of childhood. Lancet 1965; 2: 55
  • Sandberg A. A., Sakurai M., Holdsworth R. N. Chromosomes and causation of human cancer and leukemia. VIII. DMS chromosomes in a neuroblastoma. Cancer 1972; 29: 1671
  • Brodeur G. M., Green A. A., Hayes F. A., Williams K. J., Williams D. L., Tsiatis A. A. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res. 1981; 41: 4678
  • Windle B. E., Wahl G. M. Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat. Res. 1992; 276: 199
  • von Hoff D. D., Needham-vanDevanter D. R., Yucel J., Windle B. E., Wahl G. M. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 4804
  • Levan G., Stahl F., Wettergren Y. Gene amplification in the murine SEWA system. Mutat. Res. 1992; 276: 285
  • Hunt J. D., Valentine M., Tereba A. Excitation of N-myc from chromosome 2 in human neuroblastoma cells containing amplified N-myc sequences. Mol. Cell. Biol. 1990; 10: 823
  • Roelofs H., Tasseron-de Jong J. G., van der Wal-Aker J., Rodenburg R. J., van Houten G. B., van de Putte P., Giphart-Gassler M. Gene amplification in a human osteosarcoma cell line results in the persistence of the original chromosome and the formation of translocation chromosomes. Mutat. Res. 1992; 276: 241
  • Mäkelä T. P., Saksela K., Alitalo K. Amplification and rearrangement of L-myc in human small-cell lung cancer. Mutat. Res. 1992; 276: 307
  • Mäkelä T. P., Kere J., Winqvist R., Alitalo K. Intrachromosomal rearrangements fusing L-myc and rlf in small-cell lung cancer. Mol. Cell. Biol. 1991; 11: 4015
  • Mäkelä T. P., Saksela K., Evan G., Alitalo K. A fusion protein formed by L-myc and a novel gene in SCLC. EMBO J. 1991; 10: 1331
  • Rustgi A. K., Dyson N., Bernards R. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature (London) 1991; 352: 541
  • Hyrien O., Debatisse M., Buttin G., de Saint Vincent B. R. A hotspot for novel amplification joints in the mosaic of Alu-like repeats and palindromic A + T-rich DNA. EMBO J. 1987; 6: 2401
  • Shuman S. Vaccinia DNA topoisomerase I promotes illegitimate recombination in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 3489
  • Bae Y. S., Kawasaki I., Ikeda H., Liu L. F. Illegitimate recombination mediated by calf thymus DNA topoisomerase II in vitro. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 2076
  • Ikeda H. Bacteriophage T4 DNA topoisomerase mediates illegitimate recombination in vitro. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 922
  • Cobrinik D., Dowdy S. F., Hinds P. W., Mittnacht S., Weinberg R. A. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem. Sci. 1992; 17: 312
  • Vogelstein B., Kinzler K. W. P53 function and dysfunction. Cell 1992; 70: 523
  • Harlow E. For our eyes only. Nature (London) 1992; 359: 270
  • Lee W. H., Shew J. Y., Hong F. D., Sery T. W., Donoso L. A., Young L. J., Bookstein R., Lee E. Y. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature (London) 1987; 329: 642
  • Bischoff J. R., Friedman P. N., Marshak D. R., Prives C., Beach D. Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 4766
  • Stürzbecher H. W., Maimets T., Chumakov P., Brain R., Addison C., Simanis V., Rudge K., Philp R., Grimaldi M., Court W., Jenkins J. R. P53 interacts with p34cdc2 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 1990; 5: 795
  • Friend S. H., Horowitz J. M., Gerber M. R., Wang X. F., Bogenmann E., Li F. P., Weinberg R. A. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 9059
  • Lee W. H., Bookstein R., Hong F., Young L. J., Shew J. Y., Lee E. Y. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 1987; 235: 1394
  • Fung Y. K., Murphree A. L., T'Ang A., Qian J., Hinrichs S. H., Benedict W. F. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987; 236: 1657
  • Weinberg R. A. Tumor suppressor genes. Science 1991; 254: 1138
  • Cohen S. M., Ellwein L. B. Genetic errors, cell proliferation, and carcinogenesis. Cancer Res. 1991; 51: 6493
  • Cavenee W. K., Dryja T. P., Phillips R. A., Benedict W. F., Godbout R., Gallie B. L., Murphree A. L., Strong L. C., White R. L. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature (London) 1983; 305: 779
  • Friend S. H., Bernards R., Rogelj S., Weinberg R. A., Rapaport J. M., Albert D. M., Dryja T. P. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature (London) 1986; 323: 643
  • Knudson A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 820
  • Canning S., Dryja T. P. Short, direct repeats at the breakpoints of deletions of the retinoblastoma gene. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 5044
  • Vogelstein B. Cancer. A deadly inheritance. Nature (London) 1990; 348: 681
  • Baker S. J., Fearon E. R., Nigro J. M., Hamilton S. R., Preisinger A. C., Jessup J. M., van Tuinen P., Ledbetter D. H., Barker D. F., Nakamura Y., White R., Vogelstein B. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989; 244: 217
  • Li F. P., Fraumeni J. F. Rhabdomyosarcoma in children: epidemiology study and identification of a familial cancer syndrome. J. Natl. Cancer Inst. 1969; 43: 1365
  • Li F. P., Fraumeni J. J., Mulvihill J. J., Blattner W. A., Dreyfus M. G., Tucker M. A., Miller R. W. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988; 48: 5358
  • Malkin D., Li F. P., Strong L. C., Fraumeni J. J., Nelson C. E., Kim D. H., Kassel J., Gryka M. A., Bischoff F. Z., Tainsky M. A., Friend S. H. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233
  • Srivastava S., Zou Z. Q., Pirollo K., Blattner W., Chang E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature (London) 1990; 348: 747
  • Baker S. J., Preisinger A. C., Jessup J. M., Paraskeva C., Markowitz S., Willson J. K., Hamilton S., Vogelstein B. P53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990; 50: 7717
  • Yandell D. W., Dryja T. P., Little J. B. Molecular genetic analysis of recessive mutations at a heterozygous autosomal locus in human cells. Mutat. Res. 1990; 229: 89
  • Fujimori A., Tachibana A., Tatsumi K. Allelic losses in mutations at the aprt locus of human lymphoblastoid cells. Mutat. Res. 1992; 269: 55
  • Zhu Y., Stambrook P. J., Tischfield J. A. Loss of heterozygosity: the most frequent cause of recessive phenotype expression at the heterozygous human adenine phosphorybosyltransferase locus. Mol. Carcinog. 1993; 8: 138
  • Turner D. R., Grist S. A., Janatipour M., Morley A. A. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cells. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 3189
  • Morley A. A., Grist S. A., Turner D. R., Kutlaca A., Bennett G. Molecular nature of in vivo mutations in human cells at the autosomal HLA-A locus. Cancer Res. 1990; 50: 4584
  • Morris T., Thacker J. Formation of large deletions by illegitimate recombination in the HPRT gene of primary human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 1392
  • Deininger P. L., Jolly D. J., Rubin C. M., Friedmann T., Schmid C. W. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J. Mol. Biol. 1981; 151: 17
  • Schmid C. W., Jelinek W. R. The Alu family of dispersed repetitive sequences. Science 1982; 216: 1065
  • Amariglio N., Rechavi G. Insertional mutagenesis by transposable elements in the mammalian genome. Environ. Mol. Mutagen. 1993; 21: 212
  • Berkvens T. M., van Ormondt H., Gerritsen E. J., Khan P. M., van der Eb A. J. Identical 3250-bp deletion between two Alul repeats in the ADA genes of unrelated ADA-SCID patients. Genomics 1990; 7: 486
  • Nicholis R. D., Fischel G. N., Higgs D. R. Recombination at the human alpha-globin gene cluster: sequence features and topological constraints. Cell 1987; 49: 369
  • Stoppa L. D., Carter P. E., Meo T., Tosi M. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 1551
  • Ariga T., Carter P. E., Davis A. E. Recombinations between Alu repeat sequences that result in partial deletions within the C1 inhibitor gene. Genomics 1990; 8: 607
  • Kornreich R., Bishop D. F., Desnick R. J. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J. Biol. Chem. 1990; 265: 9319
  • Huang L. S., Ripps M. E., Korman S. H., Deckelbaum R. J., Breslow J. L. Hypobeta-lipoproteinemia due to an apolipoprotein B gene exon 21 deletion derived by Alu-Alu recombination. J. Biol. Chem. 1989; 264: 11394
  • Rüdiger N. S., Hansen P. S., Jorgensen M., Faergeman O., Bolund L., Gregersen N. Repetitive sequences involved in the recombination leading to deletion of exon 5 of the low-density-lipo-protein receptor gene in a patient with familial hypercholesterolemia. Eur. J. Biochem. 1991; 198: 107
  • Lehrman M. A., Schneider W. J., Südhof T. C., Brown M. S., Goldstein J. L., Russell D. W. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science 1985; 227: 140
  • Mager D. L., Goodchild N. L. Homologous recombination between the LTRs of a human retrovirus-like element causes a 5-kb deletion in two siblings. Am. J. Hum. Genet. 1989; 45: 848
  • Yen P. H., Li X. M., Tsai S. P., Johnson C., Mohandas T., Shapiro L. J. Frequent deletions of the human X chromosome distal short arm result from recombination between low copy repetitive elements. Cell 1990; 61: 603
  • Vnencak-Jones C. L., Phillips J. A. I. Hot spots for growth hormone gene deletions in homologous regions outside of Alu repeats. Science 1990; 250: 1745
  • Myerowitz R., Hogikyan N. D. A deletion involving Alu sequences in the beta-hexosaminidase alpha-chain gene of French Canadians with Tay-Sachs disease. J. Biol. Chem. 1987; 262: 15396
  • Woods-Samuels P., Kazazian H. H. J., Antonarakis S. E. Nonhomologous recombination in the human genome: deletions in the human factor VIII gene. Genomics 1991; 10: 94
  • Legius E., Marchuk D. A., Collins F. S., Glover T. W. Somatic deletion of the neurofibromatosis type I gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nature Genet. 1993; 3: 122
  • Fuscoe J. C., Zimmerman L. J., Lippert M. J., Nicklas J. A., O'Neill J. P., Albertini R. J. V(D)J recombinase-like activity mediates hprt gene deletion in human fetal T-lymphocytes. Cancer Res. 1991; 51: 6001
  • Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 782
  • Ames B. N., Durston W. E., Yamasaki E., Lee F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 2281
  • Kohler S. W., Provost G. S., Kretz P. L., Dycaico M. J., Sorge J. A., Short J. M. Development of a short-term, in vivo mutagenesis assay: the effects of methylation on the recovery of a lambda phage shuttle vector from transgenic mice. Nucleic Acids Res. 1990; 18: 3007
  • Kohler S. W., Provost G. S., Kretz P. L., Fieck A., Sorge J. A., Short J. M. The use of transgenic mice for short-term, in vivo mutagenicity testing. Genet. Anal. Tech. Appl. 1990; 7: 212
  • Kohler S. W., Provost G. S., Fieck A., Kretz P. L., Bullock W. O., Putman D. L., Sorge J. A., Short J. M. Analysis of spontaneous and induced mutations in transgenic mice using a lambda ZAP/lacI shuttle vector. Environ. Mol. Mutagen. 1991; 18: 316
  • Hoffmann G. R. Bacterial assays for recombinagens. Mutat. Res. 1992; 284: 125
  • Tenenbaum L., Quinto I., Faelen M. The E. coli multitest: a set of strains to characterize diverse genotoxic effects. Mutat. Res. 1988; 203: 415
  • Ohta T., Watanabe M., Shirasu Y., Inoue T. Post-replication repair and recombination in uvrA umuC strains ofEscherichia coli are enhanced by vanillin, an antimutagenic compound. Mutat. Res. 1988; 201: 107
  • Hoffman G. R., Walkowicz M. J., Mason J. M., Atkins J. F. Genetic instability associated with the aroC321 allele inSalmonella typhimurium involves genetic duplication. Mol. Gen. Genet. 1983; 190: 183
  • Zimmermann F. K., Kern R., Rasenberger H. A yeast strain for simultaneous detection of induced mitotic crossing over, mitotic gene conversion and reverse mutation. Mutat. Res. 1975; 28: 381
  • Zimmermann F. K., von Borstel R. C., von Halle E. S., Parry J. M., Siebert D., Zetterberg G., Barale R., Loprieno N. Testing of chemicals for genetic activity withSaccharomyces cerevisiae: a report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat. Res. 1984; 133: 199
  • Eugster H. P., Sengstag C., Meyer U. A., Hinnen A., Würgler F. E. Constitutive and inducible expression of human cytochrome P450IA1 in yeastSaccharomyces cerevisiae: an alternative enzyme source for in vitro studies. Biochem. Biophys. Res. Commun. 1990; 172: 737
  • Eugster H. P., Probst M., Würgler F. E., Sengstag C. Caffeine, estradiol, and progesterone interact with human CYP1 A1 and CYP1A2. Evidence from cDNA-directed expression in. Saccharomyces cerevisiae, Drug Metab. Dispos. Biol. Fate Chem. 1993; 21: 43
  • Eugster H. P., Sengstag C. Saccharomyces cerevisiae: an alternative source for human microsomal liver enzymes and its use in drug interaction studies. Toxicology 1993; 82: 61
  • Eugster H. P., Bärtsch S., Würgler F. E., Sengstag C. Functional co-expression of human oxidoreductase and cytochrome P450 1A1 in Saccharomyces cerevisiae results in increased EROD activity. Biochem. Biophys. Res. Commun. 1992; 185: 641
  • Eugster H. P., Sengstag C., Hinnen A., Meyer U. A., Würgler F. E. Heterologous expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae. Study of the valpromide-car-bamazepine epoxide interaction. Biochem. Pharmacol. 1991; 42: 1367
  • Crespi C. L., Gonzalez F. J., Steimel D. T., Turner T. R., Gelboin H. V., Penman B. W., Langenbach R. A metabolically competent human cell line expressing five cDNAs encoding procar-cinogen-activating enzymes: application to mutagenicity testing. Chem. Res. Toxicol. 1991; 4: 566
  • Lin F. L., Sternberg N. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome. Mol. Cell. Biol. 1984; 4: 852
  • Wang Y. Y., Maher V. M., Liskay R. M., McCormick J. J. Carcinogens can induce homologous recombination between duplicated chromosomal sequences in mouse L cells. Mol. Cell. Biol. 1988; 8: 196
  • Bhattacharyya N. P., Maher V. M., McCormick J. J. Ability of structurally related polycyclic aromatic carcinogens to induce homologous recombination between duplicated chromosomal sequences in mouse L cells. Mutat. Res. 1989; 211: 205
  • Hellgren D., Luthman H., Lambert B. Induced recombination between duplicated neo genes stably integrated in the genome of CHO cells. Mutat. Res. 1989; 210: 197
  • Hellgren D., Sahlen S., Lambert B. Mutagen-induced recombination between stably integrated neo gene fragments in CHO and EM9 cells. Mutat. Res. 1989; 226: 1
  • SchiestI R. H., Gietz R. D., Mehta R. D., Hastings P. J. Carcinogens induce intrachromosomal recombination in yeast. Carcinogenesis 1989; 10: 1445
  • SchiestI R. H. Nonmutagenic carcinogens induce intrachromosomal recombination in yeast. Nature (London) 1989; 337: 285
  • Graf U., Würgler F. E., Kate A. J., Frei H., Juon H., Hall C. B., Kale P. G. Somatic mutation and recombination test in. Drosophila melanogaster, Environ. Mutagen. 1984; 6: 153
  • Vogel E. W. Tests for recombinagens in somatic cells of. Drosophila, Mutat. Res. 1992; 284: 159
  • Fahrig R., Neuhäuser-Klaus A. Similar pigmentation characteristics in the specific-locus and the mammalian spot test. A way to distinguish between induced mutation and recombination. J. Hered. 1985; 76: 421
  • Fahrig R. Der Fellfleckentest (Spot Test) mit der Maus. Mutationsforschung und Genetische Toxikologie, R. Fahrig, DarmstadtGermany 1993; 281
  • Kunz B. A., Haynes R. H. Phenomenology and genetic control of mitotic recombination in yeast. Annu. Rev. Genet. 1981; 15: 57
  • Maher V. M., Bhattacharyya N. P., Wang Y., Tsujimura T., Liskay R. M., Godwin A., McCormick J. Carcinogen-induced homologous recombination between duplicated genes stably integrated within the genome of mammalian cells, including normally repairing and repair-deficient cells. Genetic Mechanisms in Carcinogenesis and Tumor Progress, C. C. Harris, L. A. Liotta. John Wiley & Sons, New York 1990; 53
  • van der Putte P., Goosen N. DNA inversions in phages and bacteria. Trends Genet. 1992; 8: 457
  • Frei H., personal communication

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.