19
Views
18
CrossRef citations to date
0
Altmetric
Research Article

The Role of Brain-Immune Interactions in Immunotoxicology

&
Pages 151-176 | Published online: 25 Sep 2008

References

  • Munson A. E., McCay J. A., Cao W. Approaches to immunotoxicologic studies with emphasis on chemical-induced immunomodulation. Ann. Allergy 1991; 66(6)505
  • Luster M. I., Munson A. E., Thomas P., Holsapple M. P., Fenters J. D., White K. L., Lauer L. D., Germolec D. R., Rosenthal G. J., Dean J. H. Development of a testing battery to assess chemical induced immunotoxicity: national toxicology program's guidelines for immunotoxicity evaluation in mice. Fundam. Appl. Toxicol. 1988; 10: 2
  • Sanders V. M., Fuchs B. A., Pruett S. B., Kerkvliet N. I., Kaminski N. E. Symposium on indirect mechanisms of immune modulation. Fundam. Appl. Toxicol. 1991; 17: 641
  • Smith K. A. Interleukin-2: inception, impact, and implications. Science 1988; 240: 1169
  • Bateman A., Singh A., Kral T., Solomon S. The immune-hypothalamic-pituitary-adrenal axis. Endocrine Rev. 1989; 10(1)92
  • Shoham S., Davenne D., Cady A. B., Dinarello C. A., Krueger J. M. Recombinant tumor necrosis factor and interleukin-1 enhance slow-wave sleep. Am. J. Physiol. 1987; 253: R142
  • Wiedermann C. J. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 ofin vitro opioid peptide receptor binding in rat brain. J. Neurosci. Res. 1989; 22: 172
  • Fagarasan M. O., Arora P. K., Axelrod J. Interleukin-1 potentiation of b-endorphin secretion and the dynamics of interleukin-1 internalization in pituitary cells. Prog. Neuropsychpharmacol. Biol. Psychiat. 1991; 15: 551
  • Kavelaars A., Ballieux R. E., Heijnen C. J. The role of interleukin-1 in the CRH- and AVP-in duced secretion of ir-β-endorphin by human peripheral blood mononuclear cells. J. Immunol. 1989; 142: 2338
  • Newton R. C., Uhl J., Covington M., Back O. The distribution and clearance of radiolabeled human interleukin-1 beta in mice. Lymphokine Res. 1988; 7: 207
  • Besedovsky H., Del Rey A., Sorkin E., Dinarello C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986; 233: 652
  • Gwosdow A. R., Kumar M. S. A., Bode H. H. Interleukin 1 stimulation of the hypothalamic-pitu-itary-adrenal axis. Am. J. Physiol. 1990; 258: E65
  • Woloski B. M. R.N. J., Smith E. ML, Meyer W. J., Fuller G. M., Blalock J. E. Cortico tropin-releasing activity of monokines. Science 1985; 230: 1035
  • Bernton E. W., Beach J. E., Holaday J. W., Smallridge R. C., Fein H. G. Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science 1987; 238: 519
  • Sapolsky R., Rivier C., Yamamoto G., Plotsky P., Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 1987; 238: 522
  • Berkenbosch F., van Oers J., Del Rey A., Tilders F., Besedovsky H. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 1987; 238: 524
  • Akira S., Hirano T., Taga T., Kishimoto T. Biology of multifunctional cytokines: IL-6 and related molecules (IL 1 and TNF). FASEB J. 1990; 4: 2860
  • Lyson K., McCann S. M. The effect of Interleukin-6 on pituitary hormone releasein vivo andin vitro. Neuroendocrinology 1991; 54: 262
  • Spangelo B. L., Judd A. M., Isakson P. C., MacLeod R. M. Interleukin-6 stimulates anterior pituitary hormone releasein vitro. Endocrinology 1989; 125: 575
  • Spangelo B. L., MacLeod R. M., Isakson P. C. Production of interleukin-6 by anterior pituitary cellsin vitro. Endocrinology 1990; 126: 582
  • Spangelo B. L., Isakson P. C., MacLeod R. M. Production of interleukin-6 by anterior pituitary cells is stimulated by increased intracellular adenosine 3′.5′-monophosphate and vasoactive intestinal peptide. Endocrinology 1990; 127: 403
  • Vankelecom H., Carmeliet P., Van Damme J., Billiau A., Denef C. Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 1989; 49: 102
  • Carmeliet P., Vankelecom H., Van Damme J., Billiau A., Denef C. Release of interleukin-6 from anterior pituitary cell aggregates: developmental pattern and modulation by glucocorticoids and forskolin. Neuroendocrinology 1991; 53: 29
  • Troisi R. J. P., Mougey E. H., Jackson W. E., Neta R. Interleukin-1 and interleukin-6 act synergis-tically to stimulate the release of adrenocorticotropic hormonein vivo. Lymphokine Cytokine Res. 1991; 10: 141
  • Hooghe-Peters E., Velkeniers B., Vanhaelst L., Hooghe R. Inter!eukin-1, interleukin-6: messengers in the neuroendocrine immune systemi?. Path. Res. Practice 1991; 187: 622
  • Rivier C., Vale W., Brown M. In the rat, interleukin-1 α and -β stimulate adrenocorticotropin and catecholamine release. Endocrinology 1989; 125: 3096
  • Dunn A. J. Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sci. 1988; 43: 429
  • Banks W. A., Ortiz L., Plotkin S. R., Kastin A. J. Human interleukin (IL) lα, murine IL-lα and murine IL-l β are transported from blood to brain in the mouse by a shared saturable mechanism. J. Pharmacol. Exp. Ther. 1991; 259(3)988
  • Takao T., Tracey D. E., Mitchell W. M., De Souza E. B. Interleukin-1 receptors in mouse brain: characterization and neuronal localization. Endocrinology 1990; 127: 3070
  • Ban E., Milon G., Prudhomme N., Fillion G., Haour F. Receptors for interleukin-1 (alpha and beta) in mouse brain: mapping and neuronal localization in hippocampus. NeuroScience 1991; 43: 21
  • Wakabayashi G., Gelfand J. A., Burke J. F., Thompson R. C., Dinarello C. A. A specific receptor antagonist for interleukin 1 preventsEscherichia coli-induced shock in rabbits. FASEB J. 1991; 5: 338
  • Morrissey P. J., Charrier K., Alpert A., Bressler L. in vivo administration of IL-1 induces thymic hypoplasia and increased levels of serum corticosterone. J. Immunol. 1988; 141(5)1456
  • Weiss J. M., Sundar S. K., Becker K. J., Cierpial M. A. Behavioral and neural influences on cellular immune responses: effects of stress and interleukin-1. J. Clin. Psychiatry 1989; 50: 43
  • Sundar S. K., Becker K. J., Cierpial M. A., Carpenter M. D., Rankin L. A., Fleener S. L., Ritchie J. C., Simson P. E. and Weiss, J. ML, Intracerebroventricular infusion of interleukin-1 rapidly decreases peripheral cellular immune responses. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 6398
  • Sundar S. K., Cierpial M. A., Kilts C., Ritchie J. C., Weiss J. M. Brain IL-1-induced immuno suppression occurs through activation of both pituitary-adrenal axis and sympathetic nervous system by corticotropin-releasing factor. J. Neurosci. 1990; 10(11)3701
  • Brown R., Li Z., Vriend C., Nirula R., Janz L., Falk J., Nance D. M., Dyck D. G., Greenburg A. H. Suppression of splenic macrophage interleukin 1 secretion following intracerebroventricular injection of interleukin-1β: evidence for pituitary-adrenal and sympathetic control. Cell. Immunol. 1991; 132: 84
  • Akiyoshi M., Shimizu Y., Saito M. Interleukin 1 increases norepinephrine turnover in the spleen and lung in rats. Biochem. Biophys. Res. Commun. 1990; 173: 1266
  • Fisher L. A., Jessen G., Brown M. R. Corticotropin-releasing factor (CRF): mechanism to elevate mean arterial pressure and heart rate. Reg. Peptides 1983; 5: 153
  • Fisher L. A., Brown M. R. Corticotropin-releasing factor and angiotensin II: comparison of CNS actions to influence neuroendocrine and cardiovascular function. Brain Res. 1984; 296: 41
  • Brown M. R., Fisher L. Corticotropin-releasing factor: effects on the autonomic nervous system and visceral systems. Fed. Proc. 1985; 44: 243
  • Fisher L. A. Corticotropin-releasing factor: endocrine and autonomic integration of responses to stress. Trends Pharmacol. Sci. 1989; 10: 189
  • Nikolarakis K., Pfeiffer A., Stalla G. K., Herz A. The role of CRF in the release of ACTH by opiate agonists and antagonists in rats. Brain Res. 1987; 421: 373
  • Nikolarakis K. E., Pfeiffer A., Stalla G. K., Herz A. Facilitation of ACTH secretion by morphine is mediated by activation of CRF releasing neurons and sympathetic neuronal pathways. Brain Res. 1989; 498: 385
  • Owens M. J., Vargas M. A., Knight D., Nemeroff C. B. The effects of alprazolam on corticotropin-releasing factor neurons in the rat brain: acute time course, chronic treatment and abrupt withdrawal. J. Pharmacol. Exp. Ther. 1991; 258(1)349
  • Udelsman R., Harwood J. P., Millan M. A., Chrousos G. P., Goldstein D. S., Zimlichman R., Catt K. J., Aguilera G. Functional cortico tropin releasing factor receptors in the primate peripheral sympathetic nervous system. Nature 1986; 319: 147
  • Irwin M. R., Vale W., Britton K. T. Central corticotropin-releasing factor suppresses natural killer cytotoxicity. Brain Behav. Immun. 1987; 1: 81
  • Irwin M., Hauger R. L., Brown M., Britton K. T. CRF activates autonomic nervous system and reduces natural killer cytotoxicity. Am. J. Physiol. 1988; 255: R744
  • Irwin M., Hauger R. L., Jones L., Provencio M., Britton K. T. Sympathetic nervous system mediates central corticotropin-releasing factor induced suppression of natural killer cytotoxicity. J. Pharmacol. Exp. Ther. 1990; 255: 101
  • Irwin M., Jones L., Britton K., Hauger R. L. Central corticotropin releasing factor reduces natural cytotoxicity. Time course of action. Neuropsycho pharmacology 1989; 2: 281
  • Irwin M., Vale W., Rivier C. Central corticotropin-releasing factor mediates the suppres sive effect of stress on natural killer cytotoxicity. Endocrinology 1990; 126: 2837
  • Jain R., Zwickler D., Hollander C. S., Brand H., Saperstein A., Hutchinson B., Brown C., Audhya T. Corticotropin-releasing factor modulates the immune response to stress in the rat. Endocrinology 1991; 128(3)1329
  • Naparstek Y., Ben-Nun A., Holoshitz J., Reshef T., Frenkel A., Resonberg M., Cohen I. R. T-lymphocyte lines producing or vaccinating against autoimmune encephalomyelitis (EAE). Eur. J. Immunol. 1983; 13: 418
  • Booss J., Suard I., Collins P. V., Jacque C. Disappearance of xenogenic astrocytes transplanted into newborn mice is associated with a T-cell response. Brain Res. 1991; 549: 19
  • Frohman E. M., Bharathi V., van den Noort S., Gupta S. Norepinephrine inhibits gamma-inter-feron-induced MHC class II (la) antigen expression on cultured brain astrocytes. J. Neuroimmunol. 1988; 17: 89
  • Aschner M., Kimelberg H. K. The use of astrocytes in culture as model systems for evaluating neurotoxic-induced-injury. Neurotoxicology 1991; 12: 505
  • Fontana A., Grob P. J. Astrocyte-derived Interleukin-1-like factor. Lymphokine Res. 1984; 1: 11
  • Giulian D., Baker T. J., Shih L.-C. N., Lachman L. B. Interleukin 1 of the central nervous system is produced by ameboid microglia. J. Exp. Med. 1986; 164: 594
  • Bergsteinsdottir K., Kingston A., Mirsky R., Jessen K. R. Rat Schwann cells produce interleukin-1. J. Neuroimmunol. 1991; 34: 15
  • Breder C. D., Dinarello C. A., Saper C. B. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 1988; 240: 321
  • Hirsch M.-R., Wietzerbin J., Pierres M., Goridis C. Expression of la antigens by cultured astrocytes treated with gamma-interferon. Neurosci. Lett. 1983; 41: 199
  • Satoh J., Kim S. U., Kastrukoff L. F., Takei F. Expression and induction of intercellular adhesion molecules (ICAMs) and major histocompatibility complex (MHC) antigens on cultured murine oligoden drocytes and astrocytes. J. Neurosci. Res. 1991; 29: 1
  • Coutinho G. C., Durieu-Trautmann O., Strosberg A. D., Couraud P. O. Catecholamines stimulate the IFN-γ-induced class II MHC expression on bovine brain capillary endothelial cells. J. Immunol. 1991; 147: 2525
  • Male D. K., Pryce G., Hughes C. C. W. Antigen presentation in the brain: MHC induction on brain endothelium and astrocytes compared. Immunology 1987; 60: 453
  • Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 1984; 307: 273
  • Girgrah N., Ackerley C. A., Moscarello M. A. Localization of CD44 (P80) on the external surface of a human astrocytoma cell. Mol. Neurosci. 1991; 2: 441
  • Frei K., Siepl C., Groscurth P., Bodmer S., Schwerdel C., Fontana A. Antigen presentation and tumor cytotoxicity by interferon-gamma treated microglial cells. Eur. J. Immunol. 1987; 17: 1271
  • Janovic B. D., Spector N. H. Effects on the immune system of lesioning and stimulation of the nervous system: neuroimmunomodulation. En kephalins and Endorphins. Stress and the Immune System, N. P. Plotnikoff, R. E. Faith, A. J. Murgo, R. A. Good. Plenum Press, New York 1986; 189
  • Felten D. L., Cohen N., Ader R., Felten S. Y., Carlson S. L., Foszman T. L. Central neural circuits involved in neural-immune interactions. Psychoneuroimmunology. Academic Press, New York 1991; 3
  • Cross R. J., Brooks W. H., Roszman T. L., Markesbery W. R. Hypothalamie-immune interactions. Effect of hypophysectomy on neuroimmunomodulation. J. Neurol. Sci. 1982; 53: 557
  • Barneoud P., Neveu P. J., Vitiello S., Le Moal M. Lymphocyte homing after left or right brain neo cortex ablation. Immunol. Lett. 1990; 24: 31
  • Jankovic B. D., Jovanova-Nesic K., Markovic B. M. Neuroimmunomodulation: potentiation of delayed hypersensitivity and antibody production by chronic electrical stimulation of the rat brain. Int. J. Neurosci. 1988; 39: 153
  • Smith E. M., Morrill A. C., Meyer W. J., III, Blalock J. E. Corticotropin releasing factor induction of leukocyte-derived immunoreactive ACTH and endorphins. Nature 1986; 321: 881
  • Heijnen C. J., Kavelaars A., Ballieux R. E. Corticotropin-releasing hormone and proopiomelano cortin-derived peptides in the modulation of immune function. Psychoneuroimmunology. Academic Press, New York 1991; 429
  • Parillo J. E., Fauci A. S. Mechanisms of glu cocorticoid action on immune processes. Ann. Rev. Pharmacol. Toxicol. 1979; 19: 179
  • Compton M. M., Caron L. M., Cidlowski J. A. Glucocorticoid action on the immune system. Steroid Biochem. 1987; 27(1–3)201
  • Audhya T., Jain R., Hollander C. S. Receptor mediated immunomodulation by corticotropin-releasing factor. Cell. Immunol. 1991; 134: 77
  • Singh V. K. Stimulatory effect of corticotropin-releasing factor neurohormone on human lymphocyte proliferation and interleukin-2 receptor expression. J. Neuroimmunol. 1989; 23: 257
  • Singh V. K., Leu S-J. C. Enhancing effect of corticotropin-releasing neurohormone on the production of interleukin-1 and interleukin-2. Neurosc. Lett. 1990; 120: 151
  • McGillis J. P., Park A., Rubin-FIetter P., Turck C., Dallman M. F., Payan D. G. Stimulation of rat B-lymphocyte proliferation by corticotropin-releasing factor. J. Neurosci. Res. 1989; 23: 346
  • Carr D. J. J., DeCosta B. R., Jacobson A. E., Rice K. C., Blalock J. E. Corticotropin-releasing hormone augments natural killer cell activity through a naloxone-sensitive pathway. J. Neuroimmunol. 1990; 28: 53
  • Leu S-J. C., Singh V. K. Modulation of natural killer cell-mediated lysis by corticotropin-releasing neurohormone. J. Neuroimmunol. 1991; 33: 253
  • Carr D. J. J. The role of endogenous opioids and their receptors in the immune system. Proc. Soc. Exp. Biol. Med. 1991; 198: 710
  • Carr D. J. J., Blalock J. E. Neuropeptide hormones and receptors common to the immune and neuroendocrine systems: bidirectional pathway of intersystem communication. Psychoneuro immunology. Academic Press, New York 1991; 573
  • Heijnen C. J., Kavelaars A., Ballieux R. E. β-Endorphin: cytokine and neuropeptide. Immunol. Rev. 1991; 119: 41
  • Oilman S. C., Schwartz J. M., Milner R. J., Bloom F. E., Feldman J. D. β-Endorphin enhances lymphocyte proliferative responses. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 4226
  • Gilmore W., Weiner L. P. The opioid specificity of beta-endorphin enhancement of murine lymphocyte proliferation. Immunopharmacology 1989; 17: 19
  • McCain H. W., Lamster I. B., Bozzone J. M., Grbic J. T. β-Endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Sci. 1982; 31: 1619
  • Mathews P. M., Froelich C. J., Sibbitt W. L., Bankhurst A. D. Enhancement of natural cytotoxic-ity by β-endorphin. J. Immunol. 1983; 130: 1658
  • Chiappelli F., Yamashita N., Faisel M., Kemeny M., Bullington R., Nguyen L., Clement L. T., Fahey J. L. Differential effect of beta-endorphin on three human cytotoxic cell populations. Int. J. Immunopharmacol. 1991; 13: 291
  • Millar D. B., Hough C. J., Mazorow D. L., Gootenberg J. E. β-Endorphin's modulation of lymphocyte proliferation is dose, donor, and time dependent. Brain Behav. Immun. 1990; 4: 232
  • Mazzanica N., Finzi A. F., Foppa S., Vignati G., Villa M. L. Association between circadian rhythms of endogenous hypothalamic opioid peptides and of natural killer cell activity. Int. J. Immunopharmacol. 1991; 13: 317
  • Chakir J., Rouabhia M., Deschaux P. in vitro effect of methionine-enkephalin and thymosin on murine expression of Thy 1.2 antigen. Immunopharmacology 1989; 17: 31
  • Faith R. E., Liang H. J., Plotnikoff N. P., Murgo A. J., Nimeh N. F. Neuroimmunomodulation with enkephalins:in vitro enhancement of natural killer cell activity in peripheral blood lymphocytes from cancer patients. Nat. Immun. Cell Growth Regul. 1987; 6: 88
  • Janovic B. D., Veljic J., Pesic G., Marie D. Enkephalinase-inhibitors modulate immune responses. Int. J. Neurosci. 1991; 59: 45
  • Kuis W., Villiger P. M., Leser H.-G., Lotz M. Differential processing of proenkephalin-A by human peripheral blood monocytes and T lymphocytes. J. Clin. Invest. 1991; 88: 817
  • Behar O. Z., Ovadia H., Polakiewicz R. D., Abramsky O., Rosen H. Regulation of proenkephalin A messenger ribonucleic acid levels in normal B lymphocytes: specific inhibition by glucocorticoid hormones and superinduction by cyclohex imide. Endocrinology 1991; 129: 649
  • Zbrog Z., Luciak M., Tchorzewski H., Pokoca L. Modification of some lymphocyte functionsin vitro by opioid receptor agonists and antagonists in chronic uremic patients and healthy subjects. Int. J. Immunopharmacol. 1991; 43: 475
  • Maes M., Bosnians E., Suy E., Minner B., Raus J. A further exploration of the relationships between immune parameters and the HPA-axis in depressed patients. Psych. Med. 1991; 21: 313
  • Barni S., Lissoni P., Crispino S., Cattaneo G., Rovelli F., Fumagalli G., Tancini G. Neuroimmunomodulation in cancer patients: correlations between melatonin and β-endorphin blood levels and T helper/suppressor ratio. Int. J. Biol. Markers 1988; 3: 82
  • Sanders V. M., Munson A. E. Norepinephrine and the antibody response. Pharmacol. Rev. 1985; 37β: 229
  • Livnat S., Felten S. Y., Carlson S. L., Bellinger D. L., Felten D. L. Involvement of peripheral and central catecholamine systems in neural-immune interactions. J. Neuroimmunol. 1985; 10: 5
  • Felten D. L., Felten S. Y., Bellinger D. L., Carlson S. L., Ackerman K. D., Madden K. S., Olschowki J. A., Livnat S. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol. Rev. 1987; 100: 225
  • Roszman T. L., Carlson S. L. Neurotransmit-ters and molecular signaling in the immune response. Psychoneuroimmunology. Academic Press, New York 1991; 311
  • Madden K. S., Livnat S. Catecholamine action and immunologic reactivity. Psychoneuroimmunology. Academic Press, New York 1991; 283
  • Felten D. L., Ackerman K. D., Wiegand S. J., Felten S. Y. Noradrenergic sympathetic innervation of the spleen. I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J. Neurosci. Res. 1987; 18: 28
  • Krammer G. M. The adenylate cyclase-cAMP-pro tein kinase A pathway and regulation of the immune response. Immunol. Today 1988; 9(7/8)222
  • Galindo B., Imaeda T. Electron microscope study of the white pulp of the mouse spleen. Anat. Rec. 1962; 143: 399
  • Reilly F. D. Innervation and vascular pharma codynamics of the mammalian spleen. Experentia 1985; 41: 187
  • Reilly F. D., McCuskey P. A., Meineke H. A. Studies of the hematopoietic microenvironment. VIII. Adrenergic and cholinergic innervation of the murine spleen. Anat. Rec. 1976; 185: 109
  • Reilly F. D., McCuskey P. A., Miller M. L., McCuskey R. S., Meineke H. A. Innervation of the periarteriolar lymphatic sheath of the spleen. Ti Cell 1979; 11: 121
  • Williams J. M., Peterson R. G., Shea P. A., Schmedtje J. F., Bauer D. C., Felten D. L. Sympathetic innervation of murine thymus and spleen: evidence for a functional link between the nervous and immune systems. Brain Res. Bull. 1981; 6(1)83
  • Felten S. Y., Olschowka J. Noradrenergic sympathetic innervation of the spleen. II. Tyrosine hy droxylase (TH)-positive nerve terminals form synaptic like contacts on lymphocytes in the splenic white pulp. J. Neurosci. Res. 1987; 18: 37
  • Felten S. Y., Felten D. L. Innervation of lym phoid ti. Psychoneuroimmunology. Academic Press, New York 1991; 27
  • Williams J. M., Felten D. L. Sympathetic innervation of murine thymus and spleen: a comparative histofluorescence study. Anat. Rec. 1981; 199: 531
  • Felten D. L., Livnat S., Felten S. Y., Carlson S. L., Bellinger D. L., Yeh P. Sympathetic innervation of lymph nodes in mice. Brain Res. Bull. 1984; 13: 693
  • Felten D. L., Felten S. Y., Carlson S. L., Olschowka J. A., Livnat S. Noradrenergic and peptidergic innervation of lymphoid ti. J. Immunol. 1985; 135(2)755s
  • Draskoci M., Jankovic B. D. Involution of thymus and suppression of immune responses in rats treated with reserpine. Nature (London) 1964; 202: 408
  • Kasahara K., Tanaka S., Ito T., Hamashima Y. Suppression of the primary immune response by chemical sympathectomy. Res. Comm. Chem. Pathol. Pharmacol. 1977; 16(4)687
  • Hall N. R., McClure J. E., Hu S., Tare S., Seals C. M., Goldstein A. L. Effects of 6-hydroxy dopamine upon primary and secondary thymus dependent immune responses. Immunopharmacology 1982; 5: 39
  • Besedovsky H. O., Del Rey A., Sorkin E., Da Prada M., Keller H. H. Immunoregulation mediated by the sympathetic nervous system. Cell. Immunol. 1979; 48: 346
  • Miles K., Quintans J., Chelmicka-Schorr E., Arnason B. G. W. The sympathetic nervous system modulates antibody response to thymus-independent antigens. J. Neuroimmunol. 1981; 1: 101
  • Miles K., Chelmicka-Schorr E., Atweh S., Otten G., Arnason B. G. W. Sympathetic ablation alters lymphocyte membrane properties. J. Immunol. 1985; 135(2)797s
  • Miles K., Atweh S., Otten G., Arnason B. G. W., Chelmicka-Schorr E. b-Adrenergic receptors on splenic lymphocytes from axotomized mice. Int. J. Immunopharmacol. 1984; 6(3)171
  • Fuchs B. A., Campbell K. S., Munson A. E. Norepinephrine and serotonin content of the murine spleen: its relationship to lymphocyte β-adren ergic receptor density and the humoral immune response in vivo and in vitro. Cell. Immunol. 1988; 117: 339
  • Chelmicka-Schorr E., Checinski M., Arnason B. G. W. Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis. J. Neuroimmunol. 1988; 17: 347
  • Del Rey A., Besedovsky H. O., Sorkin E., Da Prada M., Bondiolotti G. P. Sympathetic immunoregulation: difference between high- and low-responder animals. Am. J. Physiol. 1982; 242: R30
  • Besedovsky H. O., Del Rey A. E., Sorkin E. Immune-neuroendocrine interactions. J. Immunol. 1985; 135(2)750s
  • Fuchs B. A., Albright J. W., Albright J. F. β-Adrenergic receptor on murine lymphocytes: density varies with cell maturity and lymphocyte subtype and is decreased after antigen administration. Cell. Immunol. 1988; 114: 231
  • Cross R. J., Jackson J. C., Brooks W. H., Sparks D. L., Markesbery W. R., Roszman T. L. Neuroimmunomodulation: impairment of humoral immune responsiveness by 6- hydroxydopamine treatment. Immunology 1986; 57: 145
  • Cross R. J., Brooks W. H., Roszman T. L. Modulation of T-suppressor cell activity by central nervous system catecholamine depletion. J. Neurosci. Res. 1987; 18: 75
  • Ackerman K. D., Madden K. S., Livnat S., Felten S. Y., Felten D. L. Neonatal sympathetic den-ervation alters the development ofin vitro spleen cell proliferation and differentiation. Brain Behav. lmmun. 1991; 5: 235
  • Pochet R., Deiespesse G., Gausset P. W., Collet H. Distribution of beta-adrenergic receptors on human lymphocyte subpopulations. Clin. Exp. Immunol. 1979; 38: 578
  • Johnson D. L., Gordon M. A. Characteristics of adrenergic binding sites associated with murine lymphocytes isolated from spleen. J. Immun opharmacol. 1980; 2: 435
  • Loveland B. E., Jarrott B., McKenzie I. F. C. The detection of β-adrenoceptors on murine lymphocytes. Int. J. Immunopharmacol. 1981; 45
  • Leiros C. P., Borda E. Characterization of (-)-3H-DHA binding to intact mouse lymphocytes: effect of experimental autoimmune orchitis on β-adrenoceptor expression. Int. J. Immunopharmacol. 1986; 8(4)405
  • Khan M. M., Sansoni P., Silverman E. D., Engleman E. G., Melmon K. L. Beta-adrenergic receptors on human suppressor, helper, and cytolytic lymphocytes. Biol. Psychiat. 1986; 35: 1137
  • Van Tits L. J. H., Michel M. C., Grosse-Wilde H., Happel M., Eigler F.-W., Soliman A., Brodde O.-E. Catecholamines increase lymphocyte β2-adr energic receptors via a β2-adrenergic, spleen-dependent process. Am. J. Physiol. 1990; 258: E191
  • Strom T. B., Carpenter C. B. Cyclic Nucle otides in immunosuppression-neuroendocrine pharmacologic manipulation andin vivo immuno-regulation of immunity acting via second messenger systems. Trans. Proc. 1980; 12(2)304
  • Dailey M. O., Schreurs J., Schulman H. Hormone receptor on cloned T lymphocytes: increased responsiveness to histamine, prostaglandins and β-adrenergic agents as a late stage event in T cell activation. J. Immunol. 1988; 140(9)2931
  • Radojcic T., Baird S., Darko D., Smith D., Bulloch K. Changes in b-adrenergic receptor distribution on immunocytes during differentiation: an analysis of T cells and macrophages. J. Neurosci. Res. 1991; 30: 328
  • Westly H. J., Kelley K. W. Down-regulation of glucocorticoid and β-adrenergic receptors on lectin-stimulated splenocytes. Proc. Soc. Exp. Biol Med. 1987; 185: 211
  • Cremaschi G. A., Fisher P., Boege F. β-Adrenoceptor distribution in murine lymphoid cell lines. Immiinopharmacology 1991; 22: 195
  • Bohm M., Gengenbach S., Hauck R. W., Sunder-Plassmann L., Erdmann E. Beta-adrenergic receptors and μ-cholinergic receptors in human lung. Findings followingin vivo andin vitro exposure to the β-adrenergic receptor agonist, terbutaline. Chest 1991; 100: 1246
  • Haen E., Hauck R., Emslander H. P., Langen-mayer I., Liebl B., Schopohl J., Remien J., Fruhmann G. Nocturnal asthma. β2-adrenoceptors on peripheral mononuclear leukocytes, cAMP- and cortisol-plasma concentrations. Chest 1991; 100: 1239
  • Kishimoto S., Tomino S., Inomata K., Kotegawa S., Saito T., Kuroki M., Mitsuya H., Hisamitsu S. Age-related changes in the subsets and functions of human T lymphocytes. J. Immunol. 1978; 121: 1773
  • Naliboff B. D., Benton D., Soloman G. F., Morley J. E., Fahey J. L., Bloom E. T., Makinodan T., Gilmore S. L. Immunological changes in young and old adults during brief laboratory stress. Psychosom. Med. 1991; 53: 121
  • Feldman R. D., Limbird L. E., Nadeau J., Robertson D., Wood A. J. Alterations in leukocyte beta-receptor affinity with aging. A potential explanation for altered beta-adrenergic sensitivity in the elderly. N. Engl. J. Med. 1984; 310(13)815
  • Gietzen D. W., Goodman T. A., Weiler P. G., Graf K., Fregeau D. R., Magliozzi J. R., Doran A. R., Maddock R. J. Beta receptor density in human lymphocyte membranes: changes in aging. J. Gerontol. 1991; 46: B130
  • Felten S. Y., Bellinger D. L., Collier T. J., Coleman P. D., Felten D. L. Decreased sympathetic innervation of spleen in aged Fischer 344 rats. Neurobiol. Aging 1987; 159
  • Cross R. J., Campbell J. L., Markesbery W. R., Roszman T. L. Transplantation of pituitary grafts fail to restore immune function and to reconstitute the thymus glands of aged mice. Mechan. Ageing Dev. 1990; 56: 11
  • Rossolini G., Viticchi C., Basso A., Zaia A., Piantanelli L. Thymus-induced recovery of age related decrease of brain cortex a- and β-adrenoceptors. Int. J. Neurosci. 1991; 59: 143
  • Bovbjerg D. H., Kim Y. T., Schwab R., Schmitt K., DeBlasio T., Weksler M. E. “Cross-wiring” of the immune response in old mice: increased au toantibody response despite reduced antibody response to nominal antigen. Cell. Immunol. 1991; 137: 36
  • Goya R. G. The immune-neuroendocrine homeo static network and aging. Gerontology 1991; 37: 208
  • Bellinger D. L., Lorton D., Felten S. Y., Felten D. L. Noradrenergic and peptidergic neural immune interactions in aging. Stress and the Aging Brain, G. Nappi. Raven Press, New York 1990; 143
  • Maes M., Bosmans E., Suy E., Minner B., Raus J. Impaired lymphocyte stimulation by mitogens in severely depressed patients. A complex interface with HPA-axis hyperfunction, noradrener-gic activity, and the ageing process. Br. J. Psychol. 1989; 155: 793
  • Halper J. P., Brown R. P., Sweeney J. A., Kocsis J. H., Peters A., Mann J. Blunted β-adrener gic responsivity of peripheral blood mononuclear cells in endogenous depression. Arch. Gen. Psychiat. 1988; 45: 241
  • Jeanningros R., Mazzola P., Azorin J. M., Samuelian-Massa C., Tissot R. β-Adreno ceptor density of intact mononuclear leukocytes in subgroups of depressive disorders. Biol. Psychiatr. 1991; 29: 789
  • Stein M., Miller A. H., Trestman R. L. Depression, the immune system, and health and illness. Arch. Gen. Psychiat. 1991; 48: 171
  • Stein M., Miller A. H., Trestman R. L. Depression and the immune system. Psychoneuro immunology. Academic Press, New York 1991; 897
  • Braun W., Rega M. J. Adenyl cyclase-stimu lating catecholamines as modifiers of antibody formation. Immunol. Commun. 1972; 1: 523
  • Burchiel S. W., Melmon K. L. Augmentation of thein vitro humoral immune response by pharmacologic agents. II. The comparison of the effects of antiproliferative agents with DBcAMP. Immunopharmacology 1979; 1: 151
  • Sanders V. M., Munson A. E. Beta adrenoceptor mediation of the enhancing effect of norepinephrine on the murine primary antibody responsein vitro. J. Pharmacol. Exp. Ther. 1984; 230(1)183
  • Sanders V. M., Munson A. E. Kinetics of the enhancing effect produced by norepinephrine and terbutaline on the murine primary antibody responsein vitro. J. Pharmacol. Exp. Ther. 1984; 231β: 527
  • Kouassi E., Li Y. S., Boukhris W., Millet L., Revillard J.-P. Opposite effects of the catecholamines dopamine and norepinephrine on murine polyclonal B-cell activation. Immunopharmacology 1988; 16: 125
  • Melmon K. L., Bourne H. R., Weinstein Y., Shearer G. M., Kram J., Bauminger S. Hemolytic plaque formation by leukocytesin vitro: control by vasoactive amines. J. Clin. Invest. 1974; 53: 13
  • Sanders V. M., Munson A. E. Role of alpha adrenoceptor activation in modulating the murine primary antibody responsein vitro. J. Pharmacol. Exp. Ther. 1985; 232(2)395
  • Sanders V. M., Powell-Oliver F. E. β2-adreno-ceptor stimulation increases the number of antigen specific precursor B lymphocytes that differentiate into IgM-secreting cells without affecting burst size. J. Immunol. 1992; 148(6)1822
  • Fuchs B. A., McCall C. O., Munson A. E. Enhancement of the murine primary antibody response by phenylephrinein vitro. Drug Chem. Toxicol. 1991
  • Brosnan C. F., Goldmuntz E. A., Cainmer W., Factor S. M., Bloom B. R., Norton W. T. Prazosin, and α-adrenergic receptor antagonist, suppresses experimental autoimmune encephalomyelitis in the Lewis rat. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 5915
  • Hadden J. W., Hadden E. M., Middleton E. Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell. Immunol. 1970; 1: 583
  • Coderre T. J., Basbaum A. I., Helms C., Levine J. D. High-dose epinephrine acts at α2-adrenoceptors to suppress experimental arthritis. Brain Res. 1991; 544: 325
  • Rall T. W. Role of adenosine 3′,5′-monophosphate (cyclic AMP) in actions of catecholamines. Pharmacol. Rev. 1972; 24: 399
  • Garcia-Sainz J. A., Hoffman B. B., Li S., Lefkowitz R. J., Fain J. N. Role of alpha 1 adrenoceptors in the turnover of phosphatidylinositol and the alpha 2 adrenoceptors in the regulation of cyclic AMP in hamster adipocytes. Life Sci. 1980; 27: 953
  • Hahn W. C., Rosenstein Y., Burakoff S. J., Bierer B. E. Interaction of CD2 with its ligand lymphocyte function-associated antigen-3 induces adenosine 3′,5′-cyclic monophosphate production in T lymphocytes. J. Immunol. 1991; 147: 14
  • Cambier J. C., Newell M. K., Justement L. B., McGuire J. C., Leach K. L., Chen Z. Z. Ia binding ligands and cAMP stimulate nuclear translo-cation of PKC in B lymphocytes. Nature 1987; 327: 629
  • Feuerstein N., Lindsberg M. L., Tung L., Francis M. L., Mond J. J. Identification of a prominent 85-kDa cAMP-dependent phosphoprotein associated with late Gl phase in mitogen-stimulated B lymphocytes. J. Biol. Chem. 1991; 266: 4746
  • Bishop G. A. Requirements of class II-mediated B cell differentiation for Class II crosslinking and cyclic AMP. J. Immunol. 1991; 147: 1107
  • Pollok K. E., O'Brien V., Marshall L., Olson J. W., Noelle R. J., Snow E. C. The development of competence in resting B cells: the induction of cyclic AMP and ornithine decarboxylase activity after direct contact between B and T helper cells. J. Immunol. 1991; 146: 1633
  • Gilbert K. M., Hoffman M. K. cAMP is an essential signal in the induction of antibody production by B cells but inhibits helper function of T cells. J. Immunol. 1985; 135(3)2084
  • Vasquez A., Auffredou M. T., Galanaud P., Leca G. Modulation of IL-2- and IL-4-dependent human B cell proliferation by cyclic AMP. J. Immunol. 1991; 146: 4222
  • Klaus G. G. B., Vondy K., Holman M. Selective effects of cholera toxin on the activation of mouse B cells by different polyclonal activators. Eur. J. Immunol. 1987; 17: 1787
  • Roper R. L., Conrad D. H., Brown D. M., Warner G. L., Phipps R. P. Prostaglandin E2 promotes IL-4-induced IgE and IgGl synthesis. J. Immunol. 1990; 145: 2644
  • Dugas B., Paul-Eugene N., Genot E., Menica-Huerta J. M., Braquet P., Kolb J. P. Effect of bacterial toxins on human B cell activation. II. Mitogenic activity of the B subunit of cholera toxin. Eur. J. Immunol. 1991; 21: 495
  • Warner G. L., Davies S., Scott D. W. Cholera toxin-sensitive and insensitive signalling via surface Ig. J. Immunol. 1989; 143: 458
  • Francis M. L., Moss J., Fitz T. A., Mond J. J. cAMP-independent effects of cholera toxin on B cell activation. 1. A possible role for cell surface gan-glioside Gml, in B cell activation. J. Immunol. 1990; 145: 3162
  • Anastassiou E. D., Yamada H., Francis M. L., Mond J. J., Tsokos G. C. Effects of cholera toxin on B cells. Cholera toxin induces B cell surface DR expression while it inhibits anti-μ antibody-induced cell proliferation. J. Immunol. 1990; 145: 2375
  • Patke C. L., Orson F. M., Shearer W. T. Cyclic AMP-mediated modulation of immunoglobu-lin production in B cells by prostaglandin El. Cell. Immunol. 1991; 137: 36
  • Stein S. H., Phipps R. P. Antigen-specific IgG2a production in response to prostaglandin E2, immune complexes, and IFN-γ. J. Immunol. 1991; 147: 2500
  • Feldman R. D., Hunninghake G. W., McArdle W. β-Adrenergic receptor-mediated suppression of interleukin 2 receptors in human lymphocytes. J. Immunol. 1987; 139(10)3355
  • Wacholtz M. C., Minakuchi R., Lipsky P. E. Characterization of the 3′.5′-cyclic adenosine mono-phosphate-mediated regulation of IL2 production by T cells and Jurkat cells. Cell. Immunol. 1991; 135: 285
  • Carlson S. L., Brooks W. H., Roszman T. L. Neurotransmitter-lymphocyte interactions: dual receptor modulation of lymphocyte proliferation and cAMP production. J. Neuroimmunol. 1989; 24: 155
  • Johnson K. W., Smith K. A. cAMP Regulation of IL-2 receptor expression. Selective modulation of the p75 subunit. J. Immunol. 1990; 145(4)1144
  • Parker C. W. Role of cyclic nucleotides in regulating lymphocytes. Ann. N.Y. Acad. Sci. 1979; 332: 255
  • Wang T., Sheppard J., Foker J. Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis. Science 1978; 201(14)155
  • Yamamoto I., Webb D. R. Antigen stimulated changes in cyclic nucleotide levels in the mouse. Proc. Natl. Acad. Sci. U.S.A. 1975; 72(6)2320
  • Plescia O. J., Yamamoto I., Shimamura T. Cyclic AMP and immune responses: changes in the splenic level of cyclic AMP during the response of mice to antigen. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 888
  • Chaplin D. D., Wedner H. J., Parker C. W. Protein phosphorylation in human peripheral blood lymphocytes. II. Phosphorylation of endogenous plasma membrane and cytoplasmic proteins. Biochem. J. 1979; 182: 537
  • Ortez R. A. Cyclic AMP-dependent content of murine splenic T and B lymphocytes and non-lym-phoid tis. Immunol. Comm. 1982; 11: 227
  • De Blasi A., Lipartiti M., Algeri S., Sacchetti G., Constantini C., Fratelli M., Cotecchia S. Stress induced desensitization of lymphocyte β-adrenoceptors in young and aged rats. Pharmacol. Biochem. Behav. 1986; 24: 991
  • Mormede P., Dantzer R., Michaud B., Kelley K. W., Le Moal M. Influence of stressor predictability and behavioral control on lymphocyte reactivity, antibody responses and neuroendocrine activation in rats. Physiol. Behav. 1988; 43: 577
  • Sheridan J. F., Feng N., Bonneau R. H., Allen C. M., Huneycutt B. S., Glaser R. Restraint stress differentially affects anti-viral cellular and humoral immune responses in mice. J. Neuroimmunol. 1991; 31: 245

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.