266
Views
142
CrossRef citations to date
0
Altmetric
Research Article

Pathogenetic Studies of Hexane and Carbon Disulfide Neurotoxicity

, , , &
Pages 91-112 | Published online: 25 Sep 2008

References

  • Spencer P. S., Schaumburg H. H., Sabri M. I., Veronesi B. V. The enlarging view of hexacarbon neurotoxicity. CRC Crit. Rev. Toxicol. 1980; 7: 279
  • Beauchamp R. O., Bus J. S., Popp J. A., Boreiko C. J., Golberg L. A critical review of the literature on carbon disulfide toxicity. CRC Crit. Rev. Toxicol. 1983; 11: 169
  • Herskowitz A., Ishii N., Schaumburg H. n-Hexane neuropathy: a syndrome occurring as a result of industrial exposure. N. Engl. J. Med. 1971; 285: 82
  • Yamada S. An occurrence of polyneuritis byn-hexane in the polyethylene laminating plants. Jpn. J. Ind. Health 1964; 6: 192
  • Rizzuto W., Terzian H., Galiazzo-Rizzuto S. Toxic polyneuropathies in Italy due to leather cement poisoning in shoe industries. J. Neurol. Sci. 1977; 31: 343
  • Saida K., Mendell J. R., Weiss H. S. Peripheral nerve changes induced by methyln-butyl ketone and potentiation by methyl ethyl ketone. J. Neuropathol. Exp. Neurol. 1976; 35: 207
  • Altenkirch H., Mager J., Stoltenburg G., Helmbrecht J. Toxic polyneuropathies after sniffing a glue thinner. J. Neurol. 1977; 214: 137
  • Goto I., Matsumura M., Inoue N., Murai Y., Shida K., Santa T., Kuroiwa Y. Toxic polyneuropathy due to glue sniffing. J. Neurol. Neurosurg. Psychiatry 1974; 37: 848
  • Korobkin R., Asbury A. K., Sumner A. J., Nielsen S. L. Glue-sniffing neuropathy. Arch. Neurol. 1975; 32: 158
  • Towfighi J., Gonatas N. K., Pleasure D., Cooper H. S., McCree L. Glue sniffer's neuropathy. Neurology 1976; 26: 238
  • Allen N., Mendell J. R., Billmaier J., Fontaine R. E., O'Neill J. Toxic polyneuropathy due to methyln-butyl ketone, an industrial outbreak. Arch. Neurol. 1975; 32: 209
  • Allen N. Identification of methyln-butyl ketone as the causative agent. Experimental and Clinical Neurotoxicology, P. S. Spencer, H. H. Schaumburg. Williams and Wilkins, Baltimore 1980; 834
  • Billmaier D., Yee H. T., Allen N., Craft B., Williams N., Epstein S., Fontaine R. Peripheral neuropathy in a coated fabrics plant. J. Occup. Med. 1974; 16: 665
  • Altenkirch H., Stoltenburg G., Wagner H. M. Experimental studies on hydrocarbon neuropathies. J. Neurol. 1978; 219: 159
  • Spencer P. S., Bischoff M. C., Schaumburg H. H. On the specific molecular configuration of neurotoxic aliphathic hexacarbon compounds causing central-peripheral distal axonopathy. Toxicol. Appl. Pharmacol. 1978; 44: 17
  • DiVincenzo G. D., Kaplan C. J., Dedinas J. Characterization of the metabolites of methyln-butyl ketone, methyliso-butyl ketone, and methyl ethyl ketone in guinea pig serum and their clearance. Toxicol. Appl. Pharmacol. 1976; 36: 511
  • Seppalainen A. M., Haltia M. Carbon disulfide. Experimental and Clinical Neurotoxicology, P. S. Spencer, H. H. Schaumburg. Williams and Wilkins, Baltimore 1980; 356
  • Aaserud O., Hommeren O. J., Tvedt B., Nakstad P., Mowe G., Efskind J., Russell D., Jorgensen E. B., Nyberg-Hansen R., Rootwelt K., Gjerstad L. Carbon disulfide exposure and neurotoxic sequelae among viscose rayon workers. Am. J. Ind. Med. 1990; 18: 25
  • Aaserud O., Russell D., Nyberg-Hansen R., Jergensen E. B., Nakstad P., Hommeren O. J., Tvedt B., Gjerstad L. Regional cerebral blood flow after long-term exposure to carbon disulfide. Acta Neurol. Scand. 1992; 85: 266
  • Egaland G. M., Burkhart G. A., Schnorr T. M., Hornung R. W., Fajen J. M., Lee S. T. Effects of exposure to carbon disulfide in low density lipoprotein cholesterol concentration and diastolic blood pressure. Br. J. Indust. Med. 1992; 49: 287
  • Vanhoorne M., DeBacquer D., DeBacker G. Epidemiologic study of the cardiovascular effects of carbon disulfide. Int. J. Epidem. 1992; 21: 745
  • Lewey F. H., Alpers B. J., Bellet S., Creskoff A. J., Drabkin D. L., Ehrich W. E., Frank J. H., Jonas L., McDonald R., et al. Experimetal chronic carbon disulfide poisoning in dogs. A clinical, biochemical and pathological study. J. Ind. Hyg. Toxicol. 1941; 23: 415
  • Richter R. Degeneration of the basal ganglia in monkeys from chronic carbon disulfide poisoning. J. Neuropath. Exp. Neurol. 1945; 4: 324
  • Yamamura Y. n-Hexane polyneuropathy. Folia. Psychiat. Neurol. Jpn. 1969; 23: 45
  • Gottfried M. R., Graham D. G., Morgan M., Casey H. W., Bus J. S. The morphology of carbon disulfide neurotoxicity. Neurotoxicology 1985; 6: 89
  • Schaumburg H. H., Spencer P. S. Degeneration in central and peripheral nervous systems produced by puren-hexane: an experimental study. Brain 1976; 99: 183
  • Spencer P. S., Schaumburg H. H. Experimental neuropathy produced by 2,5-hexanedione—a major metabolite of the neurotoxic industrial solvent methyln-butyl ketone. J. Neurol. Neurosurg. Psychiatry 1975; 38: 771
  • Spencer P. S., Schaumburg H. H. Ultrastructural studies of the dying-back process. IV. Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathies. J. Neuropathol. Exp. Neurol. 1977; 36: 300
  • Spencer P. S., Schaumburg H. H. Ultrastructural studies of the dying-back process. III. The evolution of experimental peripheral giant axonal degeneration. J. Neuropathol. Exp. Neurol. 1977; 36: 276
  • Cavanagh J. B., Bennetts R. J. On the pattern of changes in the rat nervous system produced by 2,5-hexanediol. A topographical study by light microscopy. Brain 1981; 104: 297
  • Couri D., Abdel-Rahman M. S., Hetland L. B. Biotransformation ofn-hexane and methyln-butyl ketone in guinea pigs and mice. Am. Ind. Hyg. Assoc. J. 1978; 39: 295
  • Krasavage W. J., O'Donoghue J. L., DiVincenzo G. D., Terhaar C. J. The relative neurotoxicity of methyl-n-butyl ketone,n-hexane and their metabolites. Toxicol. Appl. Pharmacol. 1980; 52: 433
  • Robertson P. J., White E. L., Bus J. S. Effects of methyl ethyl ketone pretreatment on hepatic mixed-function oxidase activity and on in vivo metabolism ofn-hexane. Xenobiotica 1989; 19: 721
  • Lam C. W., DiStefano V. Behavior and characterization of blood carbon disulfide in rats after inhalation. Toxicol. Appl. Pharmacol. 1982; 64: 327
  • Leonis J. La reaction des fonctions amines avec le sulfure de carbone. C. R. Trav. Lab. Carlsberg, Ser. Chim. 1948; 26: 315
  • Valentine W. M., Amarnath V., Graham D. G., Anthony D. C. Covalent cross-linking of proteins by carbon disulfide. Chem. Res. Toxicol. 1992; 5: 254
  • Lam C. W., DiStefano V. Blood-bound carbon disulfide: an indicator of carbon disulfide exposure, and its accumulation in repeatedly exposed rats. Toxicol. Appl. Pharmacol. 1983; 70: 402
  • Lam C. W., DiStefano V. Characterization of carbon disulfide binding in blood and to other biological substances. Toxicol. Appl. Pharmacol. 1986; 86: 235
  • Campbell L., Jones A. H., Wilson H. K. Evaluation of occupational exposure to carbon disulfide by blood, exhaled air, and urine analysis. Am. J. Ind. Med. 1985; 8: 143
  • Meuling W. J., Bragt P. C., Braun C. L. Biological monitoring of carbon disulfide. Am. J. Ind. Med. 1990; 17: 247
  • Rosier J., Veulemans H., Masschelein R., Vanhoorne M., Van P. C. Experimental human exposure to carbon disulfide. II. Urinary excretion of 2-thiothiazolidine-4-carboxylic acid (TTCA) during and after exposure. Int. Arch. Occup. Environ. Health 1987; 59: 243
  • Kitamura S., Ferrari F., Vides G., Filho D. C. M. Biological monitoring of workers occupationally exposed to carbon disulfide in a rayon plant in Brazil: validity of 2-thiothiazolidine-4-carboxylic acid (TTCA) in urine samples taken in different times, during and after the real exposure period. Int. Arch. Occup. Health 1993; 65(Suppl)S1–77
  • De Matteis F., Seawright A. A. Oxidative metabolism of carbon disulfide by the rat: effect of treatments which modify the liver toxicity of carbon disulfide. Chem. Biol. Interactions 1973; 7: 375
  • Masuda Y., Yasoshima M. Loss of 3-methyl-cholanthrene-inducible form of cytochrome P-450 in liver microsomes following administration of carbon disulfide in C57BL/6 Cr mice. Biochem. Pharmacol. 1988; 37: 2363
  • Catignani G. L., Neal R. A. Evidence for formation of a protein bound hydrodisulfide resulting from the microsomal mixed function oxidase catalyzed desulfuration of carbon disulfide. Biochem. Biophys. Res. Comm. 1975; 65: 629
  • Savolainen H., Vainio H. High binding of CS2 sulfur in spinal cord axonal fraction. Acta Neuropath. (Berlin) 1976; 36: 251
  • Graham D. G., Gottfried M. R. Cross-species extrapolation in hydrocarbon neuropathy. Neurobehav. Toxicol. Teratol. 1984; 6: 433
  • Spencer P. S., Sabri M. I., Moore C. L. Does a defect in energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies?. Ann. Neurol. 1979; 5: 683
  • Graham D. G., Abou-Donia M. B. Studies of the molecular pathogenesis of hexane neuropathy. I. Evaluation of the inhibition of glyceraldehyde-3-phosphate dehydrogenase by 2,5-hexanedione. J. Toxicol. Environ. Health 1980; 6: 621
  • Gillies P. J., Norton R. M., Bus J. S. Effect of 2,5-hexanedione on lipid biosynthesis on sciatic nerve and brain of the rat. Toxicol. Appl. Pharmacol. 1980; 54: 210
  • Brieger H. Carbon disulfide in the living organism — retention, biotransformation, and pathophysiologic effects. Toxicology of Carbon Disulfide, H. Brieger. Excerpta Medica Foundation, Amsterdam 1967; 27
  • Mc Kenna M. J., DiStefano V. Carbon disulfide. II. A proposed mechanism for the action of carbon disulfide on dopamine β-hydroxylase. J. Pharmacol. Exp. Ther. 1977; 202: 253
  • Teisinger J. New advances in the toxicology of carbon disulfide. Am. Ind. Hyg. Assoc. J. 1974; 35: 55
  • Schoentai R., Cavanagh J. B. Mechanisms involved in the “dying-back” process — an hypothesis implicating coenzymes. Neuropathol. Appl. Neurobiol. 1977; 3: 145
  • Savolainen H., Lehtonen E., Vainio H. Carbon disulfide binding to rat spinal neurofilaments. Acta Neuropath. (Berlin) 1977; 37: 219
  • Graham D. G., Anthony D. C., Boekelheide K., Maschmann N. A., Richards R. G., Wolfram J. W., Shaw B. R. Studies of the molecular pathogenesis of hexane neuropathy. II. Evidence that pyrrole derivatization of lysyl residues leads to protein crosslinking. Toxicol. Appl. Pharmacol. 1982; 64: 415
  • De Caprio A. P., Olajos E. J., Weber P. Co-valent binding of a neurotoxicn-hexane metabolite: conversion of primary amines to substituted pyrrole adducts by 2,5-hexanedione. Toxicol. Appl. Pharmacol. 1982; 65: 440
  • Amarnath V., Anthony D. G., Amarnath K., Valentine W. M., Wetterau L. A., Graham D. G. Intermediates in the Paal-Knorr synthesis of pyrroles. J. Org. Chem. 1991; 56: 6924
  • Szakal-Quin G., Graham D. G., Millington D. S., Maltby D. A., McPhail A. T. Stereoisomer effects on the Paal-Knorr synthesis of pyrroles. J. Org. Chem. 1986; 51: 621
  • De Caprio A. P. Molecular mechanisms of diketone neurotoxicity. Chem. Biol. Interactions 1985; 54: 257
  • Sayre L. M., Autilio-Gambetti L., Gambetti P. Pathogenesis of experimental giant neuro-filamentous axonopathies: a unified hypothesis based on chemical modification of neurofilaments. Brain. Res. Rev. 1985; 10: 69
  • Carden M. J., Lee V. M., Schlaepfer W. W. 2,5-Hexanedione neuropathy is associated with the covalent crosslinking of neurofilament proteins. Neurochem. Pathol. 1986; 5: 25
  • Graham D. G., Szakal-Quin G., Priest J. W., Anthony D. C. In vitro evidence that covalent crosslinking of neurofilaments occurs in γ-diketone neuropathy. Proc. Natl. Acad. Sci. U.S.A. 1985; 81: 4979
  • Griffin J. W., Anthony D. C., Fahnestock K. E., Hoffman P. N., Graham D. G. 3,4-dimethyl-2,5-hexanedione impairs the axonal transport of neurofilament proteins. J. Neurosci. 1984; 4: 1516
  • Lapadula D. M., Irwin R. D., Suwita E., Abou-Donia M. B. Cross-linking of neurofilament proteins of rat spinal cordin vivo after administration of 2,5-hexanedione. J. Neurochem. 1986; 46: 1843
  • St. Clair M. B. G., Anthony D. C., Wikstrand C. J., Graham D. G. Neurofilament protein crosslinking in γ-diketone neuropathy:in vitro andin vivo studies using the seaworm. Myxicola infundibulum, Neurotoxicology 1989; 10: 743
  • Anthony D. C., Boekelheide K., Anderson C. W., Graham D. G. The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. II. Dimethyl substitution accelerates pyrrole formation and protein crosslinking. Toxicol. Appl. Pharmacol. 1983; 71: 372
  • Anthony D. C., Boekelheide K., Graham D. G. The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. I. Accelerated clinical neuropathy is accompanied by more proximal axonal swellings. Toxicol. Appl. Pharmacol. 1983; 71: 362
  • Anthony D. C., Giangaspero F., Graham D. G. The spatio-temporal pattern of the axonopathy associated with the neurotoxicity of 3,4-dimethyl-2,5-hexanedione in the rat. J. Neuropath. Exp. Neurol. 1983; 42: 548
  • Graham D. G., Anthony D. C., Szakal-Quin G., Gottfried M. R., Boekelheide K. Covalent crosslinking of neurofilaments in the pathogenesis ofn-hexane neuropathy. Neurotoxicology 1985; 6: 55
  • Gold B. G., Griffin J. W., Price D. L., Hoffman P. N. Primary and secondary changes in axonal transport in neurofibrillary disorders. The Cytoskeleton: A Target for Toxic Agents, T. W. Clarkson, P. R. Sager, T. L. M. Syversen. Plenum Press, New York 1986; 119
  • Monaco S., Wongmongkolrit T., Shearson C. M., Patton A., Schaetzle B., Autilio-Gambetti L., Gambetti P., Sayre L. M. Giant axonopathy characterized by intermediate location of axonal enlargements and acceleration of neurofilament transport. Brain Res. 1990; 519: 73
  • Center M. B., Szakal-Quin G., Anderson C. W., Anthony D. C., Graham D. G. Evidence that pyrrole formation is a pathogenetic step in gammadiketone neuropathy. Toxicol. Appl. Pharmacol. 1987; 87: 351
  • Rosenberg C. K., Center M. B., Szakal Q. G., Anthony D. C., Graham D. G. d,l-versus meso-3,4-dimethyl-2,5-hexanedione: a morphometric study of the proximo-distal distribution of axonal swellings in the anterior root of the rat. Toxicol. Appl. Pharmacol. 1987; 87: 363
  • De Caprio A. P., Fowke J. H. Limited and selective adduction of carbonyl-terminal lysines in the high molecular weight neurofilament proteins by 2,5-hexanedione. in vitro. Brain Res. 1992; 586: 219
  • Rosenberg C. K., Anthony D. C., Szakal Q. G., Genter M. B., Graham D. G. Hyperbaric oxygen accelerates the neurotoxicity of 2,5-hexanedione. Toxicol. Appl. Pharmacol. 1987; 87: 374
  • StClair M. B. G., Amarnath V., Moody M. A., Anthony D. C., Anderson C. W., Graham D. G. Pyrrole oxidation and protein cross-linking as necessary steps in the development of γ-diketone neuropathy. Chem. Res. Toxicol 1988; 1: 179
  • Ansbacher L. E., Bosch E. P., Cancilla P. A. Disulfiram neuropathy: a neurofilamentous distal axonopathy. Neurology 1982; 32: 424
  • Bergouignan F. X., Vital C., Henry P., Eschapasse P. Disulfiram neuropathy. J. Neurol. 1988; 235: 382
  • Bilbao J. M., Briggs S. J., Gray T. A. Filamentous axonopathy in disulfiram neuropathy. Ultrastruc. Pathol. 1984; 7: 295
  • Brugnone F., Marnelli G., Zotti S., Zanella I., De Paris P., Caroldi S., Betta A. Blood concentration of carbon disulfide in “normal” subjects and in alcoholic subjects treated with disulfiram. Br. J. Ind. Med. 1992; 49: 658
  • Valentine W. M., Amarnath V., Amarnath K., Rirnmele F., Graham D. G. Carbon disulfide-mediated protein cross-linking byN,N-diethyl-dithioearbamate. Chem. Res. Toxicol. 1995; 8: 96
  • Amarnath V., Anthony D. C., Valentine W. M., Graham D. G. The molecular mechanism of the carbon disulfide mediated cross-linking of proteins. Chem. Res. Toxocol. 1991; 4: 148
  • De Caprio A. P., Olajas E. S., Chen X., Fowke J. H., Zhu M., Bank S. Characterization of isothiocyanates, thioureas, and other lysine adduction products in carbon disulfide-treated peptides and protein. Chem. Res. Toxicol. 1992; 5: 496
  • Joris S. J., Aspilla K. I., Chakrabarti C. L. Decomposition of monoalkyl dithiocarbmates. Anal. Chem. 1970; 42: 647
  • Valentine W. M., Graham D. G., Anthony D. C. Covalent cross-linking of erythrocyte spectrin by carbon disulfide. in vivo, Toxicol. Appl. Pharmacol. 1992; 121: 71
  • Riihimaki V., Kivisto H., Peltonen K., Helpio E., Aitio A. Assessment of exposure to carbon disulfide in viscose production workers from urinary 2-thiothiazolidine-4-carboxylic acid determinations. Am. J. Indust. Med. 1992; 22: 85
  • Phillips M. Detection of carbon disulfide in breath and air: A possible new risk factor for coronary artery disease. Int. Arch. Occup. Environ. Health 1992; 64: 119
  • Kawai T., Yasugi T., Mizunuma K., Horiguchi S., Uchida Y., Iwani O., Iguchi H., Ideka M. Dose-dependent increase in 2,5-hexanedione in the urine of workers exposed ton-hexane. Int. Arch. Occup. Environ. Health 1991; 63: 285
  • Saito I., Shibata E., Huang J., Hisanaga N., Ono Y., Takeuchi Y. Determination of urinary 2,5-hexanedione concentration by an improved analytical method as an index of exposure ton-hexane. Br. J. Ind. Med. 1991; 48: 568
  • Cavanagh J. B. personal communication
  • Anthony D. C., Amarnath V., Simons G. R., Clair M. B. G., Moody M. A., Graham D. G. Accumulation of pyrrole residues as the molecular basis of cumulative neurotoxic dose of 2,5-hexanedione. J. Neuropathol. Exp. Neurol. 1988; 47: 325
  • Amarnath V., Valentine W. M., Amarnath K., Eng M. A., Graham D. G. The mechanism of nucleophilic substitution of alkylpyrroles in the presence of oxygen. Chem. Res. Toxicol. 1994; 7: 56
  • Pyle S. J., Amarnath V., Graham D. G., Anthony D. C. The role of pyrrole formation in the alteration in neurofilament transport induced during exposure to 2,5-hexanedione. J. Neuropathol. Exp. Neurol. 1992; 51: 451
  • Pyle S. J., Amarnath V., Graham D. G., Anthony D. C. Acceleration of neurofilament transport following 2,5-hexanedione exposure is a persistent response of the axon. J. Neuropathol. Exp. Neurol. 1991; 50: 321
  • Pyle S. J., Amarnath V., Graham D. G., Anthony D. C. Decreased levels of the high molecular weight subunit of neurofilaments and accelerated neurofilament transport during the recovery phase of 2,5-hexanedione exposure. Cell Motil. Cytoskel 1993; 26: 133
  • Valentine W. M., Pyle S. J., Anthony D. C., Graham D. G. Covalent cross-linking of neurofilaments by carbon disulfide in vitro. The Toxicologist 1993; 13: 125
  • Clark A. W., Griffin J. W., Price D. L. The axonal pathology in chronic IDPN intoxication. J. Neuropathol. Exp. Neurol. 1980; 39: 42
  • Griffin J. W., Price D. L. Proximal axonopathies induced by toxic chemicals. Experimental and Clinical Neurotoxicology, P. S. Spencer, H. H. Schaumburg. Williams and Wilkins, Baltimore 1980; 161
  • Griffin J. W., Price D. L. Demyelination in experimental IDPN and hexacarbon neuropathies: evidence for axonal influence. Lab. Invest. 1981; 45: 130
  • Moser V. C., Boyes W. K. Prolonged neurobehavioral and visual effects of short-term exposure to 3,3′-iminodipropionitrile (IDPN) in rats. Fundam. Appl. Toxicol. 1993; 21: 277
  • Denlinger R. H., Anthony D. C., Amarnath V., Graham D. G. Comparison of location, severity, and dose response of proximal axonal lesions induced by 3,3′-iminodiproprionitrile and deuterated analogues. J. Neuropathol. Exp. Neurol. 1992; 51: 569

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.