670
Views
37
CrossRef citations to date
0
Altmetric
Review Article

Presynaptic filament dynamics in homologous recombination and DNA repair

, , &
Pages 240-270 | Received 09 Dec 2010, Accepted 24 Mar 2011, Published online: 20 May 2011

References

  • Aboussekhra A, Chanet R, Adjiri A, Fabre F. 1992. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to prokaryotic RecA proteins. Mol Cell Biol 12:3224–3234.
  • Agarwal S, van Cappellen WA, Guénolé A, Eppink B, Linsen SE, Meijering E, Houtsmuller A, Kanaar R, Essers J. 2011. ATP-dependent and independent functions of Rad54 in genome maintenance. J Cell Biol 192:735–750.
  • Aguilera A, Klein HL. 1988. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790.
  • Amitani I, Baskin RJ, Kowalczykowski SC. 2006. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol Cell 23:143–148.
  • Anderson DG, Kowalczykowski SC. 1997a. The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev 11:571–581.
  • Anderson DG, Kowalczykowski SC. 1997b. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90:77–86.
  • Ando RA, Morrical SW. 1998. Single-stranded DNA binding properties of the UvsX recombinase of bacteriophage T4: binding parameters and effects of nucleotides. J Mol Biol 283:785–796.
  • Antony E, Tomko EJ, Xiao Q, Krejci L, Lohman TM, Ellenberger T. 2009. Srs2 disassembles Rad51 filaments by a protein–protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell 35:105–115.
  • Arenson TA, Tsodikov OV, Cox MM. 1999. Quantitative analysis of the kinetics of end-dependent disassembly of RecA filaments from ssDNA. J Mol Biol 288:391–401.
  • Aylon Y, Liefshitz B, Bitan-Banin G, Kupiec M. 2003. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol 23:1403–1417.
  • Bachrati CZ, Borts RH, Hickson ID. 2006. Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase. Nucleic Acids Res 34:2269–2279.
  • Barry J, Alberts B. 1994. A role for two DNA helicases in the replication of T4 bacteriophage DNA. J Biol Chem 269:33063–33068.
  • Baumann P, Benson FE, West SC. 1996. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87:757–766.
  • Bedinger P, Hochstrasser M, Jongeneel CV, Alberts BM. 1983. Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34:115–123.
  • Beernink HT, Morrical SW. 1998. The uvsY recombination protein of bacteriophage T4 forms hexamers in the presence and absence of single-stranded DNA. Biochemistry 37:5673–5681.
  • Beernink HT, Morrical SW. 1999. RMPs: recombination/replication mediator proteins. Trends Biochem Sci 24:385–389.
  • Benson FE, Baumann P, West SC. 1998. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391:401–404.
  • Benson FE, Stasiak A, West SC. 1994. Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J 13:5764–5771.
  • Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ. 2001. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374–378.
  • Bianco PR, Kowalczykowski SC. 2000. Translocation step size and mechanism of the RecBC DNA helicase. Nature 405:368–372.
  • Bleuit JS, Ma Y, Munro J, Morrical SW. 2004. Mutations in a conserved motif inhibit single-stranded DNA binding and recombination mediator activities of bacteriophage T4 UvsY protein. J Biol Chem 279:6077–6086.
  • Bleuit JS, Xu H, Ma Y, Wang T, Liu J, Morrical SW. 2001. Mediator proteins orchestrate enzyme–ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc Natl Acad Sci USA 98:8298–8305.
  • Bork JM, Cox MM, Inman RB. 2001. The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J 20:7313–7322.
  • Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID. 2003. Functional interaction between the Bloom’s syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D). J Biol Chem 278:48357–48366.
  • Brenneman MA, Wagener BM, Miller CA, Allen C, Nickoloff JA. 2002. XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination. Mol Cell 10:387–395.
  • Brenner SL, Mitchell RS, Morrical SW, Neuendorf SK, Schutte BC, Cox MM. 1987. recA protein-promoted ATP hydrolysis occurs throughout recA nucleoprotein filaments. J Biol Chem 262:4011–4016.
  • Bugreev DV, Brosh RM Jr, Mazin AV. 2008. RECQ1 possesses DNA branch migration activity. J Biol Chem 283:20231–20242.
  • Bugreev DV, Hanaoka F, Mazin AV. 2007a. Rad54 dissociates homologous recombination intermediates by branch migration. Nat Struct Mol Biol 14:746–753.
  • Bugreev DV, Mazina OM, Mazin AV. 2006. Rad54 protein promotes branch migration of Holliday junctions. Nature 442:590–593.
  • Bugreev DV, Yu X, Egelman EH, Mazin AV. 2007b. Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev 21:3085–3094.
  • Bugreev DV, Mazin AV. 2004. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc Natl Acad Sci USA 101:9988–9993.
  • Bujalowski W, Lohman TM. 1986. Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25:7799–7802.
  • Carreira A, Hilario J, Amitani I, Baskin RJ, Shivji MK, Venkitaraman AR, Kowalczykowski SC. 2009. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 136:1032–1043.
  • Cazaux C, Larminat F, Villani G, Johnson NP, Schnarr M, Defais M. 1994. Purification and biochemical characterization of Escherichia coli RecA proteins mutated in the putative DNA binding site. J Biol Chem 269:8246–8254.
  • Chabbert M, Cazenave C, Hélène C. 1987. Kinetic studies of recA protein binding to a fluorescent single-stranded polynucleotide. Biochemistry 26:2218–2225.
  • Chanet R, Heude M, Adjiri A, Maloisel L, Fabre F. 1996. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol Cell Biol 16:4782–4789.
  • Chen J, Villanueva N, Rould MA, Morrical SW. 2010. Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant. Nucleic Acids Res 38:4889–4906.
  • Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453:489–484.
  • Chi P, Van Komen S, Sehorn MG, Sigurdsson S, Sung P. 2006. Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair (Amst) 5:381–391.
  • Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS, Liberi G. 2007. The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27:7439–7450.
  • Clark AJ. 1980. A view of the RecBC and RecF pathway of E. coli recombination. ICN-UCLA Symp Mol Cell Biol 29:891–899.
  • Colavito S, Prakash R, Sung P. 2010. Promotion and regulation of homologous recombination by DNA helicases. Methods 51:329–335.
  • Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA. 2004. Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11:791–796.
  • Cox MM. 2007a. Motoring along with the bacterial RecA protein. Nat Rev Mol Cell Biol 8:127–138.
  • Cox MM. 2007b. Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41–63.
  • Cox MM, Lehman IR. 1981. recA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc Natl Acad Sci USA 78:3433–3437.
  • Datta S, Krishna R, Ganesh N, Chandra NR, Muniyappa K, Vijayan M. 2003. Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes. J Bacteriol 185:4280–4284.
  • Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC. 2001. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7:273–282.
  • Davies OR, Pellegrini L. 2007. Interaction with the BRCA2 C terminus protects RAD51–DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol 14:475–483.
  • De Zutter JK, Knight KL. 1999. The hRad51 and RecA proteins show significant differences in cooperative binding to single-stranded DNA. J Mol Biol 293:769–780.
  • Dillingham MS, Spies M, Kowalczykowski SC. 2003. RecBCD enzyme is a bipolar DNA helicase. Nature 423:893–897.
  • Dixon DA, Kowalczykowski SC. 1991. Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell 66:361–371.
  • Dixon DA, Kowalczykowski SC. 1995. Role of the Escherichia coli recombination hotspot, chi, in RecABCD-dependent homologous pairing. J Biol Chem 270:16360–16370.
  • Dixon DA, Kowalczykowski SC. 1993. The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73:87–96.
  • Donovan JW, Milne GT, Weaver DT. 1994. Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair. Genes Dev 8:2552–2562.
  • Dray E, Dunlop MH, Kauppi L, Filippo JS, Wiese C, Tsai MS, Begovic S, Schild D, Jasin M, Keeney S, Sung P. 2011. Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1). Proc Natl Acad Sci USA 108:3560–3565.
  • Dupaigne P, Le Breton C, Fabre F, Gangloff S, Le Cam E, Veaute X. 2008. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol Cell 29:243–254.
  • Ehmsen KT, Heyer WD. 2008. Biochemistry of meiotic recombination: formation, processing, and resolution of recombination intermediates. Genome Dyn Stab 3:91–164.
  • Eisen JA, Sweder KS, Hanawalt PC. 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–2723.
  • Esashi F, Galkin VE, Yu X, Egelman EH, West SC. 2007. Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol 14:468–474.
  • Farb JN, Morrical SW. 2009a. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase. J Mol Biol 385:393–404.
  • Farb JN, Morrical SW. 2009b. Functional complementation of UvsX and UvsY mutations in the mediation of T4 homologous recombination. Nucleic Acids Res 37:2336–2345.
  • Feng Z, Scott SP, Bussen W, Sharma GG, Guo G, Pandita TK, Powell SN. 2011. Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci USA 108:686–691.
  • Flory J, Radding CM. 1982. Visualization of recA protein and its association with DNA: a priming effect of single-strand-binding protein. Cell 28:747–756.
  • Formosa T, Alberts BM. 1986a. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47:793–806.
  • Formosa T, Alberts BM. 1986b. Purification and characterization of the T4 bacteriophage uvsX protein. J Biol Chem 261:6107–6118.
  • Formosa T, Alberts BM. 1984. The use of affinity chromatography to study proteins involved in bacteriophage T4 genetic recombination. Cold Spring Harb Symp Quant Biol 49:363–370.
  • Fortin GS, Symington LS. 2002. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51–DNA complexes. EMBO J 21:3160–3170.
  • Fugger K, Mistrik M, Danielsen JR, Dinant C, Falck J, Bartek J, Lukas J, Mailand N. 2009. Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities. J Cell Biol 186:655–663.
  • Fujii S, Isogawa A, Fuchs RP. 2006. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 25:5754–5763.
  • Fung CW, Fortin GS, Peterson SE, Symington LS. 2006. The rad51–K191R ATPase-defective mutant is impaired for presynaptic filament formation. Mol Cell Biol 26:9544–9554.
  • Gajewski S, Webb MR, Galkin V, Egelman EH, Kreuzer KN, White SW. 2011. Crystal structure of the phage T4 recombinase UvsX and its functional interaction with the T4 SF2 helicase UvsW. J Mol Biol 405:65–76.
  • Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC. 2006. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443:875–878.
  • Game JC. 1993. DNA double-strand breaks and the RAD50–RAD57 genes in Saccharomyces. Semin Cancer Biol 4:73–83.
  • Gangloff S, Soustelle C, Fabre F. 2000. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25:192–194.
  • Gauss P, Park K, Spencer TE, Hacker KJ. 1994. DNA helicase requirements for DNA replication during bacteriophage T4 infection. J Bacteriol 176:1667–1672.
  • Godthelp BC, Wiegant WW, van Duijn-Goedhart A, Schärer OD, van Buul PP, Kanaar R, Zdzienicka MZ. 2002. Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res 30:2172–2182.
  • Goley ED, Welch MD. 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726.
  • Griffith J, Formosa T. 1985. The uvsX protein of bacteriophage T4 arranges single-stranded and double-stranded DNA into similar helical nucleoprotein filaments. J Biol Chem 260:4484–4491.
  • Grigorescu AA, Vissers JH, Ristic D, Pigli YZ, Lynch TW, Wyman C, Rice PA. 2009. Inter-subunit interactions that coordinate Rad51’s activities. Nucleic Acids Res 37:557–567.
  • Grimme JM, Honda M, Wright R, Okuno Y, Rothenberg E, Mazin AV, Ha T, Spies M. 2010. Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52–ssDNA complexes. Nucleic Acids Res 38:2917–2930.
  • Handa N, Bianco PR, Baskin RJ, Kowalczykowski SC. 2005. Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. Mol Cell 17:745–750.
  • Harris LD, Griffith JD. 1989. UvsY protein of bacteriophage T4 is an accessory protein for in vitro catalysis of strand exchange. J Mol Biol 206:19–27.
  • Hays SL, Firmenich AA, Berg P. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Natl Acad Sci USA 92:6925–6929.
  • Hegde SP, Rajagopalan M, Madiraju MV. 1996. Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate. J Bacteriol 178:184–190.
  • Henson SE, Tsai SC, Malone CS, Soghomonian SV, Ouyang Y, Wall R, Marahrens Y, Teitell MA. 2006. Pir51, a Rad51-interacting protein with high expression in aggressive lymphoma, controls mitomycin C sensitivity and prevents chromosomal breaks. Mutat Res 601:113–124.
  • Herdendorf TJ, Albrecht DW, Benkovic SJ, Nelson SW. 2011. Biochemical characterization of bacteriophage T4 Mre11–Rad50 complex. J Biol Chem 286:2382–2392.
  • Heyer WD, Ehmsen KT, Liu J. 2010. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139.
  • Hicks WM, Kim M, Haber JE. 2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329:82–85.
  • Hilario J, Amitani I, Baskin RJ, Kowalczykowski SC. 2009. Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc Natl Acad Sci USA 106:361–368.
  • Hoeijmakers JH. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411:366–374.
  • Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, Jasin M, Vogel H, Sung P, Luo G. 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–3084.
  • Ira G, Malkova A, Liberi G, Foiani M, Haber JE. 2003. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411.
  • Jasin M. 2002. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21:8981–8993.
  • Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678–683.
  • Jiang H, Giedroc D, Kodadek T. 1993. The role of protein–protein interactions in the assembly of the presynaptic filament for T4 homologous recombination. J Biol Chem 268:7904–7911.
  • Jiang H, Salinas F, Kodadek T. 1997. The gene 32 single-stranded DNA-binding protein is not bound stably to the phage T4 presynaptic filament. Biochem Biophys Res Commun 231:600–605.
  • Johnson RD, Liu N, Jasin M. 1999. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401:397–399.
  • Johnson RD, Symington LS. 1995. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol Cell Biol 15:4843–4850.
  • Jongeneel CV, Formosa T, Alberts BM. 1984. Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J Biol Chem 259:12925–12932.
  • Kadyrov FA, Drake JW. 2004. UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J Biol Chem 279:35735–35740.
  • Kagawa W, Kurumizaka H, Ishitani R, Fukai S, Nureki O, Shibata T, Yokoyama S. 2002. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol Cell 10:359–371.
  • Kahn R, Cunningham RP, DasGupta C, Radding CM. 1981. Polarity of heteroduplex formation promoted by Escherichia coli recA protein. Proc Natl Acad Sci USA 78:4786–4790.
  • Kantake N, Sugiyama T, Kolodner RD, Kowalczykowski SC. 2003. The recombination-deficient mutant RPA (rfa1–t11) is displaced slowly from single-stranded DNA by Rad51 protein. J Biol Chem 278:23410–23417.
  • Kaytor MD, Nguyen M, Livingston DM. 1995. The complexity of the interaction between RAD52 and SRS2. Genetics 140:1441–1442.
  • Kim JI, Cox MM, Inman RB. 1992. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate. J Biol Chem 267:16438–16443.
  • King MC, Marks JH, Mandell JB; New York Breast Cancer Study Group. 2003. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646.
  • Kodadek T. 1991. Inhibition of protein-mediated homologous pairing by a DNA helicase. J Biol Chem 266:9712–9718.
  • Kodadek T, Alberts BM. 1987. Stimulation of protein-directed strand exchange by a DNA helicase. Nature 326:312–314.
  • Kodadek T, Gan DC, Stemke-Hale K. 1989. The phage T4 uvs Y recombination protein stabilizes presynaptic filaments. J Biol Chem 264:16451–16457.
  • Kodadek T, Wong ML, Alberts BM. 1988. The mechanism of homologous DNA strand exchange catalyzed by the bacteriophage T4 uvsX and gene 32 proteins. J Biol Chem 263:9427–9436.
  • Konola JT, Logan KM, Knight KL. 1994. Functional characterization of residues in the P-loop motif of the RecA protein ATP binding site. J Mol Biol 237:20–34.
  • Kovalenko OV, Golub EI, Bray-Ward P, Ward DC, Radding CM. 1997. A novel nucleic acid-binding protein that interacts with human rad51 recombinase. Nucleic Acids Res 25:4946–4953.
  • Kowalczykowski SC. 1991. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu Rev Biophys Biophys Chem 20:539–575.
  • Kowalczykowski SC. 2005. Cancer: catalyst of a catalyst. Nature 433:591–592.
  • Kowalczykowski SC, Clow J, Krupp RA. 1987a. Properties of the duplex DNA-dependent ATPase activity of Escherichia coli RecA protein and its role in branch migration. Proc Natl Acad Sci USA 84:3127–3131.
  • Kowalczykowski SC, Clow J, Somani R, Varghese A. 1987b. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J Mol Biol 193:81–95.
  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465.
  • Kowalczykowski SC, Krupp RA. 1995. DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc Natl Acad Sci USA 92:3478–3482.
  • Krejci L, Song B, Bussen W, Rothstein R, Mortensen UH, Sung P. 2002. Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J Biol Chem 277:40132–40141.
  • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309.
  • Langston LD, O’Donnell M. 2006. DNA replication: keep moving and don’t mind the gap. Mol Cell 23:155–160.
  • Lauder SD, Kowalczykowski SC. 1991. Asymmetry in the recA protein–DNA filament. J Biol Chem 266:5450–5458.
  • Lauder SD, Kowalczykowski SC. 1993. Negative co-dominant inhibition of recA protein function. Biochemical properties of the recA1, recA13 and recA56 proteins and the effect of recA56 protein on the activities of the wild-type recA protein function in vitro. J Mol Biol 234:72–86.
  • Lesk AM. 2007. Introduction to Genomics. New York: Oxford University Press Inc.
  • Li X, Heyer WD. 2009. RAD54 controls access to the invading 3′-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 37:638–646.
  • Li X, Stith CM, Burgers PM, Heyer WD. 2009. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol Cell 36:704–713.
  • Li X, Zhang XP, Solinger JA, Kiianitsa K, Yu X, Egelman EH, Heyer WD. 2007. Rad51 and Rad54 ATPase activities are both required to modulate Rad51–dsDNA filament dynamics. Nucleic Acids Res 35:4124–4140.
  • Lim DS, Hasty P. 1996. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143.
  • Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713.
  • Little JW. 1984. Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci USA 81:1375–1379.
  • Little JW. 1991. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411–421.
  • Liu J, Bond JP, Morrical SW. 2006a. Mechanism of presynaptic filament stabilization by the bacteriophage T4 UvsY recombination mediator protein. Biochemistry 45:5493–5502.
  • Liu J, Doty T, Gibson B, Heyer WD. 2010. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 17:1260–1262.
  • Liu J, Heyer WD. 2011. Who’s who in human recombination: BRCA2 and RAD52. Proc Natl Acad Sci USA 108:441–442.
  • Liu J, Morrical SW. 2010a. Dynamics of protein–ssDNA interactions in the bacteriophage T4 homologous recombination system. In Williams MC, Maher LJ, eds. Biophysics of DNA–Protein Interactions: From Single Molecules to Biological Systems, 1st ed. New York: Springer.
  • Liu J, Morrical SW. 2010b. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery. Virol J 7:357.
  • Liu J, Qian N, Morrical SW. 2006b. Dynamics of bacteriophage T4 presynaptic filament assembly from extrinsic fluorescence measurements of Gp32-single-stranded DNA interactions. J Biol Chem 281:26308–26319.
  • Liu N, Schild D, Thelen MP, Thompson LH. 2002. Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res 30:1009–1015.
  • Liu Y, Tarsounas M, O’regan P, West SC. 2007. Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem 282:1973–1979.
  • Lohman TM, Kowalczykowski SC. 1981. Kinetics and mechanism of the association of the bacteriophage T4 gene 32 (helix destabilizing) protein with single-stranded nucleic acids. Evidence for protein translocation. J Mol Biol 152:67–109.
  • Lohman TM, Overman LB. 1985. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 260:3594–3603.
  • Lohman TM, Overman LB, Datta S. 1986. Salt-dependent changes in the DNA binding co-operativity of Escherichia coli single strand binding protein. J Mol Biol 187:603–615.
  • Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC. 2009. Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol Cell Biol 29:4742–4756.
  • Madiraju MV, Clark AJ. 1991. Effect of RecF protein on reactions catalyzed by RecA protein. Nucleic Acids Res 19:6295–6300.
  • Mankouri HW, Ngo HP, Hickson ID. 2007. Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1–Rmi1–Top3. Mol Biol Cell 18:4062–4073.
  • Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ, Benson FE, West SC. 2001. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15:3296–3307.
  • Mazin AV, Alexeev AA, Kowalczykowski SC. 2003. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278:14029–14036.
  • Mazin AV, Bornarth CJ, Solinger JA, Heyer WD, Kowalczykowski SC. 2000. Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol Cell 6:583–592.
  • Mazloum N, Zhou Q, Holloman WK. 2007. DNA binding, annealing, and strand exchange activities of Brh2 protein from Ustilago maydis. Biochemistry 46:7163–7173.
  • McEntee K, Weinstock GM, Lehman IR. 1981. Binding of the recA protein of Escherichia coli to single- and double-stranded DNA. J Biol Chem 256:8835–8844.
  • McEntee K, Weinstock GM, Lehman IR. 1979.Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli. Proc Natl Acad Sci USA 76:2615–2619.
  • Menetski JP, Bear DG, Kowalczykowski SC. 1990. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc Natl Acad Sci USA 87:21–25.
  • Menetski JP, Kowalczykowski SC. 1985. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol 181:281–295.
  • Menetski JP, Varghese A, Kowalczykowski SC. 1988. Properties of the high-affinity single-stranded DNA binding state of the Escherichia coli recA protein. Biochemistry 27:1205–1212.
  • Miller KA, Sawicka D, Barsky D, Albala JS. 2004. Domain mapping of the Rad51 paralog protein complexes. Nucleic Acids Res 32:169–178.
  • Milne GT, Ho T, Weaver DT. 1995. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139:1189–1199.
  • Milne GT, Weaver DT. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev 7:1755–1765.
  • Mizuta R, LaSalle JM, Cheng HL, Shinohara A, Ogawa H, Copeland N, Jenkins NA, Lalande M, Alt FW. 1997. RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc Natl Acad Sci USA 94:6927–6932.
  • Modesti M, Budzowska M, Baldeyron C, Demmers JA, Ghirlando R, Kanaar R. 2007a. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol Cell 28:468–481.
  • Modesti M, Ristic D, van der Heijden T, Dekker C, van Mameren J, Peterman EJ, Wuite GJ, Kanaar R, Wyman C. 2007b. Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule. Structure 15:599–609.
  • Morgan EA, Shah N, Symington LS. 2002. The requirement for ATP hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy. Mol Cell Biol 22:6336–6343.
  • Morimatsu K, Kowalczykowski SC. 2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347.
  • Morrical SW, Alberts BM. 1990. The UvsY protein of bacteriophage T4 modulates recombination-dependent DNA synthesis in vitro. J Biol Chem 265:15096–15103.
  • Morrical SW, Cox MM. 1985. Light scattering studies of the recA protein of Escherichia coli: relationship between free recA filaments and the recA–ssDNA complex. Biochemistry 24:760–767.
  • Morrical SW, Cox MM. 1990. Stabilization of recA protein–ssDNA complexes by the single-stranded DNA binding protein of Escherichia coli. Biochemistry 29:837–843.
  • Morrical SW, Lee J, Cox MM. 1986. Continuous association of Escherichia coli single-stranded DNA binding protein with stable complexes of recA protein and single-stranded DNA. Biochemistry 25:1482–1494.
  • Morrical SW, Wong ML, Alberts BM. 1991. Amplification of snap-back DNA synthesis reactions by the uvsX recombinase of bacteriophage T4. J Biol Chem 266:14031–14038.
  • Morrison C, Shinohara A, Sonoda E, Yamaguchi-Iwai Y, Takata M, Weichselbaum RR, Takeda S. 1999. The essential functions of human Rad51 are independent of ATP hydrolysis. Mol Cell Biol 19:6891–6897.
  • Mortensen UH, Bendixen C, Sunjevaric I, Rothstein R. 1996. DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci USA 93:10729–10734.
  • Moynahan ME, Pierce AJ, Jasin M. 2001. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272.
  • Mozlin AM, Fung CW, Symington LS. 2008. Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination. Genetics 178:113–126.
  • Nagaraju G, Odate S, Xie A, Scully R. 2006. Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol Cell Biol 26:8075–8086.
  • Namsaraev EA, Berg P. 1998. Binding of Rad51p to DNA. Interaction of Rad51p with single- and double-stranded DNA. J Biol Chem 273:6177–6182.
  • Nelson SW, Benkovic SJ. 2010. Response of the bacteriophage T4 replisome to noncoding lesions and regression of a stalled replication fork. J Mol Biol 401:743–756.
  • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:407–410.
  • Ogawa T, Wabiko H, Tsurimoto T, Horii T, Masukata H, Ogawa H. 1979. Characteristics of purified recA protein and the regulation of its synthesis in vivo. Cold Spring Harb Symp Quant Biol 43 (Pt 2):909–915.
  • Ogawa T, Yu X, Shinohara A, Egelman EH. 1993. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:1896–1899.
  • Onoda F, Seki M, Miyajima A, Enomoto T. 2001. Involvement of SGS1 in DNA damage-induced heteroallelic recombination that requires RAD52 in Saccharomyces cerevisiae. Mol Gen Genet 264:702–708.
  • Pant K, Shokri L, Karpel RL, Morrical SW, Williams MC. 2008. Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY. J Mol Biol 380:799–811.
  • Pâques F, Haber JE. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404.
  • Park MS, Ludwig DL, Stigger E, Lee SH. 1996. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem 271:18996–19000.
  • Patel M, Jiang Q, Woodgate R, Cox MM, Goodman MF. 2010. A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol 45:171–184.
  • Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR. 2002. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 420:287–293.
  • Petalcorin MI, Galkin VE, Yu X, Egelman EH, Boulton SJ. 2007. Stabilization of RAD-51–DNA filaments via an interaction domain in Caenorhabditis elegans BRCA2. Proc Natl Acad Sci USA 104:8299–8304.
  • Petes TD, Malone RE, Symington LS. 1991. The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. In Broach JR, Pringle JR, Jones EW, eds. The Molecular and Cellular Biology of the Yeast Saccharomyces. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 407–521.
  • Petukhova G, Stratton S, Sung P. 1998. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393:91–94.
  • Pierce AJ, Johnson RD, Thompson LH, Jasin M. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13:2633–2638.
  • Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465.
  • Pörschke D, Rauh H. 1983. Cooperative, excluded-site binding and its dynamics for the interaction of gene 5 protein with polynucleotides. Biochemistry 22:4737–4745.
  • Powell SN, Kachnic LA. 2003. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22:5784–5791.
  • Pugh BF, Cox MM. 1987. Stable binding of recA protein to duplex DNA. Unraveling a paradox. J Biol Chem 262:1326–1336.
  • Pugh BF, Cox MM. 1988. General mechanism for RecA protein binding to duplex DNA. J Mol Biol 203:479–493.
  • Radman M. 1974. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In Prakash L, Dept. of Radiation Biology and Biophysics, University of Rochester, eds. Molecular and Environmental Aspects of Mutagenesis. Springfield, IL: Thomas, pp. 128–142.
  • Rajan R, Bell CE. 2004. Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance. J Mol Biol 344:951–963.
  • Ralf C, Hickson ID, Wu L. 2006. The Bloom’s syndrome helicase can promote the regression of a model replication fork. J Biol Chem 281:22839–22846.
  • Register JC 3rd, Griffith J. 1985a. 10 nm RecA protein filaments formed in the presence of Mg2+ and ATP gamma S may contain RNA. Mol Gen Genet 199:415–420.
  • Register JC 3rd, Griffith J. 1985b. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J Biol Chem 260:12308–12312.
  • Rehrauer WM, Kowalczykowski SC. 1993. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J Biol Chem 268:1292–1297.
  • Renzette N, Sandler SJ. 2008. Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli. Mol Microbiol 67:1347–1359.
  • Rijkers T, Van Den Ouweland J, Morolli B, Rolink AG, Baarends WM, Van Sloun PP, Lohman PH, Pastink A. 1998. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol Cell Biol 18:6423–6429.
  • Roberts JW, Roberts CW, Craig NL, Phizicky EM. 1979. Activity of the Escherichia coli recA-gene product. Cold Spring Harb Symp Quant Biol 43 Pt 2:917–920.
  • Rong L, Klein HL. 1993. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J Biol Chem 268:1252–1259.
  • Rosselli W, Stasiak A. 1991. The ATPase activity of RecA is needed to push the DNA strand exchange through heterologous regions. EMBO J 10:4391–4396.
  • Saeki H, Siaud N, Christ N, Wiegant WW, van Buul PP, Han M, Zdzienicka MZ, Stark JM, Jasin M. 2006. Suppression of the DNA repair defects of BRCA2-deficient cells with heterologous protein fusions. Proc Natl Acad Sci USA 103:8768–8773.
  • San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L, Sung P. 2006. Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J Biol Chem 281:11649–11657.
  • San Filippo J, Sung P, Klein H. 2008. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257.
  • Schild D. 1995. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140:115–127.
  • Schild D, Lio YC, Collins DW, Tsomondo T, Chen DJ. 2000. Evidence for simultaneous protein interactions between human Rad51 paralogs. J Biol Chem 275:16443–16449.
  • Scully R, Puget N. 2002. BRCA1 and BRCA2 in hereditary breast cancer. Biochimie 84:95–102.
  • Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC. 1998. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev 12:1248–1253.
  • Shan Q, Cox MM, Inman RB. 1996. DNA strand exchange promoted by RecA K72R. Two reaction phases with different Mg2+ requirements. J Biol Chem 271:5712–5724.
  • Shaner SL, Flory J, Radding CM. 1987. The distribution of Escherichia coli recA protein bound to duplex DNA with single-stranded ends. J Biol Chem 262:9220–9230.
  • Shaner SL, Radding CM. 1987. Translocation of Escherichia coli recA protein from a single-stranded tail to contiguous duplex DNA. J Biol Chem 262:9211–9219.
  • Shibata T, DasGupta C, Cunningham RP, Radding CM. 1979. Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc Natl Acad Sci USA 76:1638–1642.
  • Shim KS, Schmutte C, Tombline G, Heinen CD, Fishel R. 2004. hXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51. J Biol Chem 279:30385–30394.
  • Shin DS, Pellegrini L, Daniels DS, Yelent B, Craig L, Bates D, Yu DS, Shivji MK, Hitomi C, Arvai AS, Volkmann N, Tsuruta H, Blundell TL, Venkitaraman AR, Tainer JA. 2003. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J 22:4566–4576.
  • Shinohara A, Ogawa H, Ogawa T. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470.
  • Shinohara A, Ogawa T. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391:404–407.
  • Shor E, Weinstein J, Rothstein R. 2005. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 169:1275–1289.
  • Sigurdsson S, Van Komen S, Bussen W, Schild D, Albala JS, Sung P. 2001. Mediator function of the human Rad51B–Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15:3308–3318.
  • Singleton MR, Wentzell LM, Liu Y, West SC, Wigley DB. 2002. Structure of the single-strand annealing domain of human RAD52 protein. Proc Natl Acad Sci USA 99:13492–13497.
  • Solinger JA, Heyer WD. 2001. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci USA 98:8447–8453.
  • Solinger JA, Kiianitsa K, Heyer WD. 2002. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10:1175–1188.
  • Sommers JA, Rawtani N, Gupta R, Bugreev DV, Mazin AV, Cantor SB, Brosh RM Jr. 2009. FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J Biol Chem 284:7505–7517.
  • Song B, Sung P. 2000. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem 275:15895–15904.
  • Song H, Xia SL, Liao C, Li YL, Wang YF, Li TP, Zhao MJ. 2004. Genes encoding Pir51, Beclin 1, RbAp48 and aldolase b are up or down-regulated in human primary hepatocellular carcinoma. World J Gastroenterol 10:509–513.
  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S. 1998. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17:598–608.
  • Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. 2003. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114:647–654.
  • Spies M, Kowalczykowski SC. 2006. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol Cell 21:573–580.
  • Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N, Jasin M. 2002. ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem 277:20185–20194.
  • Stasiak A, Di Capua E. 1982. The helicity of DNA in complexes with recA protein. Nature 299:185–186.
  • Stasiak AZ, Larquet E, Stasiak A, Müller S, Engel A, Van Dyck E, West SC, Egelman EH. 2000. The human Rad52 protein exists as a heptameric ring. Curr Biol 10:337–340.
  • Story RM, Weber IT, Steitz TA. 1992. The structure of the E. coli recA protein monomer and polymer. Nature 355:318–325.
  • Strathern JN, Shafer BK, McGill CB. 1995. DNA synthesis errors associated with double-strand-break repair. Genetics 140:965–972.
  • Sugawara N, Wang X, Haber JE. 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12:209–219.
  • Sugiyama T, Kantake N, Wu Y, Kowalczykowski SC. 2006. Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J 25:5539–5548.
  • Sugiyama T, Kowalczykowski SC. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 277:31663–31672.
  • Sugiyama T, New JH, Kowalczykowski SC. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci USA 95:6049–6054.
  • Sung P. 1997a. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272:28194–28197.
  • Sung P. 1997b. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11:1111–1121.
  • Sung P, Klein H. 2006. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750.
  • Sung P, Robberson DL. 1995. DNA strand exchange mediated by a RAD51–ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–461.
  • Sung P, Stratton SA. 1996. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem 271:27983–27986.
  • Sung P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:1241–1243.
  • Swagemakers SM, Essers J, de Wit J, Hoeijmakers JH, Kanaar R. 1998. The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase. J Biol Chem 273:28292–28297.
  • Sweezy MA, Morrical SW. 1999. Biochemical interactions within a ternary complex of the bacteriophage T4 recombination proteins uvsY and gp32 bound to single-stranded DNA. Biochemistry 38:936–944.
  • Symington LS. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–70, table of contents.
  • Takahashi M, Strazielle C, Pouyet J, Daune M. 1986. Co-operativity value of DNA RecA protein interaction. Influence of the protein quaternary structure on the binding analysis. J Mol Biol 189:711–714.
  • Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S. 2001. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866.
  • Tarsounas M, Davies D, West SC. 2003. BRCA2-dependent and independent formation of RAD51 nuclear foci. Oncogene 22:1115–1123.
  • Thacker J. 1999. A surfeit of RAD51-like genes? Trends Genet 15:166–168.
  • Thacker J. 2005. The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135.
  • Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD, West SC. 2010. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17:1263–1265.
  • Tombline G, Fishel R. 2002. Biochemical characterization of the human RAD51 protein. I. ATP hydrolysis. J Biol Chem 277:14417–14425.
  • Tombline G, Heinen CD, Shim KS, Fishel R. 2002. Biochemical characterization of the human RAD51 protein. III. Modulation of DNA binding by adenosine nucleotides. J Biol Chem 277:14434–14442.
  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y, Morita T. 1996. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 93:6236–6240.
  • Umezu K, Chi NW, Kolodner RD. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA 90:3875–3879.
  • Umezu K, Kolodner RD. 1994. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem 269:30005–30013.
  • Umezu K, Sugawara N, Chen C, Haber JE, Kolodner RD. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148:989–1005.
  • Van Komen S, Petukhova G, Sigurdsson S, Stratton S, Sung P. 2000. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol Cell 6:563–572.
  • van Veelen LR, Essers J, van de Rakt MW, Odijk H, Pastink A, Zdzienicka MZ, Paulusma CC, Kanaar R. 2005. Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52. Mutat Res 574:34–49.
  • VanLoock MS, Yu X, Yang S, Lai AL, Low C, Campbell MJ, Egelman EH. 2003. ATP-mediated conformational changes in the RecA filament. Structure 11:187–196.
  • Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA. 2005. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24:180–189.
  • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312.
  • Webb BL, Cox MM, Inman RB. 1997. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91:347–356.
  • Weinstock GM, McEntee K, Lehman IR. 1981. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Hydrolysis of UTP. J Biol Chem 256:885–888.
  • West SC, Cassuto E, Howard-Flanders P. 1981. Heteroduplex formation by recA protein: polarity of strand exchanges. Proc Natl Acad Sci USA 78:6149–6153.
  • Wiese C, Dray E, Groesser T, San Filippo J, Shi I, Collins DW, Tsai MS, Williams GJ, Rydberg B, Sung P, Schild D. 2007. Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Mol Cell 28:482–490.
  • Wolner B, Peterson CL. 2005. ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J Biol Chem 280:10855–10860.
  • Wood WB, Revel HR. 1976. The genome of bacteriophage T4. Bacteriol Rev 40:847–868.
  • Wu Y, He Y, Moya IA, Qian X, Luo Y. 2004. Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Mol Cell 15:423–435.
  • Xu H, Beernink HT, Morrical SW. 2010. DNA-binding properties of T4 UvsY recombination mediator protein: polynucleotide wrapping promotes high-affinity binding to single-stranded DNA. Nucleic Acids Res 38:4821–4833.
  • Xu L, Marians KJ. 2002. A dynamic RecA filament permits DNA polymerase-catalyzed extension of the invading strand in recombination intermediates. J Biol Chem 277:14321–14328.
  • Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Zheng N, Chen PL, Lee WH, Pavletich NP. 2002. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1–ssDNA structure. Science 297:1837–1848.
  • Yang H, Li Q, Fan J, Holloman WK, Pavletich NP. 2005. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA–ssDNA junction. Nature 433:653–657.
  • Yang S, VanLoock MS, Yu X, Egelman EH. 2001. Comparison of bacteriophage T4 UvsX and human Rad51 filaments suggests that RecA-like polymers may have evolved independently. J Mol Biol 312:999–1009.
  • Yassa DS, Chou KM, Morrical SW. 1997. Characterization of an amino-terminal fragment of the bacteriophage T4 uvsY recombination protein. Biochimie 79:275–285.
  • Yokoyama H, Kurumizaka H, Ikawa S, Yokoyama S, Shibata T. 2003. Holliday junction binding activity of the human Rad51B protein. J Biol Chem 278:2767–2772.
  • Yokoyama H, Sarai N, Kagawa W, Enomoto R, Shibata T, Kurumizaka H, Yokoyama S. 2004. Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex. Nucleic Acids Res 32:2556–2565.
  • Yonesaki T, Minagawa T. 1989. Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins. J Biol Chem 264:7814–7820.
  • Yonesaki T, Minagawa T. 1985. T4 phage gene uvsX product catalyzes homologous DNA pairing. EMBO J 4:3321–3327.
  • Yonetani Y, Hochegger H, Sonoda E, Shinya S, Yoshikawa H, Takeda S, Yamazoe M. 2005. Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res 33:4544–4552.
  • Yoshioka K, Yumoto-Yoshioka Y, Fleury F, Takahashi M. 2003. pH- and salt-dependent self-assembly of human Rad51 protein analyzed as fluorescence resonance energy transfer between labeled proteins. J Biochem 133:593–597.
  • Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR. 2000. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev 14:1400–1406.
  • Yu X, Egelman EH. 1993. DNA conformation induced by the bacteriophage T4 UvsX protein appears identical to the conformation induced by the Escherichia coli RecA protein. J Mol Biol 232:1–4.
  • Yu X, Jacobs SA, West SC, Ogawa T, Egelman EH. 2001. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc Natl Acad Sci USA 98:8419–8424.
  • Yu X, Egelman EH. 1992. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J Mol Biol 227:334–346.
  • Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, Lee EY. 1999. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 59:3547–3551.
  • Zaitsev EN, Kowalczykowski SC. 1998. Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay. Nucleic Acids Res 26:650–654.
  • Zaitseva EM, Zaitsev EN, Kowalczykowski SC. 1999. The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J Biol Chem 274:2907–2915.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.