833
Views
43
CrossRef citations to date
0
Altmetric
Review Article

The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery

, , , &
Pages 531-555 | Received 12 Apr 2012, Accepted 10 Sep 2012, Published online: 09 Oct 2012

References

  • Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, Doebeli M. 2008. Self-destructive cooperation mediated by phenotypic noise. Nature 454:987–990.
  • Albano M, Breitling R, Dubnau DA. 1989. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bacteriol 171:5386–5404.
  • Alonso JC, Lüder G, Trautner TA. 1986. Requirements for the formation of plasmid-transducing particles of Bacillus subtilis bacteriophage SPP1. EMBO J 5:3723–3728.
  • Alonso JC, Stiege AC, Lüder G. 1993. Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Mol Gen Genet 239:129–136.
  • Amundsen SK, Fero J, Hansen LM, Cromie GA, Solnick JV, Smith GR, Salama NR. 2008. Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization. Mol Microbiol 69:994–1007.
  • Anderson DG, Churchill JJ, Kowalczykowski SC. 1999. A single mutation, RecB(D1080A,) eliminates RecA protein loading but not Chi recognition by RecBCD enzyme. J Biol Chem 274:27139–27144.
  • Ando T, Israel DA, Kusugami K, Blaser MJ. 1999. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J Bacteriol 181:5572–5580.
  • Ando T, Xu Q, Torres M, Kusugami K, Israel DA, Blaser MJ. 2000. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol Microbiol 37:1052–1065.
  • Aras RA, Small AJ, Ando T, Blaser MJ. 2002. Helicobacter pylori interstrain restriction-modification diversity prevents genome subversion by chromosomal DNA from competing strains. Nucleic Acids Res 30:5391–5397.
  • Aravind L, Makarova KS, Koonin EV. 2000. Survey and summary: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 28:3417–3432.
  • Arber W. 2000. Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7.
  • Attaiech L, Granadel C, Claverys JP, Martin B. 2008. RadC, a misleading name? J Bacteriol 190:5729–5732.
  • Attaiech L, Olivier A, Mortier-Barrière I, Soulet AL, Granadel C, Martin B, Polard P, Claverys JP. 2011. Role of the single-stranded DNA-binding protein SsbB in pneumococcal transformation: maintenance of a reservoir for genetic plasticity. PLoS Genet 7:e1002156.
  • Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O’Brien TC, Shah A, Tierney JT, Tomm LL, O’Gara TM, Goranov AI, Grossman AD, Lovett CM. 2005. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 187:7655–7666.
  • Avery OT, Macleod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158.
  • Ayora S, Alonso JC. 1997. Purification and characterization of the RecF protein from Bacillus subtilis 168. Nucleic Acids Res 25:2766–2772.
  • Ayora S, Carrasco B, Cárdenas PP, César CE, Cañas C, Yadav T, Marchisone C, Alonso JC. 2011. Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol Rev 35:1055–1081.
  • Ayora S, Carrasco B, Doncel-Perez E, Doncel E, Lurz R, Alonso JC. 2004.Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA. Proc Natl Acad Sci USA 101:452–457.
  • Ayora S, Missich R, Mesa P, Lurz R, Yang S, Egelman EH, Alonso JC. 2002. Homologous-pairing activity of the Bacillus subtilis bacteriophage SPP1 replication protein G35P. J Biol Chem 277:35969–35979.
  • Baitin DM, Gruenig MC, Cox MM. 2008. SSB antagonizes RecX-RecA interaction. J Biol Chem 283:14198–14204.
  • Balganesh TS, Lacks SA. 1985. Heteroduplex DNA mismatch repair system of Streptococcus pneumoniae: cloning and expression of the hexA gene. J Bacteriol 162:979–984.
  • Beernink HT, Morrical SW. 1999. RMPs: recombination/replication mediator proteins. Trends Biochem Sci 24:385–389.
  • Berg KH, Biørnstad TJ, Johnsborg O, Håvarstein LS. 2012a. Properties and biological role of streptococcal fratricins. Appl Environ Microbiol 78:3515–3522.
  • Berg KH, Ohnstad HS, Håvarstein LS. 2012b. LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. J Bacteriol 194:627–635.
  • Bergé M, Mortier-Barrière I, Martin B, Claverys JP. 2003. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol 50:527–536.
  • Berka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, Sloma A, Widner W, Dubnau D. 2002. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol 43:1331–1345.
  • Bernstein H, Hopf FA, Michod RE. 1987. The molecular basis of the evolution of sex. Adv Genet 24:323–370.
  • Bouthier de la Tour C, Boisnard S, Norais C, Toueille M, Bentchikou E, Vannier F, Cox MM, Sommer S, Servant P. 2011. The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity. DNA Repair (Amst) 10:1223–1231.
  • Briley K, Dorsey-Oresto A, Prepiak P, Dias MJ, Mann JM, Dubnau D. 2011. The secretion ATPase ComGA is required for the binding and transport of transforming DNA. Mol Microbiol 81:818–830.
  • Burghout P, Bootsma HJ, Kloosterman TG, Bijlsma JJ, de Jongh CE, Kuipers OP, Hermans PW. 2007. Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA. J Bacteriol 189:6540–6550.
  • Burton B, Dubnau D. 2010. Membrane-associated DNA transport machines. Cold Spring Harb Perspect Biol 2:a000406.
  • Canosi U, Iglesias A, Trautner TA. 1981. Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194. Mol Gen Genet 181:434–440.
  • Canosi U, Morelli G, Trautner TA. 1978. The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. Mol Gen Genet 166:259–267.
  • Canosi U, Trautner TA. 1979. Plasmid transformation in B. subtilis. Hoppe Seyler’s Z Physiol Chem 360:1029–1032.
  • Cañas C, Carrasco B, Ayora S, Alonso JC. 2008. The RecU Holliday junction resolvase acts at early stages of homologous recombination. Nucleic Acids Res 36:5242–5249.
  • Cañas C, Carrasco B, García-Tirado E, Rafferty JB, Alonso JC, Ayora S. 2011. The stalk region of the RecU resolvase is essential for Holliday junction recognition and distortion. J Mol Biol 410:39–49.
  • Carballido-López R. (2012). The Actin-Like MreB Cytoskeleton. In Graumann PL ed. Bacillus, Cellular and molecular biology, Second edition. Norfolk: Caister Academic Press, 215–252.
  • Cardenas PP, Carrasco B, Defeu-Soufo C, César CE, Herr K, Kaufensteian M, Graumann PL, Alonso JC. (2012). RecX facilitates homologous recombination by modulating RecA activities. PLoS Genet under evaluation, minor revision.
  • Cardenas PP, Carrasco B, Sanchez H, Deikus G, Bechhofer DH, Alonso JC. 2009. Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair. Nucleic Acids Res 37:4157–4169.
  • Cardenas PP, Carzaniga T, Zangrossi S, Briani F, Garcia-Tirado E, Dehò G, Alonso JC. 2011. Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins. Nucleic Acids Res 39:9250–9261.
  • Carrasco B, Ayora S, Lurz R, Alonso JC. 2005. Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities. Nucleic Acids Res 33:3942–3952.
  • Carrasco B, Cañas C, Sharples GJ, Alonso JC, Ayora S. 2009. The N-terminal region of the RecU Holliday junction resolvase is essential for homologous recombination. J Mol Biol 390:1–9.
  • Carrasco B, Cozar MC, Lurz R, Alonso JC, Ayora S. 2004. Genetic recombination in Bacillus subtilis 168: contribution of Holliday junction processing functions in chromosome segregation. J Bacteriol 186:5557–5566.
  • Carrasco B, Fernández S, Asai K, Ogasawara N, Alonso JC. 2002. Effect of the recU suppressors sms and subA on DNA repair and homologous recombination in Bacillus subtilis. Mol Genet Genomics 266:899–906.
  • Carrasco B, Manfredi C, Ayora S, Alonso JC. 2008. Bacillus subtilis SsbA and dATP regulate RecA nucleation onto single-stranded DNA. DNA Repair (Amst) 7:990–996.
  • Ceglowski P, Boitsov A, Karamyan N, Chai S, Alonso JC. 1993. Characterization of the effectors required for stable inheritance of Streptococcus pyogenes pSM19035-derived plasmids in Bacillus subtilis. Mol Gen Genet 241:579–585.
  • Chan KW, Lee YJ, Wang CH, Huang H, Sun YJ. 2009. Single-stranded DNA-binding protein complex from Helicobacter pylori suggests an ssDNA-binding surface. J Mol Biol 388:508–519.
  • Chandler MS, Smith RA. 1996. Characterization of the Haemophilus influenzae topA locus: DNA topoisomerase I is required for genetic competence. Gene 169:25–31.
  • Charpentier X, Kay E, Schneider D, Shuman HA. 2011. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J Bacteriol 193:1114–1121.
  • Chen I, Christie PJ, Dubnau D. 2005. The ins and outs of DNA transfer in bacteria. Science 310:1456–1460.
  • Chen I, Dubnau D. 2004. DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249.
  • Chen I, Provvedi R, Dubnau D. 2006. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J Biol Chem 281:21720–21727.
  • Chung YS, Breidt F, Dubnau D. 1998. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol Microbiol 29:905–913.
  • Chung YS, Dubnau D. 1995. ComC is required for the processing and translocation of comGC, a pilin-like competence protein of Bacillus subtilis. Mol Microbiol 15:543–551.
  • Claverys JP, Lacks SA. 1986. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev 50:133–165.
  • Claverys JP, Martin B, Polard P. 2009. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 33:643–656.
  • Claverys JP, Prats H, Vasseghi H, Gherardi M. 1984. Identification of Streptococcus pneumoniae mismatch repair genes by an additive transformation approach. Mol Gen Genet 196:91–96.
  • Claverys JP, Prudhomme M, Martin B. 2006. Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annu Rev Microbiol 60:451–475.
  • Claverys JP, Prudhomme M, Mortier-Barrière I, Martin B. 2000. Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity? Mol Microbiol 35:251–259.
  • Collins RF, Frye SA, Kitmitto A, Ford RC, Tønjum T, Derrick JP. 2004. Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 Å resolution. J Biol Chem 279:39750–39756.
  • Comella N, Grossman AD. 2005. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol Microbiol 57:1159–1174.
  • Condon C. 2003. RNA processing and degradation in Bacillus subtilis. Microbiol Mol Biol Rev 67:157–74.
  • Contente S, Dubnau D. 1979. Marker rescue transformation by linear plasmid DNA in Bacillus subtilis. Plasmid 2:555–571.
  • Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. 2010. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet 6:e1001238.
  • Cox MM. 2007a. Motoring along with the bacterial RecA protein. Nat Rev Mol Cell Biol 8:127–138.
  • Cox MM. 2007b. Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41–63.
  • Craig L, Li J. 2008. Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 18:267–277.
  • Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD. 2011. Rapid pneumococcal evolution in response to clinical interventions. Science 331:430–434.
  • Danner DB, Deich RA, Sisco KL, Smith HO. 1980. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11:311–318.
  • de Vos WM, Venema G, Canosi U, Trautner TA. 1981. Plasmid transformation in Bacillus subtilis: fate of plasmid DNA. Mol Gen Genet 181:424–433.
  • Déclais AC, Lilley DM. 2008. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin Struct Biol 18:86–95.
  • Desai BV, Morrison DA. 2006. An unstable competence-induced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae. J Bacteriol 188:5177–5186.
  • Desai BV, Morrison DA. 2007. Transformation in Streptococcus pneumoniae: formation of eclipse complex in a coiA mutant implicates CoiA in genetic recombination. Mol Microbiol 63:1107–1117.
  • Didelot X, Maiden MC. 2010. Impact of recombination on bacterial evolution. Trends Microbiol 18:315–322.
  • Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72:642–71.
  • Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V. 2010. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11:R107.
  • Dorer MS, Fero J, Salama NR. 2010. DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog 6:e1001026.
  • Draskovic I, Dubnau D. 2005. Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol Microbiol 55:881–896.
  • Drees JC, Lusetti SL, Chitteni-Pattu S, Inman RB, Cox MM. 2004a. A RecA filament capping mechanism for RecX protein. Mol Cell 15:789–798.
  • Drees JC, Lusetti SL, Cox MM. 2004b. Inhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C-terminus and filament functional state. J Biol Chem 279:52991–52997.
  • Dubnau D. 1999. DNA uptake in bacteria. Annu Rev Microbiol 53:217–244.
  • Dubnau D, Contente S, Gryzan TJ. (1980). On the use of plasmids for study of transformation in Bacillus subtilis. DNA–Recombination Interactions and Repair. Oxford: Pergamon Press, 365–386.
  • Dubnau D, Davidoff-Abelson R, Scher B, Cirigliano C. 1973. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: phenotypic characterization of radiation-sensitive recombination-deficient mutants. J Bacteriol 114:273–286.
  • Duffin PM, Seifert HS. 2010. DNA uptake sequence-mediated enhancement of transformation in Neisseria gonorrhoeae is strain dependent. J Bacteriol 192:4436–4444.
  • Eisenstein BI, Sox T, Biswas G, Blackman E, Sparling PF. 1977. Conjugal transfer of the gonococcal penicillinase plasmid. Science 195:998–1000.
  • Elkins C, Thomas CE, Seifert HS, Sparling PF. 1991. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173:3911–3913.
  • Elsholz AK, Turgay K, Michalik S, Hessling B, Gronau K, Oertel D, Mäder U, Bernhardt J, Becher D, Hecker M, Gerth U. 2012. Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proc Natl Acad Sci USA 109:7451–7456.
  • Engelmoer DJ, Rozen DE. 2011. Competence increases survival during stress in Streptococcus pneumoniae. Evolution 65:3475–3485.
  • Feil EJ, Maiden MC, Achtman M, Spratt BG. 1999. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16:1496–1502.
  • Fernández S, Ayora S, Alonso JC. 2000. Bacillus subtilis homologous recombination: genes and products. Res Microbiol 151:481–486.
  • Fernández S, Kobayashi Y, Ogasawara N, Alonso JC. 1999. Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Mol Gen Genet 261:567–573.
  • Fernández S, Sorokin A, Alonso JC. 1998. Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination. J Bacteriol 180:3405–3409.
  • Finkel SE, Kolter R. 2001. DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183:6288–6293.
  • Fraser C, Hanage WP, Spratt BG. 2007. Recombination and the nature of bacterial speciation. Science 315:476–480.
  • Galletto R, Kowalczykowski SC. 2007. RecA. Curr Biol 17:R395–R397.
  • Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H, Shuman S, Glickman MS. 2005. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12:304–312.
  • Goodman SD, Scocca JJ. 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci USA 85:6982–6986.
  • Graumann PL, Knust T. 2009. Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosome Res 17:265–275.
  • Griffith F. 1928. The Significance of Pneumococcal Types. J Hyg (Lond) 27:113–159.
  • Gromkova R, Goodgal S. 1981. Uptake of plasmid deoxyribonucleic acid by Haemophilus. J Bacteriol 146:79–84.
  • Gruenig MC, Stohl EA, Chitteni-Pattu S, Seifert HS, Cox MM. 2010. Less is more: Neisseria gonorrhoeae RecX protein stimulates recombination by inhibiting RecA. J Biol Chem 285:37188–37197.
  • Grunberg-Manago M. 1999. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33:193–227.
  • Guiral S, Mitchell TJ, Martin B, Claverys JP. 2005. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci USA 102:8710–8715.
  • Hahn J, Kramer N, Briley K, Dubnau D. 2009. McsA and B mediate the delocalization of competence proteins from the cell poles of Bacillus subtilis. Mol Microbiol 72:202–215.
  • Hahn J, Maier B, Haijema BJ, Sheetz M, Dubnau D. 2005. Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. Cell 122:59–71.
  • Haijema BJ, Hahn J, Haynes J, Dubnau D. 2001. A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 40:52–64.
  • Haijema BJ, Hamoen LW, Kooistra J, Venema G, van Sinderen D. 1995. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol Microbiol 15:203–211.
  • Halpern D, Gruss A, Claverys JP, El-Karoui M. 2004. rexAB mutants in Streptococcus pneumoniae. Microbiology (Reading, Engl) 150:2409–2414.
  • Hamoen LW, Haijema B, Bijlsma JJ, Venema G, Lovett CM. 2001. The Bacillus subtilis competence transcription factor, ComK, overrides LexA-imposed transcriptional inhibition without physically displacing LexA. J Biol Chem 276:42901–42907.
  • Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. 2002. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30:5517–5528.
  • Håvarstein LS, Martin B, Johnsborg O, Granadel C, Claverys JP. 2006. New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol 59:1297–1307.
  • Håvarstein LS, Morrison DA. (1999). Quorum Sensisng Peptide Pheromones in Streptococcus Competence for Genetic Transformation. Washington DC: American Society for Microbiology.
  • Hegde SP, Qin MH, Li XH, Atkinson MA, Clark AJ, Rajagopalan M, Madiraju MV. 1996. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci USA 93:14468–14473.
  • Hiller NL, Ahmed A, Powell E, Martin DP, Eutsey R, Earl J, Janto B, Boissy RJ, Hogg J, Barbadora K, Sampath R, Lonergan S, Post JC, Hu FZ, Ehrlich GD. 2010. Generation of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection. PLoS Pathog 6:e1001108.
  • Hoelzer MA, Michod RE. 1991. DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA. Genetics 128:215–223.
  • Hofreuter D, Odenbreit S, Haas R. 2001. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41:379–391.
  • Hofreuter D, Odenbreit S, Püls J, Schwan D, Haas R. 2000. Genetic competence in Helicobacter pylori: mechanisms and biological implications. Res Microbiol 151:487–491.
  • Humbert O, Dorer MS, Salama NR. 2011. Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. Mol Microbiol 79:387–401.
  • Humbert O, Salama NR. 2008. The Helicobacter pylori HpyAXII restriction-modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components. Nucleic Acids Res 36:6893–6906.
  • Inamine GS, Dubnau D. 1995. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol 177:3045–3051.
  • Johnsborg O, Håvarstein LS. 2009. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33:627–642.
  • Johnsen PJ, Dubnau D, Levin BR. 2009. Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis. Genetics 181:1521–1533.
  • Kaimer C, Graumann PL. 2010. Bacillus subtilis CinA is a stationary phase-induced protein that localizes to the nucleoid and plays a minor role in competent cells. Arch Microbiol 192:549–557.
  • Kang J, Blaser MJ. 2008. Repair and antirepair DNA helicases in Helicobacter pylori. J Bacteriol 190:4218–4224.
  • Karudapuram S, Barcak GJ. 1997. The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol 179:4815–4820.
  • Kaufenstein M, van der Laan M, Graumann PL. 2011. The three-layered DNA uptake machinery at the cell pole in competent Bacillus subtilis cells is a stable complex. J Bacteriol 193:1633–1642.
  • Kickstein E, Harms K, Wackernagel W. 2007. Deletions of recBCD or recD influence genetic transformation differently and are lethal together with a recJ deletion in Acinetobacter baylyi. Microbiology (Reading, Engl) 153:2259–2270.
  • Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S, Tadesse S, Alonso JC, Graumann PL. 2009. Evidence for different pathways during horizontal gene transfer in competent Bacillus subtilis cells. PLoS Genet 5:e1000630.
  • Kidane D, Graumann PL. 2005. Intracellular protein and DNA dynamics in competent Bacillus subtilis cells. Cell 122:73–84.
  • Kidane D, Sanchez H, Alonso JC, Graumann PL. 2004. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol Microbiol 52:1627–1639.
  • Kline KA, Seifert HS. 2005. Mutation of the priA gene of Neisseria gonorrhoeae affects DNA transformation and DNA repair. J Bacteriol 187:5347–5355.
  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465.
  • Kramer N, Hahn J, Dubnau D. 2007. Multiple interactions among the competence proteins of Bacillus subtilis. Mol Microbiol 65:454–464.
  • Krishnamurthy M, Tadesse S, Rothmaier K, Graumann PL. 2010. A novel SMC-like protein, SbcE (YhaN), is involved in DNA double-strand break repair and competence in Bacillus subtilis. Nucleic Acids Res 38:455–466.
  • Kuzminov A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813.
  • Lacks SA. (1988). Mechanisms of Genetic Recombination in Gram-Positive Bacteria. Washington, D.C: American Society for Microbiology.
  • Lacks SA, Ayalew S, de la Campa AG, Greenberg B. 2000. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol Microbiol 35:1089–1098.
  • Lecointe F, Sérèna C, Velten M, Costes A, McGovern S, Meile JC, Errington J, Ehrlich SD, Noirot P, Polard P. 2007. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J 26:4239–4251.
  • Lemon KP, Grossman AD. 1998. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:1516–1519.
  • Lindner C, Nijland R, van Hartskamp M, Bron S, Hamoen LW, Kuipers OP. 2004. Differential expression of two paralogous genes of Bacillus subtilis encoding single-stranded DNA binding protein. J Bacteriol 186:1097–1105.
  • Lo Piano A, Martínez-Jiménez MI, Zecchi L, Ayora S. 2011. Recombination-dependent concatemeric viral DNA replication. Virus Res 160:1–14.
  • Lo Scrudato M, Blokesch M. 2012. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 8:e1002778.
  • Londoño-Vallejo JA, Dubnau D. 1993. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 9:119–131.
  • López D, Vlamakis H, Losick R, Kolter R. 2009. Paracrine signaling in a bacterium. Genes Dev 23:1631–1638.
  • Lopez P, Espinosa M, Stassi DL, Lacks SA. 1982. Facilitation of plasmid transfer in Streptococcus pneumoniae by chromosomal homology. J Bacteriol 150:692–701.
  • Lorenz MG, Wackernagel W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602.
  • Loughlin MF, Barnard FM, Jenkins D, Sharples GJ, Jenks PJ. 2003. Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infect Immun 71:2022–2031.
  • Love PE, Lyle MJ, Yasbin RE. 1985. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis. Proc Natl Acad Sci USA 82:6201–6205.
  • Lovett CM, Roberts JW. 1985. Purification of a RecA protein analogue from Bacillus subtilis. J Biol Chem 260:3305–3313.
  • Lovett ST, Hurley RL, Sutera VA, Aubuchon RH, Lebedeva MA. 2002. Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160:851–859.
  • Lucarelli D, Wang YA, Galkin VE, Yu X, Wigley DB, Egelman EH. 2009. The RecB nuclease domain binds to RecA-DNA filaments: implications for filament loading. J Mol Biol 391:269–274.
  • Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, Seifert HS, Cox MM. 2006. The RecF protein antagonizes RecX function via direct interaction. Mol Cell 21:41–50.
  • Luttinger A, Hahn J, Dubnau D. 1996. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19:343–356.
  • Maamar H, Dubnau D. 2005. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56:615–624.
  • Macfadyen LP. 2000. Regulation of competence development in Haemophilus influenzae. J Theor Biol 207:349–359.
  • Majewski J, Cohan FM. 1999. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153:1525–1533.
  • Manfredi C, Carrasco B, Ayora S, Alonso JC. 2008. Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA. J Biol Chem 283:24837–24847.
  • Manfredi C, Suzuki Y, Yadav T, Takeyasu K, Alonso JC. 2010. RecO-mediated DNA homology search and annealing is facilitated by SsbA. Nucleic Acids Res 38:6920–6929.
  • Marsin S, Lopes A, Mathieu A, Dizet E, Orillard E, Guérois R, Radicella JP. 2010. Genetic dissection of Helicobacter pylori AddAB role in homologous recombination. FEMS Microbiol Lett 311:44–50.
  • Marsin S, Mathieu A, Kortulewski T, Guérois R, Radicella JP. 2008. Unveiling novel RecO distant orthologues involved in homologous recombination. PLoS Genet 4:e1000146.
  • Martin B, Granadel C, Campo N, Hénard V, Prudhomme M, Claverys JP. 2010. Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol Microbiol 75:1513–1528.
  • Martin B, Sharples GJ, Humbert O, Lloyd RG, Claverys JP. 1996. The mmsA locus of Streptococcus pneumoniae encodes a RecG-like protein involved in DNA repair and in three-strand recombination. Mol Microbiol 19:1035–1045.
  • Mascarenhas J, Sanchez H, Tadesse S, Kidane D, Krisnamurthy M, Alonso JC, Graumann PL. 2006. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair. BMC Mol Biol 7:20.
  • Masure HR, Pearce BJ, Shio H, Spellerberg B. 1998. Membrane targeting of RecA during genetic transformation. Mol Microbiol 27:845–852.
  • Mathis LS, Scocca JJ. 1982. Haemophilus influenzae and Neisseria gonorrhoeae recognize different specificity determinants in the DNA uptake step of genetic transformation. J Gen Microbiol 128:1159–1161.
  • Matthews LW, Spector S, Lemm J, Potter JL. 1963. Studies on pulmonary secretions. I. The over-all chemical composition of pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am Rev Respir Dis 88:199–204.
  • Mattick JS. 2002. Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314.
  • Maynard Smith J. (1978). The Evolution of Sex. Cambridge: Cambridge University Press.
  • McGregor N, Ayora S, Sedelnikova S, Carrasco B, Alonso JC, Thaw P, Rafferty J. 2005. The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence-specific cleavage. Structure 13:1341–1351.
  • Mehr IJ, Seifert HS. 1998. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30:697–710.
  • Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827.
  • Meier P, Berndt C, Weger N, Wackernagel W. 2002. Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type IV pili, competence state and comA. FEMS Microbiol Lett 207:75–80.
  • Meier P, Wackernagel W. 2005. Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol 187:143–154.
  • Meima R, Eschevins C, Fillinger S, Bolhuis A, Hamoen LW, Dorenbos R, Quax WJ, van Dijl JM, Provvedi R, Chen I, Dubnau D, Bron S. 2002. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J Biol Chem 277:6994–7001.
  • Mell JC, Shumilina S, Hall IM, Redfield RJ. 2011. Transformation of natural genetic variation into Haemophilus influenzae genomes. PLoS Pathog 7:e1002151.
  • Michel B, Niaudet B, Ehrlich SD. 1982. Intramolecular recombination during plasmid transformation of Bacillus subtilis competent cells. EMBO J 1:1565–1571.
  • Michod RE, Bernstein H, Nedelcu AM. 2008. Adaptive value of sex in microbial pathogens. Infect Genet Evol 8:267–285.
  • Michod RE, Wojciechowski MF, Hoelzer MA. 1988. DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Genetics 118:31–39.
  • Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, Davies J, Jensen PR, Vujaklija D. 2006. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34:1588–1596.
  • Morimatsu K, Kowalczykowski SC. 2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347.
  • Morrison DA, Lee MS. 2000. Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. Res Microbiol 151:445–451.
  • Morrison DA, Mortier-Barrière I, Attaiech L, Claverys JP. 2007. Identification of the major protein component of the pneumococcal eclipse complex. J Bacteriol 189:6497–6500.
  • Mortier-Barriere I, Humbert O, Martin B, Prudhomme M, Claverys JP. 1997. Control of recombination rate during transformation of Streptococcus pneumoniae: an overview. Microb Drug Resist 3:233–242.
  • Mortier-Barrière I, Velten M, Dupaigne P, Mirouze N, Piétrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, Polard P, Claverys JP. 2007. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130:824–836.
  • Moxon ER, Rainey PB, Nowak MA, Lenski RE. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33.
  • Nester EW, Stocker BA. 1963. Biosynthetic latency in early stages of deoxyribonucleic acid transformation in Bacillus subtilis. J Bacteriol 86:785–796.
  • Niu H, Raynard S, Sung P. 2009. Multiplicity of DNA end resection machineries in chromosome break repair. Genes Dev 23:1481–1486.
  • Notani NK, Setlow JK, McCarthy D, Clayton NL. 1981. Transformation of Haemophilus influenzae by plasmid RSF0885. J Bacteriol 148:812–816.
  • Novick RP, Edelman I, Lofdahl S. 1986. Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. J Mol Biol 192:209–220.
  • Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. 2002. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184:2344–2351.
  • Orillard E, Radicella JP, Marsin S. 2011. Biochemical and cellular characterization of Helicobacter pylori RecA, a protein with high-level constitutive expression. J Bacteriol 193:6490–6497.
  • Palchevskiy V, Finkel SE. 2006. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol 188:3902–3910.
  • Peterson S, Cline RT, Tettelin H, Sharov V, Morrison DA. 2000. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol 182:6192–6202.
  • Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G, Burr PC, Do Y, Ahn S, Gilbert J, Fleischmann RD, Morrison DA. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51:1051–1070.
  • Pinto AV, Mathieu A, Marsin S, Veaute X, Ielpi L, Labigne A, Radicella JP. 2005. Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. Mol Cell 17:113–120.
  • Prepiak P, Dubnau D. 2007. A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP. Mol Cell 26:639–647.
  • Provvedi R, Chen I, Dubnau D. 2001. NucA is required for DNA cleavage during transformation of Bacillus subtilis. Mol Microbiol 40:634–644.
  • Provvedi R, Dubnau D. 1999. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol Microbiol 31:271–280.
  • Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP. 2006. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92.
  • Puyet A, Greenberg B, Lacks SA. 1990. Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J Mol Biol 213:727–738.
  • Raghunathan S, Kozlov AG, Lohman TM, Waksman G. 2000. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7:648–652.
  • Ragone S, Maman JD, Furnham N, Pellegrini L. 2008. Structural basis for inhibition of homologous recombination by the RecX protein. EMBO J 27:2259–2269.
  • Redfield D. 1993. Environmental hazards: real or exaggerated? Science 262:638.
  • Redfield RJ. 2001. Do bacteria have sex? Nat Rev Genet 2:634–639.
  • Redfield RJ, Cameron AD, Qian Q, Hinds J, Ali TR, Kroll JS, Langford PR. 2005. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol 347:735–747.
  • Redfield RJ, Findlay WA, Bossé J, Kroll JS, Cameron AD, Nash JH. 2006. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol 6:82.
  • Salerno B, Anne G, Bryant FR. 2011. DNA binding compatibility of the Streptococcus pneumoniae SsbA and SsbB proteins. PLoS ONE 6:e24305.
  • San Filippo J, Sung P, Klein H. 2008. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257.
  • Sanchez H, Alonso JC. 2005. Bacillus subtilis RecN binds and protects 3′-single-stranded DNA extensions in the presence of ATP. Nucleic Acids Res 33:2343–2350.
  • Sanchez H, Cardenas PP, Yoshimura SH, Takeyasu K, Alonso JC. 2008. Dynamic structures of Bacillus subtilis RecN-DNA complexes. Nucleic Acids Res 36:110–120.
  • Sanchez H, Carrasco B, Ayora S, Alonso JC. (2007a). Dynamics of DNA double-strand break repair in Bacillus subtilis. In: Graumann PL, (ed). Bacillus: Cellular and Molecular Biology. Norfolk: Caister Academic Press, 43–66.
  • Sanchez H, Carrasco B, Ayora S, Alonso JC. (2007b). Homologous recombination in low dC + dG Gram-positive bacteria. Molecular Genetics of Recombination. Berlin, Heidelberg: Springer Berlin/Heidelberg, 27–51.
  • Sanchez H, Carrasco B, Cozar MC, Alonso JC. 2007c. Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation. Mol Microbiol 65:920–935.
  • Sanchez H, Kidane D, Castillo Cozar M, Graumann PL, Alonso JC. 2006. Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing. J Bacteriol 188:353–360.
  • Sanchez H, Kidane D, Reed P, Curtis FA, Cozar MC, Graumann PL, Sharples GJ, Alonso JC. 2005. The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics 171:873–883.
  • Sassanfar M, Roberts JW. 1990. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96.
  • Satoh K, Kikuchi M, Ishaque AM, Ohba H, Yamada M, Tejima K, Onodera T, Narumi I. 2012. The role of Deinococcus radiodurans RecFOR proteins in homologous recombination. DNA Repair (Amst) 11:410–418.
  • Saunders CW, Guild WR. 1981. Monomer plasmid DNA transforms Streptococcus pneumoniae. Mol Gen Genet 181:57–62.
  • Sechman EV, Kline KA, Seifert HS. 2006. Loss of both Holliday junction processing pathways is synthetically lethal in the presence of gonococcal pilin antigenic variation. Mol Microbiol 61:185–193.
  • Shank EA, Kolter R. 2011. Extracellular signaling and multicellularity in Bacillus subtilis. Curr Opin Microbiol 14:741–747.
  • Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. 2008. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43:289–318.
  • Shuman S, Glickman MS. 2007. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–861.
  • Sisco KL, Smith HO. 1979. Sequence-specific DNA uptake in Haemophilus transformation. Proc Natl Acad Sci USA 76:972–976.
  • Skaar EP, Lazio MP, Seifert HS. 2002. Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae. J Bacteriol 184:919–927.
  • Smeets LC, Becker SC, Barcak GJ, Vandenbroucke-Grauls CM, Bitter W, Goosen N. 2006. Functional characterization of the competence protein DprA/Smf in Escherichia coli. FEMS Microbiol Lett 263:223–228.
  • Smeets LC, Bijlsma JJ, Kuipers EJ, Vandenbroucke-Grauls CM, Kusters JG. 2000. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol Med Microbiol 27:99–102.
  • Smith HO, Tomb JF, Dougherty BA, Fleischmann RD, Venter JC. 1995. Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269:538–540.
  • Solomon JM, Grossman AD. 1996. Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet 12:150–155.
  • Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. 2005. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710.
  • Steffen SE, Bryant FR. 1999. Reevaluation of the nucleotide cofactor specificity of the RecA protein from Bacillus subtilis. J Biol Chem 274:25990–25994.
  • Steffen SE, Katz FS, Bryant FR. 2002. Complete inhibition of Streptococcus pneumoniae RecA protein-catalyzed ATP hydrolysis by single-stranded DNA-binding protein (SSB protein): implications for the mechanism of SSB protein-stimulated DNA strand exchange. J Biol Chem 277:14493–14500.
  • Stein DC. 1991. Transformation of Neisseria gonorrhoeae: physical requirements of the transforming DNA. Can J Microbiol 37:345–349.
  • Stewart GJ, Carlson CA. 1986. The biology of natural transformation. Annu Rev Microbiol 40:211–235.
  • Stingl K, Müller S, Scheidgen-Kleyboldt G, Clausen M, Maier B. 2010. Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc Natl Acad Sci USA 107:1184–1189.
  • Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC, Seifert HS. 2003. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278:2278–2285.
  • Stohl EA, Seifert HS. 2001. The recX gene potentiates homologous recombination in Neisseria gonorrhoeae. Mol Microbiol 40:1301–1310.
  • Tadesse S, Graumann PL. 2006. Differential and dynamic localization of topoisomerases in Bacillus subtilis. J Bacteriol 188:3002–3011.
  • Tadesse S, Graumann PL. 2007. DprA/Smf protein localizes at the DNA uptake machinery in competent Bacillus subtilis cells. BMC Microbiol 7:105.
  • Takata T, Ando T, Israel DA, Wassenaar TM, Blaser MJ. 2005. Role of dprA in transformation of Campylobacter jejuni. FEMS Microbiol Lett 252:161–168.
  • Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721.
  • Treangen TJ, Ambur OH, Tonjum T, Rocha EP. 2008. The impact of the Neisserial DNA uptake sequences on genome evolution and stability. Genome Biol 9:R60.
  • Umezu K, Chi NW, Kolodner RD. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA 90:3875–3879.
  • van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G, Hamoen L. 1995. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15:455–462.
  • Viret JF, Bravo A, Alonso JC. 1991. Recombination-dependent concatemeric plasmid replication. Microbiol Rev 55:675–683.
  • Vos M. 2009. Why do bacteria engage in homologous recombination? Trends Microbiol 17:226–232.
  • Wang G, Lo LF, Maier RJ. 2011. The RecRO pathway of DNA recombinational repair in Helicobacter pylori and its role in bacterial survival in the host. DNA Repair (Amst) 10:373–379.
  • Wang G, Maier RJ. 2008. Critical role of RecN in recombinational DNA repair and survival of Helicobacter pylori. Infect Immun 76:153–160.
  • Wang JD, Rokop ME, Barker MM, Hanson NR, Grossman AD. 2004. Multicopy plasmids affect replisome positioning in Bacillus subtilis. J Bacteriol 186:7084–7090.
  • Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wilkinson A, d’Adda di Fagagna F, Devine KM, Bowater RP, Jeggo PA, Jackson SP, Doherty AJ. 2002. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297:1686–1689.
  • Yadav T, Carrasco B, Myers AR, George NP, Keck JL, Alonso JC. 2012. Genetic recombination in Bacillus subtilis: a division of labor between two single-strand DNA-binding proteins. Nucleic Acids Res 40:5546–5559.
  • Yeeles JT, Dillingham MS. 2010. The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes. DNA Repair (Amst) 9:276–285.
  • Yeeles JT, van Aelst K, Dillingham MS, Moreno-Herrero F. 2011. Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease. Mol Cell 42:806–816.
  • Zawadzki P, Roberts MS, Cohan FM. 1995. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932.
  • Zhang XS, Blaser MJ. 2012. DprB facilitates inter- and intragenomic recombination in Helicobacter pylori. J Bacteriol 194:3891–3903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.