5,160
Views
117
CrossRef citations to date
0
Altmetric
Review Article

Diversity in ABC transporters: Type I, II and III importers

, &
Pages 426-437 | Received 02 Jun 2014, Accepted 07 Aug 2014, Published online: 26 Aug 2014

References

  • Aguilar-Barajas E, Diaz-Perez C, Ramirez-Diaz MI, et al. (2011). Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24:687–707
  • Al-Shawi MK. (2011). Catalytic and transport cycles of ABC exporters. Essays Biochem 50:63–83
  • Andrews SC, Robinson AK, Rodriguez-Quinones F. (2003). Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–37
  • Austermuhle MI, Hall JA, Klug CS, Davidson AL. (2004). Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport. J Biol Chem 279:28243–50
  • Bao H, Duong F. (2012). Discovery of an auto-regulation mechanism for the maltose ABC transporter MalFGK2. PLoS One 7:e34836
  • Berntsson RP, Smits SH, Schmitt L, et al. (2010). A structural classification of substrate-binding proteins. FEBS Lett 584:2606–17
  • Berntsson RP, Ter Beek J, Majsnerowska M, et al. (2012). Structural divergence of paralogous S components from ECF-type ABC transporters. Proc Natl Acad Sci USA 109:13990–5
  • Biemans-Oldehinkel E, Doeven MK, Poolman B. (2006). ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580:1023–35
  • Boos W, Shuman H. (1998). Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–29
  • Borths EL, Locher KP, Lee AT, Rees DC. (2002). The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99:16642–7
  • Borths EL, Poolman B, Hvorup RN, et al. (2005). In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44:16301–9
  • Chai C, Yu Y, Zhuo W, et al. (2013). Structural basis for a homodimeric ATPase subunit of an ECF transporter. Protein Cell 4:793–801
  • Chao TC, Buhrmester J, Hansmeier N, et al. (2005). Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Appl Environ Microbiol 71:5969–82
  • Chen SS, Oldham ML, Davidson AL, Chen J. (2013). Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499:364–8
  • Cserzo M, Eisenhaber F, Eisenhaber B, Simon I. (2002). On filtering false positive transmembrane protein predictions. Protein Eng 15:745–52
  • Daus ML, Grote M, Schneider E. (2009). The MalF P2 loop of the ATP-binding cassette transporter MalFGK2 from Escherichia coli and Salmonella enterica serovar typhimurium interacts with maltose binding protein (MalE) throughout the catalytic cycle. J Bacteriol 191:754–61
  • Davidson AL, Dassa E, Orelle C, Chen J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–64, table of contents
  • Davidson AL, Shuman HA, Nikaido H. (1992). Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci USA 89:2360–4
  • Dean M, Hamon Y, Chimini G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42:1007–17
  • Duan X, Hall JA, Nikaido H, Quiocho FA. (2001). Crystal structures of the maltodextrin/maltose-binding protein complexed with reduced oligosaccharides: flexibility of tertiary structure and ligand binding. J Mol Biol 306:1115–26
  • Duurkens RH, Tol MB, Geertsma ER, et al. (2007). Flavin binding to the high affinity riboflavin transporter RibU. J Biol Chem 282:10380–6
  • Eckford PD, Sharom FJ. (2009). ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 109:2989–3011
  • Ehrmann M, Ehrle R, Hofmann E, et al. (1998). The ABC maltose transporter. Mol Microbiol 29:685–94
  • Erkens GB, Berntsson RP, Fulyani F, et al. (2011). The structural basis of modularity in ECF-type ABC transporters. Nat Struct Mol Biol 18:755–60
  • Erkens GB, Majsnerowska M, Ter Beek J, Slotboom DJ. (2012). Energy coupling factor-type ABC transporters for vitamin uptake in prokaryotes. Biochemistry 51:4390–6
  • Fletcher JI, Haber M, Henderson MJ, Norris MD. (2010). ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–56
  • Fukami-Kobayashi K, Tateno Y, Nishikawa K. (1999). Domain dislocation:a change of core structure in periplasmic binding proteins in their evolutionary history. J Mol Biol 286:279–90
  • Fulyani F, Schuurman-Wolters GK, Zagar AV, et al. (2013). Functional diversity of tandem substrate-binding domains in ABC transporters from pathogenic bacteria. Structure 21:1879–88
  • Gerber S, Comellas-Bigler M, Goetz BA, Locher KP. (2008). Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321:246–50
  • Goetz BA, Perozo E, Locher KP. (2009). Distinct gate conformations of the ABC transporter BtuCD revealed by electron spin resonance spectroscopy and chemical cross-linking. FEBS Lett 583:266–70
  • Grunden AM, Ray RM, Rosentel JK, et al. (1996). Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178:735–44
  • Hall DR, Gourley DG, Leonard GA, et al. (1999). The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds. EMBO J 18:1435–46
  • Hebbeln P, Rodionov DA, Alfandega A, Eitinger T. (2007). Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci USA 104:2909–14
  • Henderson GB, Zevely EM, Huennekens FM. (1979). Mechanism of folate transport in Lactobacillus casei: evidence for a component shared with the thiamine and biotin transport systems. J Bacteriol 137:1308–14
  • Higgins CF. (1992). ABC transporters:from microorganisms to man. Annu Rev Cell Biol 8:67–113
  • Higgins CF, Hiles ID, Salmond GP, et al. (1986). A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448–50
  • Hollenstein K, Frei DC, Locher KP. (2007). Structure of an ABC transporter in complex with its binding protein. Nature 446:213–16
  • Hvorup RN, Goetz BA, Niederer M, et al. (2007). Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387–90
  • Jacso T, Grote M, Daus ML, et al. (2009). Periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter is sufficient to bind the maltose binding protein MalE. Biochemistry 48:2216–25
  • Jacso T, Schneider E, Rupp B, Reif B. (2012). Substrate transport activation is mediated through second periplasmic loop of transmembrane protein MalF in maltose transport complex of Escherichia coli. J Biol Chem 287:17040–9
  • Jardetzky O. (1966). Simple allosteric model for membrane pumps. Nature 211:969–70
  • Joseph B, Jeschke G, Goetz BA, et al. (2011). Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J Biol Chem 286:41008–17
  • Joseph B, Korkhov VM, Yulikov M, et al. (2014). Conformational cycle of the vitamin B12 ABC importer in liposomes detected by double electron-electron resonance (DEER). J Biol Chem 289:3176–85
  • Kadaba NS, Kaiser JT, Johnson E, et al. (2008). The high-affinity E. coli methionine ABC transporter:structure and allosteric regulation. Science 321:250–3
  • Karpowich NK, Huang HH, Smith PC, Hunt JF. (2003). Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J Biol Chem 278:8429–34
  • Karpowich NK, Wang DN. (2013). Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci USA 110:2534–9
  • Kerr ID, Jones PM, George AM. (2010). Multidrug efflux pumps:the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues. FEBS J 277:550–63
  • Khare D, Oldham ML, Orelle C, et al. (2009). Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell 33:528–36
  • Kirby SD, Lainson FA, Donachie W, et al. (1998). The Pasteurella haemolytica 35 kDa iron-regulated protein is an FbpA homologue. Microbiology 144:3425–36
  • Kjelleberg S, Albertson N, Flardh K, et al. (1993). How do non-differentiating bacteria adapt to starvation? Antonie Van Leeuwenhoek 63:333–41
  • Korkhov VM, Mireku SA, Hvorup RN, Locher KP. (2012a). Asymmetric states of vitamin B(1)(2) transporter BtuCD are not discriminated by its cognate substrate binding protein BtuF. FEBS Lett 586:972–6
  • Korkhov VM, Mireku SA, Locher KP. (2012b). Structure of AMP-PNP-bound vitamin B(12) transporter BtuCD-F. Nature 490:367–72
  • Lewinson O, Lee AT, Locher KP, Rees DC. (2010). A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat Struct Mol Biol 17:332–8
  • Lewis VG, Ween MP, McDevitt CA. (2012). The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma 249:919–42
  • Lin AE, Krastel K, Hobb RI, et al. (2009). Atypical roles for Campylobacter jejuni amino acid ATP binding cassette transporter components PaqP and PaqQ in bacterial stress tolerance and pathogen-host cell dynamics. Infect Immun 77:4912–24
  • Locher KP. (2009). Structure and mechanism of ATP-binding cassette transporters. Phil Trans R Soc B Biol Sci 364:239–45
  • Locher KP, Lee AT, Rees DC. (2002). The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–8
  • Mao B, Pear MR, McCammon JA, Quiocho FA. (1982). Hinge-bending in L-arabinose-binding protein. The “Venus's-flytrap” model. J Biol Chem 257:1131–3
  • Mason KM, Raffel FK, Ray WC, Bakaletz LO. (2011). Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function. J Bacteriol 193:2527–35
  • Mattle D, Zeltina A, Woo JS, et al. (2010). Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J Mol Biol 404:220–31
  • Mouncey NJ, Mitchenall LA, Pau RN. (1996). The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii. Microbiology 142:1997–2004
  • Neubauer O, Alfandega A, Schoknecht J, et al. (2009). Two essential arginine residues in the T components of energy-coupling factor transporters. J Bacteriol 191:6482–8
  • Oldham ML, Chen J. (2011). Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332:1202–5
  • Oldham ML, Chen SS, Chen J. (2013). Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci USA 110:18132–7
  • Oldham ML, Davidson AL, Chen J. (2008). Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–33
  • Oldham ML, Khare D, Quiocho FA, et al. (2007). Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–21
  • Orelle C, Ayvaz T, Everly RM, et al. (2008). Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc Natl Acad Sci USA 105:12837–42
  • Pinkett HW, Lee AT, Lum P, et al. (2007). An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315:373–7
  • Quiocho FA, Phillips GN Jr, Parsons RG, Hogg RW. (1974). Letter: Crystallographic data of an L-arabinose-binding protein from Escherichia coli. J Mol Biol 86:491–3
  • Rice AJ, Alvarez FJ, Schultz KM, et al. (2013). EPR spectroscopy of MolB2C2-a reveals mechanism of transport for a bacterial type II molybdate importer. J Biol Chem 288:21228–35
  • Rice AJ, Harrison A, Alvarez FJ, et al. (2014). Small substrate transport and mechanism of a molybdate ABC transporter in a lipid environment. J Biol Chem 289:15005–13
  • Rodionov DA, Hebbeln P, Eudes A, et al. (2009). A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191:42–51
  • Saurin W, Dassa E. (1994). Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications. Protein Sci 3:325–44
  • Saurin W, Koster W, Dassa E. (1994). Bacterial binding protein-dependent permeases:characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol Microbiol 12:993–1004
  • Schneider E, Hunke S. (1998). ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22:1–20
  • Schuttelkopf AW, Boxer DH, Hunter WN. (2003). Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains. J Mol Biol 326:761–7
  • Scripture JB, Voelker C, Miller S, et al. (1987). High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products. J Mol Biol 197:37–46
  • Seeger MA, Van Veen HW. (2009). Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta 1794:725–37
  • Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA. (1992). Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31:10657–63
  • Shelton CL, Raffel FK, Beatty WL, et al. (2011). Sap transporter mediated import and subsequent degradation of antimicrobial peptides in Haemophilus. PLoS Pathog 7:e1002360
  • Shilton BH, Shuman HA, Mowbray SL. (1996). Crystal structures and solution conformations of a dominant-negative mutant of Escherichia coli maltose-binding protein. J Mol Biol 264:364–76
  • Shouldice SR, Skene RJ, Dougan DR, et al. (2004). Structural basis for iron binding and release by a novel class of periplasmic iron-binding proteins found in gram-negative pathogens. J Bacteriol 186:3903–10
  • Sirko A, Zatyka M, Sadowy E, Hulanicka D. (1995). Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol 177:4134–6
  • Slotboom DJ. (2014). Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 12:79–87
  • Spurlino JC, Lu GY, Quiocho FA. (1991). The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem 266:5202–19
  • Tanabe M, Mirza O, Bertrand T, et al. (2007). Structures of OppA and PstS from Yersinia pestis indicate variability of interactions with transmembrane domains. Acta Crystallogr D Biol Crystallogr 63:1185–93
  • Tirado-Lee L, Lee A, Rees DC, Pinkett HW. (2011). Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. Structure 19:1701–10
  • Vanderlinde EM, Harrison JJ, Muszynski A, et al. (2010). Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol 71:327–40
  • Vigonsky E, Ovcharenko E, Lewinson O. (2013). Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins. Proc Natl Acad Sci USA 110:5440–5
  • Voss NR, Gerstein M. (2010). 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 38:W555–62
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–51
  • Wang T, Fu G, Pan X, et al. (2013). Structure of a bacterial energy-coupling factor transporter. Nature 497:272–6
  • Woo JS, Zeltina A, Goetz BA, Locher KP. (2012). X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol 19:1310–15
  • Xu K, Zhang M, Zhao Q, et al. (2013). Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 497:268–71
  • Yaffe E, Fishelovitch D, Wolfson HJ, et al. (2008). MolAxis: efficient and accurate identification of channels in macromolecules. Proteins 73:72–86
  • Yu Y, Zhou M, Kirsch F, et al. (2014). Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters. Cell Res 24:267–77
  • Zhang P. (2013). Structure and mechanism of energy-coupling factor transporters. Trends Microbiol 21:652–9
  • Zhang P, Wang J, Shi Y. (2010). Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468:717–20