647
Views
24
CrossRef citations to date
0
Altmetric
Review Article

RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

, , , , &
Pages 503-519 | Received 25 Jun 2015, Accepted 25 Aug 2015, Published online: 22 Sep 2015

References

  • Awrey DE, Weilbaecher RG, Hemming SA, et al. (1997). Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J Biol Chem 272:14747–54
  • Awrey DE, Shimasaki N, Koth C, et al. (1998). Yeast transcript elongation factor (TFIIS), structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J Biol Chem 273:2595–605
  • Batada NN, Westover KD, Bushnell DA, et al. (2004). Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center. Proc Natl Acad Sci USA 101:17361–4
  • Beard WA, Wilson SH. (2006). Structure and mechanism of DNA polymerase Beta. Chem Rev 106:361–82
  • Belotserkovskii BP, Liu R, Tornaletti S, et al. (2010). Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci U S A 107:12816–21
  • Belotserkovskii BP, Mirkin SM, Hanawalt PC. (2013). DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 113:8620–37
  • Belotserkovskii BP, Neil AJ, Saleh SS, et al. (2013). Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Res 41:1817–28
  • Benner SA. (2004). Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37:784–97
  • Benner SA, Sismour AM. (2005). Synthetic biology. Nat Rev Genet 6:533–43
  • Bohr VA, Smith CA, Okumoto DS, et al. (1985). DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359–69
  • Bowler FR, Chan CK, Duffy CD, et al. (2013). Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat Chem 5:383–9
  • Braberg H, Jin H, Moehle EA, et al. (2013). From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 154:775–88
  • Branco MR, Ficz G, Reik W. (2011). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13
  • Bregeon D, Doddridge ZA, You HJ, et al. (2003). Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli. Mol Cell 12:959–70
  • Bregeon D, Doetsch PW. (2011). Transcriptional mutagenesis: causes and involvement in tumour development. Nat Rev Cancer 11:218–27
  • Brieba LG, Eichman BF, Kokoska RJ, et al. (2004). Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. EMBO J 23:3452–61
  • Brooks PJ, Wise DS, Berry DA, et al. (2000). The oxidative DNA lesion 8,5'-(S)-cyclo-2'-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 275:22355–62
  • Brueckner F, Hennecke U, Carell T, et al. (2007). CPD damage recognition by transcribing RNA polymerase II. Science 315:859–62
  • Brueckner F, Armache KJ, Cheung A, et al. (2009). Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallogr D Biol Crystallogr 65:112–20
  • Burns JA, Dreij K, Cartularo L, et al. (2010). O6-methylguanine induces altered proteins at the level of transcription in human cells. Nucleic Acids Res 38:8178–87
  • Cheung AC, Cramer P. (2011). Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471:249–53
  • Cheung AC, Sainsbury S, Cramer P. (2011). Structural basis of initial RNA polymerase II transcription. EMBO J 30:4755–63
  • Cline SD, Riggins JN, Tornaletti S, et al. (2004). Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase II. Proc Natl Acad Sci U S A 101:7275–80
  • Corda Y, Job C, Anin MF, et al. (1993). Spectrum of DNA–platinum adduct recognition by prokaryotic and eukaryotic DNA-dependent RNA polymerases. Biochemistry 32:8582–8
  • Cramer P, Bushnell DA, Kornberg RD. (2001). Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–76
  • Cramer P. (2002). Multisubunit RNA polymerases. Curr Opin Struct Biol 12:89–97
  • Cullinane C, Mazur SJ, Essigmann JM, et al. (1999). Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage. Biochemistry 38:6204–12
  • Da LT, Wang D, Huang X. (2012). Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J Am Chem Soc 134:2399–406
  • Damsma GE, Alt A, Brueckner F, et al. (2007). Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat Struct Mol Biol 14:1127–33
  • Damsma GE, Cramer P. (2009). Molecular basis of transcriptional mutagenesis at 8-oxoguanine. J Biol Chem 284:31658–63
  • De Vivo M, Dal Peraro M, Klein ML. (2008). Phosphodiester cleavage in ribonuclease H occurs via an associative two-metal-aided catalytic mechanism. J Am Chem Soc 130:10955–62
  • Dimitri A, Burns JA, Broyde S, et al. (2008). Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Nucleic Acids Res 36:6459–71
  • Dimitri A, Goodenough AK, Guengerich FP, et al. (2008). Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. J Mol Biol 375:353–66
  • Dimitri A, Jia L, Shafirovich V, et al. (2008). Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair (Amst) 7:1276–88
  • Ditlevson JV, Tornaletti S, Belotserkovskii BP, et al. (2008). Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase. Nucleic Acids Res 36:3163–70
  • Doetsch PW. (2002). Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res 510:131–40
  • Donahue BA, Yin S, Taylor JS, et al. (1994). Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc Natl Acad Sci U S A 91:8502–6
  • Donahue BA, Fuchs RP, Reines D, et al. (1996). Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J Biol Chem 271:10588–94
  • Doublie S, Sawaya MR, Ellenberger T. (1999). An open and closed case for all polymerases. Structure 7:R31–5
  • Ekland EH, Bartel DP. (1996). RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382:373–6
  • Eoff RL, Irimia A, Angel KC, et al. (2007). Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 282:19831–43
  • Erie DA, Yager TD, Vonhippel PH. (1992). The single-nucleotide addition cycle in transcription – a biophysical and biochemical perspective. Annu Rev Biophys Biomol Struct 21:379–415
  • Erie DA, Hajiseyedjavadi O, Young MC, et al. (1993). Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262:867–73
  • Ertem G, Ferris JP. (1996). Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–40
  • Feig M, Burton ZF. (2010a). RNA polymerase II flexibility during translocation from normal mode analysis. Proteins 78:434–46
  • Feig M, Burton ZF. (2010b). RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. Biophys J 99:2577–86
  • Feng H, Dong L, Cao W. (2006). Catalytic mechanism of endonuclease v: a catalytic and regulatory two-metal model. Biochemistry 45:10251–9
  • Ferris JP, Ertem G. (1992). Oligomerization of ribonucleotides on montmorillonite: reaction of the 5'-phosphorimidazolide of adenosine. Science 257:1387–9
  • Fousteri M, Mullenders LH. (2008). Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18:73–84
  • Friedberg EC, Lehmann AR, Fuchs RPP. (2005). Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol Cell 18:499–505
  • Gnatt AL, Cramer P, Fu J, et al. (2001). Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292:1876–82
  • Goodman MF. (2002). Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71:17–50
  • Gordon AJ, Halliday JA, Blankschien MD, et al. (2009). Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network. PLoS Biol 7:e44
  • Gordon AJ, Satory D, Halliday JA, et al. (2015). Lost in transcription: transient errors in information transfer. Curr Opin Microbiol 24:80–7
  • Hanawalt PC. (2008). Emerging links between premature ageing and defective DNA repair. Mech Ageing Dev 129:503–5
  • Hanawalt PC, Spivak G. (2008). Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–70
  • Hashimoto H, Olanrewaju YO, Zheng Y, et al. (2014). Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev 28:2304–13
  • He YF, Li BZ, Li Z, et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–7
  • Hoeijmakers JH. (2009). DNA damage, aging, and cancer. N Engl J Med 361:1475–85
  • Huang X, Wang D, Weiss DR, et al. (2010). RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription. Proc Natl Acad Sci U S A 107:15745–50
  • Imashimizu M, Shimamoto N, Oshima T, et al. (2014). Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications. Transcription 5:e28285
  • Inoue T, Orgel LE. (1982). Oligomerization of (guanosine 5'-phosphor)-2-methylimidazolide on poly(C). An RNA polymerase model. J Mol Biol 162:201–17
  • Irvin JD, Kireeva ML, Gotte DR, et al. (2014). A genetic assay for transcription errors reveals multilayer control of RNA polymerase II fidelity. PLoS Genet 10:e1004532
  • Ito S, Shen L, Dai Q, et al. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–3
  • Iurlaro M, Ficz G, Oxley D, et al. (2013). A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 14:R119
  • Izban MG, Luse DS. (1993). SII-facilitated transcript cleavage in RNA polymerase II complexes stalled early after initiation occurs in primarily dinucleotide increments. J Biol Chem 268:12864–73
  • Jaakkola E, Mustonen A, Olsen P, et al. (2010). ERCC6 founder mutation identified in Finnish patients with COFS syndrome. Clin Genet 78:541–7
  • Jackson SP, Bartek J. (2009). The DNA-damage response in human biology and disease. Nature 461:1071–8
  • Jaruga P, Dizdaroglu M. (2008). 8,5′-Cyclopurine-2′-deoxynucleosides in DNA: mechanisms of formation, measurement, repair and biological effects. DNA Repair (Amst) 7:1413–25
  • Jeon C, Agarwal K. (1996). Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc Natl Acad Sci USA 93:13677–82
  • Johnson TL, Chamberlin MJ. (1994). Complexes of yeast RNA polymerase II and RNA are substrates for TFIIS-induced RNA cleavage. Cell 77:217–24
  • Jung Y, Lippard SJ. (2006). RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase. J Biol Chem 281:1361–70
  • Kalogeraki VS, Tornaletti S, Hanawalt PC, et al. (2003). Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. J Biol Chem 278:19558–64
  • Kalogeraki VS, Tornaletti S, Cooper PK, et al. (2005). Comparative TFIIS-mediated transcript cleavage by mammalian RNA polymerase II arrested at a lesion in different transcription systems. DNA Repair (Amst) 4:1075–87
  • Kaplan CD, Larsson KM, Kornberg RD. (2008). The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 30:547–56
  • Kaplan CD. (2013). Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. Biochim Biophys Acta 1829:39–54
  • Kashkina E, Anikin M, Brueckner F et al. (2006a). Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol Cell 24:257–66
  • Kashkina E, Anikin M, Tahirov TH, et al. (2006b). Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations. Nucleic Acids Res 34:4036–45
  • Kellinger MW, Song CX, Chong J, et al. (2012). 5-Formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19:831–3
  • Kellinger MW, Ulrich S, Chong J, et al. (2012). Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. J Am Chem Soc 134:8231–40
  • Kellinger MW, Park GY, Chong J, et al. (2013). Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis. J Am Chem Soc 135:13054–61
  • Kettenberger H, Armache KJ, Cramer P. (2003). Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114:347–57
  • Kettenberger H, Armache KJ, Cramer P. (2004). Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16:955–65
  • Khakshoor O, Kool ET. (2011). Chemistry of nucleic acids: impacts in multiple fields. Chem Commun (Camb) 47:7018–24
  • Khakshoor O, Wheeler SE, Houk KN, et al. (2012). Measurement and theory of hydrogen bonding contribution to isosteric DNA base pairs. J Am Chem Soc 134:3154–63
  • Kim TW, Delaney JC, Essigmann JM, et al. (2005). Probing the active site tightness of DNA polymerase in subangstrom increments. Proc Natl Acad Sci USA 102:15803–8
  • Kim TW, Kool ET. (2005). A series of nonpolar thymidine analogues of increasing size: DNA base pairing and stacking properties. J Org Chem 70:2048–53
  • Kireeva ML, Nedialkov YA, Cremona GH, et al. (2008). Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol Cell 30:557–66
  • Kireeva ML, Opron K, Seibold SA, et al. (2012). Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. BMC Biophys 5:11
  • Kornberg RD. (2007). The molecular basis of eucaryotic transcription. Cell Death Differ 14:1989–97
  • Koyama H, Ito T, Nakanishi T, et al. (2003). Transcription elongation factor S-II maintains transcriptional fidelity and confers oxidative stress resistance. Genes Cells 8:779–88
  • Koyama H, Ito T, Nakanishi T et al. (2007). Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast. Genes Cells 12:547–59
  • Krasilnikova MM, Kireeva ML, Petrovic V, et al. (2007). Effects of Friedreich's ataxia (GAA)n*(TTC)n repeats on RNA synthesis and stability. Nucleic Acids Res 35:1075–84
  • Kuraoka I, Suzuki K, Ito S, et al. (2007). RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. DNA Repair (Amst) 6:841–51
  • Lagerwerf S, Vrouwe MG, Overmeer RM, et al. (2011). DNA damage response and transcription. DNA Repair (Amst) 10:743–50
  • Laine JP, Egly JM. (2006). When transcription and repair meet: a complex system. Trends Genet 22:430–6
  • Langkjaer N, Pasternak A, Wengel J. (2009). UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg Med Chem 17:5420–5
  • Larson MH, Zhou J, Kaplan CD, et al. (2012). Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S A 109:6555–60
  • Laugel V, Dalloz C, Durand M, et al. (2010). Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 31:113–26
  • Lee K-B, Wang D, Lippard SJ, et al. (2002). Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci USA 99:4239–44
  • Libby R, Gallant J. (1991). The role of RNA polymerase in transcriptional fidelity. Mol Microbiol 5:999–1004
  • Lindahl T, Barnes DE. (2000). Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–33
  • Lindsey-Boltz LA, Sancar A. (2007). RNA polymerase: the most specific damage recognition protein in cellular responses to DNA damage? Proc Natl Acad Sci USA 104:13213–14
  • Liu J, Zhou W, Doetsch PW. (1995). RNA polymerase bypass at sites of dihydrouracil: implications for transcriptional mutagenesis. Mol Cell Biol 15:6729–35
  • Liu X, Bushnell DA, Kornberg RD. (2013). RNA polymerase II transcription: structure and mechanism. Biochim Biophys Acta 1829:2–8
  • Ljungman M, Lane DP. (2004). Transcription – guarding the genome by sensing DNA damage. Nat Rev Cancer 4:727–37
  • Malik S, Chaurasia P, Lahudkar S, et al. (2010). Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res 38:1461–77
  • Malinen AM, Turtola M, Parthiban M, et al. (2012). Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 40:7442–51
  • Marietta C, Brooks PJ. (2007). Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep 8:388–93
  • Martinez-Rucobo FW, Cramer P. (2013). Structural basis of transcription elongation. Biochim Biophys Acta 1829:9–19
  • Mei Kwei JS, Kuraoka I, Horibata K, et al. (2004). Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Biochem Biophys Res Commun 320:1133–8
  • Mello JA, Lippard SJ, Essigmann JM. (1995). DNA adducts of cis-diamminedichloroplatinum(II) and its trans isomer inhibit RNA polymerase II differentially in vivo. Biochemistry 34:14783–91
  • Mellon I, Bohr VA, Smith CA, et al. (1986). Preferential DNA repair of an active gene in human cells. Proc Natl Acad Sci USA 83:8878–82
  • Mellon I, Spivak G, Hanawalt PC. (1987). Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241–9
  • Monti P, Broxson C, Inga A, et al. (2011). 3-Methyl-3-deazaadenine, a stable isostere of N3-methyl-adenine, is efficiently bypassed by replication in vivo and by transcription in vitro. DNA Repair (Amst) 10:861–8
  • Morreall JF, Petrova L, Doetsch PW. (2013). Transcriptional mutagenesis and its potential roles in the etiology of cancer and bacterial antibiotic resistance. J Cell Physiol 228:2257–61
  • Munzel M, Globisch D, Carell T. (2011). 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 50:6460–8
  • Nedialkov YA, Opron K, Assaf F, et al. (2013). The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. Biochim Biophys Acta 1829:187–98
  • Neil AJ, Belotserkovskii BP, Hanawalt PC. (2012). Transcription blockage by bulky end termini at single-strand breaks in the DNA template: differential effects of 5' and 3' adducts. Biochemistry 51:8964–70
  • Nesser NK, Peterson DO, Hawley DK. (2006). RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo. Proc Natl Acad Sci USA 103:3268–73
  • Park GY, Wilson JJ, Song Y, et al. (2012). Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc Natl Acad Sci USA 109:11987–92
  • Park H, Zhang K, Ren Y, et al. (2002). Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc Natl Acad Sci USA 99:15965–70
  • Pasternak A, Wengel J. (2010). Thermodynamics of RNA duplexes modified with unlocked nucleic acid nucleotides. Nucleic Acids Res 38:6697–706
  • Perlow RA, Kolbanovskii A, Hingerty BE, et al. (2002). DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J Mol Biol 321:29–47
  • Perlow RA, Broyde S. (2003). Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct. J Mol Biol 327:797–818
  • Powell W, Bartholomew B, Reines D. (1996). Elongation factor SII contacts the 3'-end of RNA in the RNA polymerase II elongation complex. J Biol Chem 271:22301–4
  • Raiber EA, Murat P, Chirgadze DY, et al. (2015). 5-Formylcytosine alters the structure of the DNA double helix. Nat Struct Mol Biol 22:44–9
  • Reines D, Chamberlin MJ, Kane CM. (1989). Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J Biol Chem 264:10799–809
  • Reines D, Conaway RC, Conaway JW. (1999). Mechanism and regulation of transcriptional elongation by RNA polymerase II. Curr Opin Cell Biol 11:342–6
  • Rudd MD, Izban MG, Luse DS. (1994). The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. Proc Natl Acad Sci USA 91:8057–61
  • Salinas-Rios V, Belotserkovskii BP, Hanawalt PC. (2011). DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 39:7444–54
  • Sarker AH, Tsutakawa SE, Kostek S, et al. (2005). Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne syndrome. Mol Cell 20:187–98
  • Saxowsky TT, Doetsch PW. (2006). RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 106:474–88
  • Saxowsky TT, Meadows KL, Klungland A, et al. (2008). 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc Natl Acad Sci U S A 105:18877–82
  • Schinecker TM, Perlow RA, Broyde S, et al. (2003). Human RNA polymerase II is partially blocked by DNA adducts derived from tumorigenic benzo[c]phenanthrene diol epoxides: relating biological consequences to conformational preferences. Nucleic Acids Res 31:6004–15
  • Schmidt BH, Burgin AB, Deweese JE, et al. (2010). A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 465:641–4
  • Scicchitano DA, Olesnicky EC, Dimitri A. (2004). Transcription and DNA adducts: what happens when the message gets cut off? DNA Repair (Amst) 3:1537–48
  • Scicchitano DA. (2005). Transcription past DNA adducts derived from polycyclic aromatic hydrocarbons. Mutat Res 577:146–54
  • Shen L, Wu H, Diep D, et al. (2013). Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706
  • Sigurdsson S, Dirac-Svejstrup AB, Svejstrup JQ. (2010). Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol Cell 38:202–10
  • Silva DA, Weiss DR, Pardo Avila F, et al. (2014). Millisecond dynamics of RNA polymerase II translocation at atomic resolution. Proc Natl Acad Sci USA 111:7665–70
  • Song CX, Szulwach KE, Dai Q, et al. (2013). Genome-wide Profiling of 5-Formylcytosine Reveals Its Roles in Epigenetic Priming. Cell 153:678–91
  • Sosunov V, Sosunova E, Mustaev A, et al. (2003). Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J 22:2234–44
  • Spruijt CG, Gnerlich F, Smits AH, et al. (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–59
  • Steitz TA, Steitz JA. (1993). A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498–502
  • Strathern JN, Jin DJ, Court DL, et al. (2012). Isolation and characterization of transcription fidelity mutants. Biochim Biophys Acta 1819:694–9
  • Svejstrup JQ. (2007). Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem Sci 32:165–71
  • Svejstrup JQ. (2013). RNA polymerase II transcript elongation. Biochim Biophys Acta 1829:1
  • Svetlov V, Nudler E. (2009). Macromolecular micromovements: how RNA polymerase translocates. Curr Opin Struct Biol 19:701–7
  • Svetlov V, Nudler E. (2013). Basic mechanism of transcription by RNA polymerase II. Biochim Biophys Acta 1829:20–8
  • Sydow JF, Brueckner F, Cheung AC, et al. (2009). Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 34:710–21
  • Tan L, Wiesler S, Trzaska D, et al. (2008). Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J Biol 7:40
  • Thomas MJ, Platas AA, Hawley DK. (1998). Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93:627–37
  • Todd RC, Lippard SJ. (2009). Inhibition of transcription by platinum antitumor compounds. Metallomics 1:280–91
  • Tornaletti S, Donahue BA, Reines D, et al. (1997). Nucleotide sequence context effect of a cyclobutane pyrimidine dimer upon RNA polymerase II transcription. J Biol Chem 272:31719–24
  • Tornaletti S, Hanawalt PC. (1999). Effect of DNA lesions on transcription elongation. Biochimie 81:139–46
  • Tornaletti S, Reines D, Hanawalt PC. (1999). Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J Biol Chem 274:24124–30
  • Tornaletti S, Patrick SM, Turchi JJ, et al. (2003). Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J Biol Chem 278:35791–7
  • Tornaletti S, Maeda LS, Kolodner RD, et al. (2004). Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. DNA Repair (Amst) 3:483–94
  • Tornaletti S. (2005). Transcription arrest at DNA damage sites. Mutat Res 577:131–45
  • Tornaletti S, Maeda LS, Hanawalt PC. (2006). Transcription arrest at an abasic site in the transcribed strand of template DNA. Chem Res Toxicol 19:1215–20
  • Tornaletti S, Park-Snyder S, Hanawalt PC. (2008). G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 283:12756–62
  • Tornaletti S. (2009). Transcriptional processing of G4 DNA. Mol Carcinog 48:326–35
  • Toulokhonov I, Zhang J, Palangat M, et al. (2007). A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 27:406–19
  • Trinh V, Langelier MF, Archambault J, et al. (2006). Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol Mol Biol Rev 70:12–36
  • Troelstra C, van Gool A, de Wit J, et al. (1992). ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71:939–53
  • Troelstra C, Hesen W, Bootsma D, et al. (1993). Structure and expression of the excision repair gene ERCC6, involved in the human disorder Cockayne's syndrome group B. Nucleic Acids Res 21:419–26
  • Usher DA, McHale AH. (1976a). Nonenzymic joining of oligoadenylates on a polyuridylic acid template. Science 192:53–4
  • Usher DA, McHale AH. (1976b). Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond. Proc Natl Acad Sci USA 73:1149–53
  • van den Boom V, Citterio E, Hoogstraten D, et al. (2004). DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J Cell Biol 166:27–36
  • van Gool AJ, Citterio E, Rademakers S, et al. (1997). The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J 16:5955–65
  • Viswanathan A, You HJ, Doetsch PW. (1999). Phenotypic change caused by transcriptional bypass of uracil in nondividing cells. Science 284:159–62
  • von Hippel PH. (1998). An integrated model of the transcription complex in elongation, termination, and editing. Science 281:660–5
  • Walmacq C, Kireeva ML, Irvin J, et al. (2009). Rpb9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase II. J Biol Chem 284:19601–12
  • Walmacq C, Cheung AC, Kireeva ML, et al. (2012). Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol Cell 46:18–29
  • Walmacq C, Wang L, Chong J, et al. (2015). Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Proc Natl Acad Sci USA 112:E410–19
  • Wang D, Lippard SJ. (2005). Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–20
  • Wang D, Bushnell DA, Westover KD, et al. (2006). Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941–54
  • Wang D, Bushnell DA, Huang X, et al. (2009). Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324:1203–6
  • Wang D, Zhu G, Huang X, et al. (2010). X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proc Natl Acad Sci USA 107:9584–9
  • Wang L, Zhou Y, Xu L, et al. (2015). Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 523:621–5
  • Wang Y, Sheppard TL, Tornaletti S, et al. (2006). Transcriptional inhibition by an oxidized abasic site in DNA. Chem Res Toxicol 19:234–41
  • Wang Y. (2008). Bulky DNA lesions induced by reactive oxygen species. Chem Res Toxicol 21:276–81
  • Waters LS, Minesinger BK, Wiltrout ME, et al. (2009). Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73:134–54
  • Weilbaecher RG, Awrey DE, Edwards AM, et al. (2003). Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J Biol Chem 278:24189–99
  • Westover KD, Bushnell DA, Kornberg RD. (2004a). Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303:1014–16
  • Westover KD, Bushnell DA, Kornberg RD. (2004b). Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119:481–9
  • Wilson MD, Harreman M, Svejstrup JQ. (2013). Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim Biophys Acta 1829:151–7
  • Wu H, Zhang Y. (2011). Mechanisms and functions of tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25:2436–52
  • Xu L, Plouffe SW, Chong J, et al. (2013). A chemical perspective on transcriptional fidelity: dominant contributions of sugar integrity revealed by unlocked nucleic acids. Angew Chem Int Ed Engl 52:12341–5
  • Xu L, Butler KV, Chong J, et al. (2014a). Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues. Nucleic Acids Res 42:5863–70
  • Xu L, Da L, Plouffe SW, et al. (2014b). Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 19:71–83
  • Xu L, Zhang L, Chong J, et al. (2014c). Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity. Proc Natl Acad Sci USA 111:E3269–76
  • Xu L, Wang W, Zhang L, et al. (2015). Impact of template backbone heterogeneity on RNA polymerase II transcription. Nucleic Acids Res 43:2232–41
  • You C, Dai X, Yuan B, et al. (2012). A quantitative assay for assessing the effects of DNA lesions on transcription. Nat Chem Biol 8:817–22
  • You C, Ji D, Dai X, et al. (2014). Effects of tet-mediated oxidation products of 5-methylcytosine on DNA transcription in vitro and in mammalian cells. Sci Rep 4:7052
  • You C, Wang P, Dai X, et al. (2014). Transcriptional bypass of regioisomeric ethylated thymidine lesions by T7 RNA polymerase and human RNA polymerase II. Nucleic Acids Res 42:13706–13
  • You C, Wang J, Dai X, et al. (2015). Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA. Nucleic Acids Res 43:1012–18
  • Yuzenkova Y, Bochkareva A, Tadigotla VR, et al. (2010). Stepwise mechanism for transcription fidelity. BMC Biol 8:54
  • Yuzenkova Y, Zenkin N. (2010). Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. Proc Natl Acad Sci USA 107:10878–83
  • Zenkin N, Yuzenkova Y, Severinov K. (2006). Transcript-assisted transcriptional proofreading. Science 313:518–20
  • Zhang S, Wang D. (2013). Understanding the molecular basis of RNA polymerase II transcription. Isr J Chem 53:442–9
  • Zhang Y, Zhang X, Chen L, et al. (2006). Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. Am J Physiol Renal Physiol 290:F1065–73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.