3,378
Views
57
CrossRef citations to date
0
Altmetric
Review Article

Metabolic regulation via enzyme filamentation

&
Pages 282-293 | Received 29 Feb 2016, Accepted 28 Mar 2016, Published online: 20 Apr 2016

References

  • An S, Kumar R, Sheets ED, Benkovic SJ. (2008). Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320:103–6.
  • Aughey GN, Grice SJ, Liu JL. (2016). The interplay between Myc and CTP synthase in Drosophila. PLoS Genet 12:e1005867.
  • Aughey GN, Grice SJ, Shen QJ, et al. (2014). Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism. Biol Open 3:1045–56.
  • Azzam G, Liu JL. (2013). Only one isoform of Drosophila melanogaster CTP synthase forms the cytoophidium. PLoS Genet 9:e1003256
  • Barry RM, Bitbol AF, Lorestani A, et al. (2014). Large-scale filament formation inhibits the activity of CTP synthetase. eLife 3:e03638.
  • Barry RM, Gitai Z. (2011). Self-assembling enzymes and the origins of the cytoskeleton. Curr Opin Microbiol 14:704–11.
  • Beaty NB, Lane MD. (1983a). Kinetics of activation of acetyl-CoA carboxylase by citrate. Relationship to the rate of polymerization of the enzyme. J Biol Chem 258:13043–50.
  • Beaty NB, Lane MD. (1983b). The polymerization of acetyl-CoA carboxylase. J Biol Chem 258:13051–5.
  • Bork P, Sander C, Valencia A. (1992). An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:7290–4.
  • Calise SJ, Keppeke GD, Andrade LE, Chan EK. (2015). Anti-rods/rings: a human model of drug-induced autoantibody generation. Front Immunol 6:41.
  • Carcamo WC, Satoh M, Kasahara H, et al. (2011). Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 6:e29690.
  • Carrey EA, Dietz C, Glubb DM, et al. (2002). Detection and location of the enzymes of de novo pyrimidine biosynthesis in mammalian spermatozoa. Reproduction 123:757–68.
  • Chan CY, Zhao H, Pugh RJ, et al. (2015). Purinosome formation as a function of the cell cycle. Proc Natl Acad Sci USA 112:1368–73.
  • Chang CC, Lin WC, Pai LM, et al. (2015). Cytoophidium assembly reflects upregulation of IMPDH activity. J Cell Sci 128:3550–5.
  • Chaparian MG, Evans DR. (1988). Intracellular location of the multidomain protein CAD in mammalian cells. FASEB J 2:2982–9.
  • Chell JM, Brand AH. (2010). Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–73.
  • Chen K, Zhang J, Tastan OY, et al. (2011). Glutamine analogs promote cytoophidium assembly in human and Drosophila cells. J Genet Genomics 38:391–402.
  • Chu EH, Mclaren JD, Li IC, Lamb B. (1984). Pleiotropic mutants of Chinese hamster cells with altered cytidine 5'-triphosphate synthetase. Biochem Genet 22:701–15.
  • French JB, Jones SA, Deng H, et al. (2016). Spatial colocalization and functional link of purinosomes with mitochondria. Science 351:733–7.
  • Gilliland WD, Vietti DL, Schweppe NM, et al. (2009). Hypoxia transiently sequesters mps1 and polo to collagenase-sensitive filaments in Drosophila prometaphase oocytes. PLoS One 4:e7544.
  • Gou KM, Chang CC, Shen QJ, et al. (2014). CTP synthase forms cytoophidia in the cytoplasm and nucleus. Exp Cell Res 323:242–53.
  • Gunning BE. (1965). The fine structure of chloroplast stroma following aldehyde osmium-tetroxide fixation. J Cell Biol 24:79–93.
  • Gunter J, Thomas E, Lengefeld N, et al. (2007). Charecterisation of inosine monphosphate dehydrogenase expression during retinal development: differences between isoforms and variants. Int J Biochem Cell Biol 40:1716–28.
  • Hedstrom L. (2009). IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109:2903–28.
  • Ingerson-Mahar M, Briegel A, Werner JN, et al. (2010). The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat Cell Biol 12:739–46.
  • Ji Y, Gu J, Makhov AM, et al. (2006). Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic Acid by GTP. J Biol Chem 281:206–12.
  • Jordheim LP, Durantel D, Zoulim F, Dumontet C. (2013). Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–64.
  • Juda P, Smigova J, Kovacik L, et al. (2014). Ultrastructure of cytoplasmic and nuclear inosine-5'-monophosphate dehydrogenase 2 “rods and rings” inclusions. J Histochem Cytochem 62:739–50.
  • Kain J, He GG, Losick R. (2008). Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis. J Bacteriol 190:6749–57.
  • Kim CW, Moon YA, Park SW, et al. (2010). Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc Natl Acad Sci USA 107:9626–31.
  • Kim SY, Kim YW, Hegerl R, et al. (2005). Novel type of enzyme multimerization enhances substrate affinity of oat beta-glucosidase. J Struct Biol 150:1–10.
  • Kizaki H, Williams JC, Morris HP, Weber G. (1980). Increased cytidine 5'-triphosphate synthetase activity in rat and human tumors. Cancer Res 40:3921–7.
  • Kleinschmidt AK, Moss J, Lane DM. (1969). Acetyl coenzyme A carboxylase: filamentous nature of the animal enzymes. Science 166:1276–8.
  • Korennykh AV, Egea PF, Korostelev AA, et al. (2009). The unfolded protein response signals through high-order assembly of Ire1. Nature 457:687–93.
  • Kozhevnikova EN, van der Knaap JA, Pindyurin AV, et al. (2012). Metabolic enzyme IMPDH is also a transcription factor regulated by cellular state. Mol Cell 47:133–9.
  • Labesse G, Alexandre T, Vaupre L, et al. (2013). MgATP regulates allostery and fiber formation in IMPDHs. Structure 21:975–85.
  • Landgraf D, Okumus B, Chien P, et al. (2012). Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–2.
  • Lauritsen I, Willemoes M, Jensen KF, et al. (2011). Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:201–8.
  • Levitzki A, Koshland DE, Jr. (1976). The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation. Curr Top Cell Regul 10:1–40.
  • Li H, Korennykh AV, Behrman SL, Walter P. (2010). Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc Natl Acad Sci USA 107:16113–8.
  • Liu JL. (2010). Intracellular compartmentation of CTP synthase in Drosophila. J Genet Genomics 37:281–96.
  • Liu JL. (2011). The enigmatic cytoophidium: compartmentation of CTP synthase via filament formation. Bioessays 33:159–64.
  • Long CW, Levitzki A, Koshland DE. JR. (1970). The subunit structure and subunit interactions of cytidine triphosphate synthetase. J Biol Chem 245:80–7.
  • Massiere F, Badet-Denisot MA. (1998). The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci 54:205–22.
  • Mclean J, Hamaguchi N, Belenky P, et al. (2004). Inosine 5'-monophosphate dehydrogenease binds nucleic acids in vitro and in vivo. Biochem J 15:243–51.
  • Meng Q, Turnbough CL, Jr, Switzer RL. (2004). Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription. Proc Natl Acad Sci USA 101:10943–8.
  • Meredith MJ, Lane MD. (1978). Acetyl-CoA carboxylase. Evidence for polymeric filament to protomer transition in the intact avian liver cell. J Biol Chem 253:3381–3.
  • Meuth M, L'Heureux-Huard N, Trudel M. (1979). Characterization of a mutator gene in Chinese hamster ovary cells. Proc Natl Acad Sci USA76:6505–9.
  • Miller RE, Shelton E, Stadtman ER. (1974). Zinc-induced paracrystalline aggregation of glutamine synthetase. Arch Biochem Biophys 163:155–71.
  • Narayanaswamy R, Levy M, Tsechansky M, et al. (2009). Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci USA 106:10147–52.
  • Noree C, Monfort E, Shiau AK, Wilhelm JE. (2014). Common regulatory control of CTP synthase enzyme activity and filament formation. Mol Biol Cell 25:2282–90.
  • Noree C, Sato BK, Broyer RM, Wilhelm JE. (2010). Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190:541–51.
  • O'Connell JD, Zhao A, Ellington AD, Marcotte EM. (2012). Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu Rev Cell Dev Biol 28:89–111.
  • Petrovska I, Nuske E, Munder MC, et al. (2014). Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 3:e02409.
  • Robertson JG. (1995). Determination of subunit dissociation constants in native and inactivated CTP synthetase by sedimentation equilibrium. Biochemistry 34:7533–41.
  • Shen QJ, Kassim H, Huang Y, et al. (2016). Filamentation of metabolic enzymes in Saccharomyces cerevisiae. J Genet Genomics, in press. [Epub ahead of print]. doi:10.1016/j.jgg.2016.03.008.
  • Sigoillot FD, Berkowski JA, Sigoillot SM, et al. (2003). Cell cycle-dependent regulation of pyrimidine biosynthesis. J Biol Chem 278:3403–9.
  • Simmons LA, Grossman AD, Walker GC. (2008). Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J Bacteriol 190:6758–68.
  • Strochlic TI, Stavrides KP, Thomas SV, et al. (2014). Ack kinase regulates CTP synthase filaments during Drosophila oogenesis. EMBO Rep 15:1184–91.
  • Suresh HG, Da Silveira Dos Santos AX, Kukulski W, et al. (2015). Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae. Mol Biol Cell 26:1601–15.
  • Tastan OY, Liu JL. (2015). CTP synthase is required for optic lobe homeostasis in Drosophila. J Genet Genomics 42:261–74.
  • Thuku RN, Weber BW, Varsani A, Sewell BT. (2007). Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274:2099–108.
  • Traut TW. (1994). Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22.
  • Wang PY, Lin WC, Tsai YC, et al. (2015). Regulation of CTP synthase filament formation during DNA endoreplication in Drosophila. Genetics 201:1511–23.
  • Weng ML, Zalkin H. (1987). Structural role for a conserved region in the CTP synthetase glutamine amide transfer domain. J Bacteriol 169:3023–8.
  • Werner JN, Chen EY, Guberman JM, et al. (2009). Quantitative genome-scale analysis of protein localization in an asymmetric bacterium. Proc Natl Acad Sci USA 106:7858–63.
  • Whelan J, Phear G, Yamauchi M, Meuth M. (1993). Clustered base substitutions in CTP synthetase conferring drug resistance in Chinese hamster ovary cells. Nat Genet 3:317–22.
  • Willoughby LF, Schlosser T, Manning SA, et al. (2013). An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech 6:521–9.
  • Wilson JE, Schwab DA. (1996). Functional interaction of hexokinase with ATP requires participation by both small and large lobes of the enzyme: implications for other proteins using the actin fold as a nucleotide binding motif. FASEB J 10:799–801.
  • Zalkin H. (1993). The amidotransferases. Adv Enzymol Relat Areas Mol Biol 66:203–309.
  • Zalkin H, Smith JL. (1998). Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol 72:87–144.
  • Zeiri L, Reisler E. (1978). Uncoupling of the catalytic activity and the polymerization of beef liver glutamate dehydrogenase. J Mol Biol 124:291–5.
  • Zhang J, Hulme L, Liu JL. (2014). Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe. Biol Open 3:1092–7.
  • Zhao A, Tsechansky M, Ellington AD, Marcotte EM. (2014). Revisiting and revising the purinosome. Mol Biosyst 10:369–74.
  • Zhao H, French JB, Fang Y, Benkovic SJ. (2013). The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem Commun (Camb) 49:4444–52.