1,394
Views
633
CrossRef citations to date
0
Altmetric
Research Article

Aspects of the Structure, Function, and Applications of Superoxide Dismutas

, &
Pages 111-180 | Published online: 26 Sep 2008

References

  • Mann T., Keilin D. Haemocuprein and hepatocuprein, copper-protein compounds of blood and liver in mammal. Proc. R. Soc. London Ser. B 1939; 128: 303
  • Mc Cord J. M., Fridovich I. Superoxide dismutase An enzymatic function for erythrocuprein (hemocuprein. J. Biol. Chem. 1969; 244: 6049
  • Fridovich I. The discovery of superoxide dismutases: a histor. Superoxide Dismutase, L. W. Obcrley. CRC Press, Boca Raton, Fla 1983; 2
  • Porter H., Folch J. Cerebrocuprein I. A copper-containing protein isolated from brai. J. Neuro-chem. 1957; 1: 260
  • Porter H., Ainsworth S. The isolation of the copper-containing protein cerebrocuprein I from normal human brai. J. Neurochem. 1959; 5: 91
  • Porter H., Sweeney M., Porter E. M. Human hepatocuprei. Isolation of a copper protein from the subcellular soluble fraction of adult human liver. Arch. Biochem. Biophys. 1964; 105: 319
  • Markowitz H., Cartwright B. E., Wintrobe M. M. Studies on copper metabolism XXVII. The isolation and properties of an erythrocyte cuproprotein (erythrocuprein. J. Biol Chem. 1959; 234: 40
  • Carrlco R. J., Deutsch H. F. Isolation of human hepatocuprein and cerebmcuprein Their identity with erythrocuprei. J. Biol. Chem. 1969; 244: 6087
  • Carrico R. J., Deutsch H. F. The presence of zinc in human cytocuprein and some properties of the apoprotei. J. Biol. Chem. 1970; 245: 723
  • Keele B. B., McCord J. M., Fridovich I. Superoxide dismutase from Escherichia coli B A new manganese-containing enzym. J. Biol. Chem. 1970; 245: 6176
  • Yost F. J., Fridovlch I. An iron-containing superoxide dismutase from Escherichia coli, . Biol. Chem. 1973; 248: 4905
  • Weisiger R. A., Fridovich I. Superoxide dimutase Organelle specificit. J. Biol. Chem. 1973; 248: 3582
  • Fridovich I. Superoxide dismutase. Adv. Ensymol. 1974; 41: 35
  • Symonyan M. A., Nalbandyan R. M. Interaction of hydrogen peroxide with superoxide dismutase from erythrocyte. FEES Lett. 1972; 28: 22
  • Bray R. C., Cockle S. A., Fielden E. M., Roberts P. B., Rotllio G., Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxid. Biochem. J. 1974; 139: 43
  • Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzym. Biochemistry 1975; 14: 5294
  • Mism H. P., Fridovich I. Inhibition of superoxide dismutase by azid. Arch. Biochem. Biophys. 1978; 189: 317
  • Asada K., Kanematsu S., Okada S., Hayakawa T. Phylogenetic distribution of three types of superoxide dismutase in organisms and in cell organelle. Chemical and Biochemical Aspecis of Superoxide and Superoxide Dismutase, 11A Dev Biochem, J. V. Bannister, H. A. O. Hill. Elsevier, New York 1980; 136
  • Kirby T., Blum J., Kahane I., Fridovich I. Distinguishing between Mn containing and Fe containing superoxide dismutases in crude extracts of cell. Arch. Biochem. Biophys. 1980; 201: 551
  • Gregory E. M., Dapper C. H. Isolation of iron-containing superoxide dismutase from Bacteriodes fragilis: reconstitution as a Mn-containing enzym. Arch. Biochem. Biophys. 1983; 220: 293
  • Geller B. L., Winge D. R. A method for distinguishing Cu, Zn- and Mn: containing superoxide dismutase. Anal. Biochem. 1985; 128: 86
  • Mkhelson A. M., Mc Cord J. M., Fridovich I. Superoxide and Superoxide Dismutases. Academic Press, New York 1977; 569
  • Hayaishi O., Asada K. Biochemical and Medical Aspects of Active Oxygen. Japan Scientific Societies Press, Tokyo 1977; 200
  • Bannister J. V., Hill H. A. O. Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase. Dev. Biochem. Elsevier, New York 1980; 411
  • Bannister W. H., Bannister J. V. Biological and Clinical Aspects of Superoxide and Su-peroxide Dismutase. Dev. Bicchem. Elsevier, New York 1980; 11B
  • Rodgers M. A. J., Powers E. L. Oxygen and Oxy-Radicals in Chemistry and Biology. Academic Press, New York 1981; 808
  • Oberley L. W. Superoxide Dismutase. CRC Press, Boca Raton ma 1983; Vol. I: 152
  • Oberley L. W. Superoxide Dismutase. CRC Press, Boca Raton, Ha 1983; Vol. II: 177
  • Cohen G., Greenwald R. A. Oxy-Radicals and Their Scavenging Systems, Molecular Aspects. Elsevier, New York 1983; Vol. I: 399
  • Greenwald R. A., Cohen G. Oxy-Radicals and Their Scavenging Systems. Cellular and Medical Aspecrs. Elsevier, New York 1983; Vol. 11: 420
  • Rotilio G., Bannister J. V. Oxidative damage and related enzyme. Life Chem. Rep. 1984, Suppl. 2: 436
  • Bors W., Saran M., Tait D. Oxygen Radicals in Chemistry and Biology. William de Gruyter, Berlin 1984; 1029
  • Bannister J. V., Bannister W. H. The Biology and Chemistry of Active Oxyge. Dev. Biochem. Elsevier, New York 1984; 26: 262
  • Halllwell B., O'Neill P., Bannister J. W. Free radicals in biology and medicin. Life Chem. Rep. 1985; 3: 1
  • Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine. Clarendon Press, Oxford 1985; 346
  • Rotillo G. Superoxide and Superoxide Dismutase in Chemistry. Biology, and Medicine. Elsevier, Amsterdam 1986; 688
  • Greenwald R. Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, Fla 1985; 447
  • Knowles P. F., Glbaon J. F., Pick F. M., Bray R. C. Electron-spin-resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide io. Biochem. J. 1969; 11: 53
  • Ballou D., Palmer G., Massey V. Direct demonstration of superoxide anion production during the oxidation of reduced flavin and of its catalytic decomposition by erythrocuprei. Biochem. Biophys. Res. Commun. 1969; 36: 898
  • Marklund S. Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutas. J. Biol. Chem. 1976; 251: 7504
  • Mc Clune G. J., Fee J. A. Stopped flow spectrophotometric observation of superoxide dismutation in aqueous solutio. FEBS Lett. 1976; 67: 294
  • Takahashi M., Asada K. A flash photometric method for determination of reactivity of superoxide: application to superoxide disrnutase assa. J. Biochem. 1982; 91: 889
  • Klug Roth D., Fridovich I., Rabanl J. Pulse radiolytic investigations of superoxide catalyzed disproportionation Mechanism for bovine superoxide dismutas. J. Am. Chem. Soc. 1973; 95: 2786
  • Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotillo G., Calabrese L. The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonanc. Biochem. J. 1974; 139: 499
  • Pick M., Rabani J., Yost F., Fridovleh I. The catalytic mechanism of the manganesecontaining superoxide dismutase of Escherichia coli studied by pulse radiolysi. J. Am. Chem. Soc. 1974; 96: 7329
  • Mc Adam M. E., Fox R. A., Lavelle F., Fielden E. M. A pulse radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus A kinetic model for the enzyme actio. Biochem. J. 1977; 165: 71
  • Mc Adam M. E., Lavelle F., Fox R. A., Fielden E. M. A pulse radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus Further studies on the properties of the enzym. Biuchem. J. 1977; 165: 81
  • Lavck F., Mc Adam M. E., Fielden M. E., Roberts P. B., Puget K., Michelson A. M. A pulse radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Pho-tobacterium leiognath. Biochem. J. 1977; 161: 3
  • Fee J. A., Mc Clune G. J., O'Nelll P., Fielden E. M. Saturation behaviour of superoxide dismutation catalyzed by the iron containing superoxide dismutase of Ecoli, Bioche. Biophys. Res. Commun. 1981; 100: 377
  • Terech A., Pueheault J., Ferradini C. Saturation behaviour of the manganese-containing superoxide dismutase from Paracococcus denitrificans, Bioche. Biophys. Res. Commun. 1983; 113: 1114
  • Kenne J. P. The technique of pulse radiolysis by optical absorptio. Pulse Radiolysis, M. Ebest, J. P. Keene, A. J. Swallow, J. H. Baxendale. Academic Press, London 1965; 1
  • Asmus K. D. Pulse radiolysis methodolog. Methods Enzymol. 1984; 105: 167
  • Rigo A., Vigllno P., Rotillo G. Polarographic determination of superoxide dismutas. Anal. Biochem. 1975; 68: 1
  • Argese E., De Carli B., Orsega E., Rigo A., Rotilio G. A rotating disk electrode for kinetic studies of superoxide dismutases Applicability in a wide pH range and for continuous monitoring of enzyme inactivatio. Anal. Biochem. 1983; 132: 110
  • Argese E., Rigo A., Viglino P., Orsega E., Marmocchi F., Cocco D., Rotilio G. A study of the pH dependence of the activity of porcine Cu, Zn superoxide dismutas. Biochim. Biophys. Acta 1984; 787: 205
  • Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutas. J. Biol. Chem. 1972; 247: 3170
  • Sun M., Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidatio. Anal. Biochem. 1978; 90: 81
  • Elstner E. F., Heupel A. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutas. Anal. Biochem. 1976; 70: 616
  • Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutas. Arch. Biochem. Biophys. 1978; 186: 189
  • Marklund S., Markfund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutas. Eur. J. Biochem. 1974; 47: 469
  • Heikkila R. E., Cabbat F. A sensitive assay for superoxide dismutase based on the autoxidation of 6-hydroxydopamin. Anal. Biochem. 1976; 75: 356
  • Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and assay applicable to ac-rylamide gel. Anal. Biochem. 1971; 44: 276
  • Nishikiml M., Rao N. A., Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxyge. Biochem. Biophys. Res. Commun. 1972; 46: 849
  • Rapp U., Adam W. C., Miller R. W. Purification of superoxide dismutase from fungi and characterisation of the reaction of the enzyme with cathecols by electron spin resonance spectroscop. Can. J. Biochem. 1973; 51: 158
  • Nishikimi M. The generation of superoxide anion in the reaction of tetrohydropteridines with molecular oxyge. Arch. Biochem. Biophys. 1975; 166: 273
  • Autlair C., Torres M., Hakim J. Superoxide anion involvement in the NBT reduction catalyzed by NADPH-cytochrome P-450 reductase: a pitfal. FEES Lett. 1978; 89: 26
  • Fridovich I. Measuring the activity of superoxide dismutases: an embarrassment of riche. Superoxide Dismutase, L. W. Oberley. CRC Press, Boca Raton, Fla 1983; 69
  • Azzi A. C., Montecucco C., Richter C. The use of acetylated femcytochrome c for the detection of superoxide radicals produced in biological membrane. Biochem. Biophys. Res. Commun. 1975; 65: 597
  • Buchanan A. G., Lees H. The effects of pH and temperature on the assay of superoxide dismutas. Can. J. Microbiol. 1976; 22: 1643
  • Kuthan H., Ullrich V., Estabrook R. W. A quantitative test for superoxide radicals produced in biological system. Biochem. J. 1982; 203: 551
  • Misra H. P., Fridovich I. Superoxide dismutase: a photochemical augmentation assa. Arch. Biochem. Biophys. 1977; 181: 308
  • Misra H. P., Fridovich I. Superoxide dismutase: “postive” spectrophotometric assay. Anal. Biochem. 1977; 79: 553
  • Misra H. P., Fridovich I. Superoxide dismutase and peroxidase: a positive activity stain applicable to polyacrylamide gel electrophoresi. Arch. Biochem. Biophys. 1977; 183: 511
  • Bannister J. V., Anastasi A., Bannister W. H. Active subunits from swordfish liver superoxide dismutas. Biochem. Biophys. Res. Commun. 1978; 18: 469
  • Thornalley P. J., Bannister J. W. Spin trapping of superoxid. Handbook of Oxy-Radical Research, R. A. Greenwald. CRC Press, Boca Raton, Fla 1985; 133
  • Rosen G. M., Finkelstein E., Rauchman E. R. A method for the detection of superoxide in biological system. Arch. Biochem. Biophys. 1982; 215: 367
  • Misra H. P., Fridovich I. The univalent reduction of oxygen by reduced flavins and quinone. J. Biol. Chem. 1972; 247: 188
  • Cohen G., Heikkila R. E. The generation of hydrogen peroxide superoxide radical and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agent. J. Biol. Chem. 1974; 249: 2447
  • Misra H. P. Generation of superoxide free radicals during the autoxidation of thiol. J. Biol. Chem. 1974; 249: 2151
  • Saez G., Thornalley P. J., Hill H. A. O., Hems R. A., Bannister J. V. The production of free radicals during cysteine autoxidation and their effect on rat liver hepatocyte. Biochim. Biophys. Acta 1982; 719: 24
  • Fisher O. B., Kaufman S. Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxytas. J. Biol. Chem. 1973; 248: 4300
  • Misra H. P., Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobi. J. Biol. Chem. 1972; 247: 6960
  • Gotoh T., Shikama K. Generation of superoxide radical during autoxidaton of oxymyoglobi. J. Biochem. 1976; 80: 397
  • Misra H. P., Fridovich I. The generation of superoxide radical during the autoxidation of ferredoxin. J. Biol. Chem. 1971; 246: 6886
  • Halliwell B. Hydroxylation of p-coumaric acid by illuminated chloroplast. The role of superoxide. Eur. J. Biochem. 1975; 55: 355
  • Losehen G., Azzi A., Richter C., Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxid. FEBS Lett. 1974; 42: 68
  • Fridovich I. Superoxide dismutase. Annu. Rev. Biochem. 1975; 44: 147
  • Hamilton G. A., Libby R. D., Hnrtzell C. R. The valence of copper and the role of superoxide in the mgalactose oxidase catalysed reactio. Biochem. Biophys. Res. Commun. 1973; 55: 333
  • Hirata F., Hayaishl O. Studies on indoleamine 2,3-dioxygenase I. Superoxide anion as substrat. J. Biol. Chem. 1975; 250: 5960
  • Kido T., Soda K., Suzuki T., Asada K. A new oxygenase, 2-nitropropane dioxygenase of Hanserula amrakii, . Biol. Chem. 1976; 251: 6994
  • Kido T., Soda K. Oxidation of anionic nitroalkenes by flavoenzymes, and participation of superoxide anion in the catalysi. Arch. Biochem. Biophys. 1984; 234: 468
  • Bannister J. V., Bannister W. H. The production of oxygen-centred radicals by neutrophils and macrophages as studied by electron spin resonance (esr. Environ. Health Perspect. 1985; 104: 37
  • Halliwell B. Superoxide dismutase and the superoxide theory of oxygen toxicity. A critical appraisa. Copper Proteins, R. Lontie. CRC Ress, Boca Raton, Fla 1984; 63
  • Mc Cord J. M., Keele B. B., Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutas. Proc. Natl. Acad. Sci. U.S.A. 1981; 68: 1024
  • Loesche W. J. Oxygen sensitivity of various anaerobic bacteri. Appl. Microbiol. 1969; 18: 723
  • Bell G. R. Studies on Electron Transfer Syste. Desulfovibrio Purification of Hydrogenase. Catalase and Superoxide Dismutase. 1973; 206, Ph.D. thesis, University of Georgia, Athens
  • Norrod P., Morse S. A. Absence of superoxide dismutase in some strains of Neisseria gonorrhoeae, Bioche. Biophys. Res. Commun. 1979; 90: 1287
  • Lynch R. E., Cole B. C. Mycoplasma pneumoniae: a prokaryote which consumes oxygen and generates superoxide but which lacks superoxide dismutase, Bioche. Biophys. Res. Commun. 1980; 96: 98
  • Austin F. E., Barbieri J. T., Corln R. E., Grigas K. E., Cox C. D. Distribution of superoxide dismutase catalase, and peroxidase activities among Trephnema palidum and other spirochete. Infect. Immun. 1981; 33: 372
  • Norrod E. P., Bartenstein L., Morse S. A. Comparison of the superoxide dismutases of Bran-hamella catarrhalis, Neisseria ovis, and Neisseria caviae, In. J. Syst. Bacteriol. 1981; 31: 392
  • Gregory E. M., Fridovich I. Oxygen metabolism in Lactobacillus plantarum, . Bacteriol. 1974; 117: 166
  • Archibald F. S., Fridovich I. Defenses against oxygen toxicity in Lactobilillus plantarum, . Bacteriol. 1981; 145: 442
  • Carlioz A., Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for anaerobic life?. EMBO J. 1986; 5: 623
  • Van Loon A. P. E.M., Pesold-Hart B., Schatz G. A yeast mutant lacking mitochondria manganese superoxide dismutase is hypersensitive to oxyge. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 3920
  • Elroy Stein O., Bernstein Y., Groner Y. Over production of human copper/zinc superoxide dismutase in transfected cells: extenuation of paraquat mediated cytotoxicity and enhancement of lipid peroxidatio. EMBO J. 1986; 5: 615
  • Hewitt J., Morris J. G. Superoxide dismutase in some obligately anaerobic bacteri. FEBS Lett. 1975; 50: 315
  • Lumsden J., Hall D. O. Superoxide dismutase in photosynthetic organisms provides an evolutionary hypothesi. Nature (London) 1975; 257: 670
  • Asada K., Kanematsu S., Takahashi M., Kono Y. Superoxide dismutases in photosynthetic organism. Iron and Copper Proteins, K. T. Yasonobu, H. F. Mower, O. Hayaishi. Plenum Press, New York 1976; Vol. 74: 551
  • Asada K., Kanematsu S., Uchlda K. Superoxide dismutases in photosynthetic organisms: absence of the cupzinc enzyme in eukaryotic alga. Arch. Biochem. Biophys. 1977; 179: 243
  • Gregory E. M., Kowalskl J. B., Holdeman L. V. Production and some pmperties of catalase and superoxide dismutase from the anaerobe Bacteriodes distasonis, . Bacteriol. 1977; 129: 1298
  • Carlsson J., Wrethen J., Beckman G. Superoxide dismutase in Bacteriodes fragilis and related Bacteriodes specie. J. Clin. Microbiol. 1977; 6: 280
  • Tally F. P., Goldin H. R., Jacobus N. V., Gorbach S. L. Superoxide dismutase in anaerobic bacteria of clinical significanc. Infect. Immun. 1977; 16: 20
  • Gregory E. M., Moore W. E. C., Holdeman L. V. Superoxide dismutase in anaerobes: surve. Appl. Environ. Microbiol. 1978; 35: 988
  • Daily O. P., Debell R. M., Joseph S. M. Superoxide dismutase and catalase levels in halophilic vibrio. J. Bacteriol. 1978; 134: 375
  • Fulghum R. S., Worthington J. M. Superoxide dismutase in ruminal bacteri. Appl. Environ. Microbiol. 1984; 48: 675
  • Hatchikan E. C., Henry Y. A. An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4. Biochemie 1977; 59: 153
  • Kanematsu S., Asada K. Superoxide dismutase from anaerobic photosynthetic bacterium Chro-matiun vinosu. Arch. Biochem. Biophys. 1978; 185: 473
  • Kanematsu S., Asada K. Crystalline ferric superoxide dismutase from an anaerobic green sulfur bacterium Chlorobium thiosulfatophilu. FEBS Lett. 1978; 91: 94
  • Meier B., Schwartz A. C. Properties of the iron-containing superoxide dismutase from Propioni-bacterium shermanii. Chemical and Biochemical Aspects of Superoxide Dismutase, Dev. Biochem, J. V. Bannister, H. A. O. Hill. Elsevier, New York 1980; 11 A: 160
  • Kirby T. W., Lancaster J. R., Fridovich I. Isolation and characterisation of the iron-containing superoxide dismutase of Methanobacterium bryanti. Arch. Biochem. Biophys. 1981; 210: 140
  • Meier B., Barra D., Bossa I. F., Calabrese L., Rotllio G. Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplie. J. Biol. Chem. 1982; 257: 13977
  • Gregory E. M. Characterisation of the O2-induced manganese-containing superoxide dismutase from Bacterioides fragilis, Arc. Biochem. Biophys. 1985; 238: 83
  • Dougherty H. W., Sadowski S. J., Baker E. E. A new iron-containing superoxide dismutase from Escherichia coli, . Biol. Chem. 1978; 253: 5220
  • Stowers M. D., Elkan G. H. An inducible iron-containing superoxide dismutase in Rhizobium japonicum, Ca. J. Microbiol. 1981; 27: 1202
  • Clara R. W., Knowles R. Superoxide dismutase, catalase, and peroxidase in ammonium-grown and nitrogen fixing Azospirillum brasilense, Ca. J. Microbiol. 1984; 30: 1222
  • Dimitroijovic L., Puppo A., Rigaud J. Superoxide dismutase activities in Rhizobium phaseoli bacteria and bacteroid. Arch. Microbiol. 1984; 139: 174
  • Buchanan A. G., Lees H. Superoxide dismutase from nitrogen-fixing Azobacter chrococcum: purification, characterizaton and intracellular locatio. Can. J. Microbiol. 1980; 26: 441
  • Moore E. R. B., Norrod E. P., Jurtshuk P. Superoxide dismutases of Azobacter vinelandii and other aerobic, free-living nitrogen-fixing bacteri. FEMS Microbiol. Len. 1984; 24: 261
  • Eady R. R., Smith B. E. Physico-chemical properties of nitrogenase and its component. A Treatise on Nitrogen Firation, R. W. F. Hardy, F. Bottomley, R. C. Burns. John Wiley & Sons, New York 1979; 399
  • Yaw M. G. Physiological aspects of nitrogen fixatio. Recent Developments in Nitrogen Fixation, W. Newton, J. R. Postgate, C. Rodriquez-Barmeco. Academic Press, New York 1977; 218
  • Slykhouse T. O., Fee J. A. Physical and chemical studies on bacterial superoxide dismutases Purification and some anion binding properties of the iron-containing protein of Escherichia coli . J. Biol. Chem. 1976; 251: 5472
  • Kusunose M., Noda Y., Ichihara K., Kusunose E. Superoxide dismutase from Mycobacrerium species, strain Take. Arch. Microbiol. 1976; 108: 65
  • Kusunose M., Ichihara K., Nada Y., Kusunose M. Superoxide dismutase from Mycobacterium tuberculosis,. Biochem. 1976; 80: 1343
  • Yamakura F. Purification, crystallization and properties of iron-containing superoxide dismutase from Pseudomonas ovalis, Biochi. Biophys. Acta 1976; 422: 280
  • Anastasi A., Bannister J. V., Bannister W. H. Isolation and characterization of iron superoxide dismutase from Bacillus megaterium, In. J. Biochem. 1976; 7: 541
  • Puget K., Michelson A. M. Iron containing superoxide dismutases from luminous bacteri. Biochemie 1974; 56: 1255
  • Greenow M., Fritzsche F., Ozierenski B., Sehopp W. Reinigang und kristallisation einer suproxid dismutase aus pseudomonas parida, Acta Bio. Med. Ger. 1979; 38: 1643
  • Baldensperger T. B. An iron-containing superoxide dismutase from the chemolithotrophic Thiobacillus denitrificans “RT” strai. Arch. Microbiol. 1978; 119: 237
  • Vance P. G., Keele B. B., Rajakopalen K. V., Fridovlch I. Superoxide dismutax from Streptococcus mutans Isolation and characterization of two forms of the enzym. J. Biol. Chem. 1972; 247: 4782
  • Chickata Y., Kusunose E., Ichihara K., Kusunose M. Purification of superoxide dismutase from Mycobacterium phlei, Osuka Cit. Med. J. 1975; 21: 127
  • Lumsden J., Canunack R., Hall D. O. Purification and physicochemical properties of superoxide dismutase from two photosynthetic microorganism. Biochim. Biophys. Acta 1976; 438: 380
  • Ichihara K., Kusunose E., Kusunose M., Mori T. Superoxide dismutase from Mycobacterium lepraemurium, . Biochem. 1977; 81: 1427
  • Harris J. I. Superoxide dismutase from Bacillus sieurothermophilus. Superoxide and Superoxide Dismurases, A. M. Michelson, J. M. Mc Cord, I. Fridovich. Academic Press, New York 1977; 151
  • Sato S., Harris J. I. Superoxide dismutase from Thermus aquaticu. Eur. J. Biochem. 1977; 73: 373
  • Britton L., Malinowski D. P., Fridovich I. Superoxide dismutase and oxygen metabolism in Streptococcus faceulis and comparisons with other organism. J. Bacreriol. 1978; 134: 229
  • Sato S., Nakazawa K. Purification and properties of superoxide dismutase from Thermus thermophilus HB. J. Biochem. 1978; 83: 1165
  • Terech A., Vugnals P. V. A manganese containing syperoxide dismutase from Paracoccus deni-trificans, Biochi. Biophys. Acta 1981; 57: 411
  • Tsukuda K., Kido T., Shimasne Y., Soda K. Isolation of manganese-containing superoxide dismutase from Bacillus subtilis, Agri. Biol. Chem. 1983; 47: 2865
  • Maejha K., Miyata K., Tomoda K. A manganese superoxide dismutase from Serratia marces-cen. Agric. Biol. Chem. 1983; 47: 1527
  • Asada K., Kanematsu S. Distribution of cuprozinc, manganic and ferric superoxide dismutases in plants and fungi: an evolutionary aspec. Evolution of protein Molecules, H. Matsubara, T. Yamanka. Japan Scientific Societies Press, Tokyo 1978; 361
  • Misra H. P., Keele B. B. The purification and propertics of superoxide dismutase from a blue-green alg. Biochim. Biophys. Acta 1975; 379: 418
  • Asada K., Yoshikawa K., Takahashi M., Maeda Y., Emmnji K. Superoxide disrnutases from a blue-green algae Plecionema boryanu. J. Biol Chem. 1975; 250: 2801
  • Cseke C., Horvath L. I., Simon O., Borbely G., Keszthelyi L., Farkas G. L. An iron-containing superoxide dismutase from Anacysris nidulans, . Biochem. 1979; 85: 1397
  • Misra H. P., Fridovich I. Purification and properties of superoxide dismutases from a red algae Porphyridium cruentu. J. Biol. Chem. 1977; 252: 6421
  • Kanematsu S., Asada K. Ferric and manganic superoxide dismutases in Euglena gracili. Arch. Biochem. Biophys. 1979; 195: 535
  • Trant N. L., Meshnick S. R., Kitchener K., Eaton J. W., Ceraml A. Iron-containing superoxide dismutase from Criihidia fosiculata Purification, chracterization, and similarity to leishmanial and trypan-asornal enzyme. J. Biol. Chem. 1983; 258: 125
  • Lindmark D. K., Muller M. Superoxide dismutase in the anaerobic flagellates Tritrichomonas foetus and Monocercomones s. J. Biol. Chem. 1974; 249: 4634
  • Ravindranath S. D., Fridovich I. Isolation and characterisation of a manganese-containing super-oxide dismutase from yeas. J. Biol. Chem. 1975; 250: 6107
  • Lavelle F., Michelson A. M. Purification et etude des deux superoxyde dismutases du champignon Pleurotus oleariu. Biochimie 1975; 57: 375
  • Goscin S. A., Fridovich I. The purification and properties of superoxide dismutase from Saccha-romyces cerevisiae, Biochi. Biophys. Acta 1972; 289: 276
  • Weser U., Fritzdoff A., Prinz R. Superoxide disrnutase in baker's yeas. FEES Lett. 1972; 27: 267
  • Misra H. P., Fridovich I. The purification and properties of superoxide dismutase from Neurospora crassa, . Biol. Chem. 1972; 241: 3410
  • Shatzman A. R., Kosman D. J. Biosynthcsis and cellular distribution of the two superoxide dismutases of Dactyliun dendroides, . Bacreriol. 1979; 137: 313
  • Sawada Y., Ohyama T., Yamszaki I. Preparation and physio-chemical properties of green pea superoxide dismutas. Biochim. Biophys. Acta. 1972; 268: 305
  • Duke M. V., Salin M. L. Isoenzymes of cuprozinc superoxide dismutase from Pisum sativu. Phytochemistry 1983; 22: 2369
  • Beauchamp C. O., Fridovich I. Isozymes of superoxide dimutasc from wheat ger. Biochim. Biophys. Acta 1973; 317: 50
  • Asada K., Urano M., Takahashi M. Subcellular location of superoxide dismutase in spinach leaves and preparation and properties of crystalline spinach superoxide dismutas. Eur. J. Bichem. 1973; 36: 257
  • Kono Y., Takakashl M., Asada K. Superoxide dismutases from kidney bean leave. Plant Cell Physiol. 1979; 20: 1229
  • Baker J. E. Superoxide dismutase in ripening frui. Plant Physiol. 1976; 58: 644
  • Baum J. A., Scandalios J. G. Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maiz. Arch. Biochem. Biophys. 1981; 206: 249
  • Baum J. A., Chandler J. M., Scandalios J. G. Purification and partial characterization of a genetically defined superoxide dismutase (SOD-1) associated with maize chloroplast. Plant Physiol. 1983; 73: 31
  • Giannopolitis C. N., Ries S. K. Superoxide dismutases I. Occurrence in higher plant. Plant Physiol. 1977; 59: 309
  • Giannopolitis C. N., Ries S. K. Superoxide dismutases II. Purification and quantitative relationship with water-soluble protein in seedling. Plant Physiol. 1977; 59: 315
  • Del Rio L. A., Sevilla F., Gomez M., Yanez J., Lopez-Gorge J. Superoxide dismutast: rn enzyme system for the study of micronutrient interactions in plant. Planta 1978; 140: 221
  • Bridges S. M., Splln M. L. Distribution of iron-containing superoxide dismutase in vascular plant. Plant Physiol. 1981; 68: 275
  • Sevilla F., Lopez Gorge J., Del Rio L. A. Manganese superoxide dismutase from a high plant Purification of a new Mn-containing enzym. Planta 1980; 150: 153
  • Sevlla F., Lopez Gorge J., Del Rio L. A. Characterization of a manganese superoxide dismutase from the higher plant Pisum sativu. Plant Physiol. 1982; 70: 1321
  • Hakamada K., Kanematsu S., Asada K. Superoxide dismutase in tea lea. Study of Tea 1978; 54: 6
  • Jackson C., Dench J., Moore A. L., Hallwell B., Foyer C. H., Hall D. O. Subcellular localisation and identification of superoxide dismutase in the leaves of higher plant. Eur. J. Biochem. 1978; 91: 339
  • Arron G. P., Henry L., Palmer J. M., Hall D. O. Superoxide dismutases in mitochondria from Helianthus tuberosus and Neurospora crass. Biochem. Soc. Trans. 1976; 4: 618
  • Gerasimov A. M., Kasatkina N. V., Dannova E. N. Presence of anti-oxidant defense enzymes in the ascarid Ascaris lumbricoides, . Evol. Biochem. Physiol. 1979; 15: 126
  • Paul J. M., Burret J. Peroxide metabolism in the cestodes Hymenolepis dminuta and Moniezia expansa, In. J. Parasitol. 1980; 10: 121
  • Manwell C. Superoxide dismutase and NADH diaphorase in haemerythrocytes of sipuriculan. Comp. Biochem. Physiol. 1977; 58B: 331
  • Lin A. L. Isozymes of tropical sea anemone. Comp. Biochem. Physiol. 1979; 628: 425
  • Bannister J. V., unpublished obsentations
  • Fernandez Sousa J. M., Michelson A. M. Variation of superoxide dismutases during the development of the fruit fly Ceratitis capitata . Biochem. Biophys. Res. Commun. 1976; 73: 217
  • Massie H. R., Aiello V. R., Williams T. R. Changes in superoxide dismutase activity and copper during development and ageing in the fruit fly Drosophila melanogaster, Mec. Ageing Dev. 1980; 12: 279
  • Massie H. R., Williams T. R., Aiello V. R. Superoxide dismutase activity in two different wild-type strains of Drosophila melanogaste. Gerontology 1981; 27: 205
  • Rhoads M. L. Trichinella spiralis: identification and purification of superoxide dismutase, Ex. Parasitol. 1983; 56: 41
  • Tallandhi L., Cassini A., Ricchelli F., Filippi B. Chemical and spectroscopic characterization of a copper-zinc superoxide dismutase from a marine bivalve mollusc (Myttilus galloprovincialis. Oxy-Radicals and Their Scavenger Systems, Molecular Aspects, K. Cohen, R. A. Gnenwald. Elsevier, Amsterdam 1983; Vol. 1: 324
  • Lee Y. M., Ayala F. J., Misra H. P. Purification and properties of superoxide dismutase from Drosophila melanogaster, . Biol. Chem. 1981; 256: 8506
  • Lee Y. M., Misra H. P., Ayala F. J. Superoxide dismutase in Drosophila melanogaster: biochemical and structural characterisation of allozyme variant. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 7052
  • Bannister J. V., Anastasi A., Bannister W. H. Cytosol superoxide dismutase from swordfish (Xiphias gladius) live. Comp. Biochem. Physiol. 1977; 56B: 235
  • Martln J. P., Fridovich I. Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont Photobacterium leiognathi, . Biol. Chem. 1981; 256: 6080
  • Movis S. M., Albright J. T. Superoxide dismutase, catalase and glutathione peroxide in the swim bladder of the physochlistous fish Opsanus tau . Cell Tissue Res. 1981; 220: 739
  • Mazeaud F., Maral J., Michelson A. M. Distribution of superoxide dismutase and glutathione peroxidase in the carp: erythrocyte manganese SO. Biochem. Biophys. Res. Commun. 1979; 86: 1161
  • Healy J. A., Mulcahy M. F. Polymorphic tetrameric superoxide dismutase in the pike Esox lucius L. (Pisces; ESocidae. Comp. Biochem. Physiol. 1979; 62B: 563
  • Aksnes A., Njaa L. R. Catalase, glutathione peroxidase and superoxide dismutase in different fish specie. Comp. Biochem. Physiol. 1981; 69B: 893
  • Peeters Joris C., Vandevoorde A. M., Baudhuin P. Subcellular localization of superoxide dismutase in rat live. Biochem. J. 1975; 150: 31
  • Bannister W. H., Bannister J. V. Adipocytes do not falsify the superoxide theory of oxygen toxicit. FEBS Lett. 1982; 142: 42
  • Bannister J. V., Bannister W. H., Wood E. J. Bovine erythrocyte cupro-zinc protein I. Isolation and characterisatio. Eur. J. Biochem. 1971; 18: 178
  • Bannister W. H., Ddglelsh D. E., Bannister J. V., Wood E. J. Physicochemical and spectro-scopic properties of human enthrocytc cupro-zinc protein (enthrocuprein. Int. J. Biochem. 1972; 3: 560
  • Bannister W. H., Anastad A., Bannister J. V. Human superoxide dismutase (enthrocuprein. Superoxide and Superoxide Dismutases, A. Michelson, J. M. McCord, I. Fridovich. Academic Press, New York 1977; 107
  • Albergonl V., Cassini A. A cupro-zinc protein with superoxide dismutase activity from horse liver Isolation and propertie. Comp. Biochem. Physiol. 1974; 4TB: 767
  • Salin M. L., Wilson W. W. Porcine superoxide dismutase isolation and characterisation of a relatively basic cuprozinc enzym. Mol. Cell. Biochem. 1981; 36: 157
  • Bnrtkowiak A., Leyko W., Fried R. A comparative charaterization of cystolic superoxide dismutase from hog liver and erythrocyti. Comp. Biochem. Physiol. 1979; 62B: 61
  • Bensinger R. E., Crabb J. W., Johnson C. M. Purification and properties of superoxide dismutase from bovine retin. Exp. Eye Res. 1982; 34: 623
  • Abe Y., Okazaki T., Shukuya R., Furuta H. Copper and zinc superoxide dismutase from the liver of bullfrog Rana catesbeiana, Com. Biochem. Physiol. 1984; 77B: 125
  • Mc Cord J. M., Boyle J. A., Day E. D., Rlzzolo L. J., Salin M. L. A manganese-containing superoxide dimustase from human live. Superoxide and Superoxide Dismutases, A. M. Michelson, J. M. Mc Cord, I. Fridovich. Academic Press, New York 1977; 129
  • Salin M. L., Day E. D., Crepo J. D. Isolation and characterisation of a manganese-containing superoxide dismutase from rat live. Arch. Biochem. Biophys. 1978; 187: 223
  • Puget K., Michelson A. M. Isolation of a new copper-containing superoxide dismutase Bacteri-ocuprei. Biochem. Biophys. Res. Commun. 1974; 58: 830
  • Steinman H. M. Copper-zinc superoxide dismutase from Caulobacter crescentus CB15 A novel bac-teriocuprein form of the enzym. J. Biol. Chem. 1982; 257: 10283
  • Steinman H. M. Bacteriocuprein superoxide dismutases in Pseudomonad. J. Bacteriol. 1985; 162: 1255
  • Bannister J. V., Parker M. W. The presence of a Cu/Zn superoxide dismutase in the symbiant Photobacterium leiognathi: a likely case for gene transfer from eukaryotes to pkaryote. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 149
  • Fairfleld A. S., Mesknick S. R., Eaton J. W. Malaria parasites adopt rust cell superoxide dismutas. Science 1983; 221: 764
  • Vignais P. M., Henry M. F., Terech A., Chabert J. Production of superoxide anion and superoxide dismutases in Paracoccus denitrificans. Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase, A. Dev Biochem, J. V. Bannister, H. A. O. Hill. Elsevier, Amsterdam 1980; 154
  • Vignais P. M., Terech A., Meyer C. M., Henry M. F. Isolation and characterisation of a protein with cyanide-sensitive superoxide dismutase activity from the prokaryote Paracoccus denitrifican. Biochim. Biophys. Acta 1982; 701: 305
  • Sevilla F., Del Rio L. A., Hellin E. Superoxide dismutases from a Citrus plant: presence of two iron-containing isoenzymes in leaves of lemon trees (Citrus lemonum L.. J. Plant. Physiol. 1984; 116: 381
  • Spun M. L., Bridges S. M. Isolation and characterization of an iron-containing superoxide dismutase from a eukaryote Brassica campestris, Arc. Biochem. Biophys. 1980; 201: 369
  • Solin M. L., Bridges S. M. Isolation and characterization of an iron-containing superoxide dismutase from water lily Nuphar lutetu. Plant Physiol. 1982; 69: 161
  • Kwiatowski J. K., Saflanowska A., Kaniuga Z. Isolation and characterization of an iron-containing superoxide dismutase from tomato leaves Lycopersicon esculentu. Eur. J. Biochem. 1985; 146: 459
  • Duke M. V., Salin M. L. Purification and characterization of an iron-containing superoxide dismutase from a eukaryote Ginkyo bilob. Arch. Biochem. Biophys. 1985; 243: 305
  • Rotllio G., Calabrese L., Flnazzi A., Argento Ceru P., Autuori F., Mondovi B. Intracellular localization of superoxide dismutase and its relation to the distribution and mechanism of hydrogen peroxide-producing enzyme. Biochim. Biophys. Acta 1973; 98: 102
  • Weisiger R. A., Fridovich I. Mitochondrial superoxide dismutase Site of synthesis and intrami-tochondrial localizatio. J. Biol. Chem. 1983; 248: 4793
  • Tyler D. D. Polarographic assay and intracellular distribution of superoxide dismutase in rat live. Biochem. J. 1975; 147: 493
  • Panchenko L. F., Brusor O. S., Gerasimov A. M., Liktaeva T. D. Intramitochondrial localization and release of rat liver superoxide dismutas. FEBS Lett. 1975; 55: 84
  • Auclair C., Hakim J., Boicin P. Subcellular superoxide dismutase activity in phagocytozing human blood poiymorphonuclear leucocyte. FEBS Lett. 1977; 79: 390
  • Rest R. F., Spitznagel J. K. Subcellular distribution of superoxide dismutases in human neutrophils Influence of myeloperoxidase on the measurement of superoxide dismutase activit. Biochem. J. 1977; 166: 145
  • Henry L. E. A., Cammack R., Schwitzguebel J., Palmer J. M., Hall D. O. Intracellular localization, isolation and characterization of two distinct varieties of superoxide dismutase from Neurospora crass. Biochem. J. 1980; 187: 321
  • Geller B. L., Winger D. R. Rat liver Cu,Zn-superoxide dismutase Subcellular location in lysosome. J. Biol. Chem. 1982; 257: 8945
  • Mc Cord J. M. Superoxide dismutases: occurrence, function and evolutio. Curr. Top. Biol. Med. Res. 1979; 3: 1
  • Baum J. A., Scandalios J. G. Developmental expression and intra-cellular localization of superoxide dismutases in maiz. Differentiation 1979; 13: 133
  • Foster J. K., Edwards G. E. Localization of superoxide dismutase in leaves of C3 and C4 plant. Plant Cell Physiol. 1980; 21: 895
  • Salin M. L., Bridges S. M. Localization of superoxide dismutases in chloroplasts from Brassica campestris. . Pfanzenphysiol. 1980; 99: 37
  • Salin M. L., Bridges S. M. Absence of the iron-containing superoxide dismutase in mitochondria from mustard (Brassica campestris. Biochem. J. 1981; 195: 229
  • Del Rio L. A., Lyon D. S., Olah I., Glick B., Salin M. L. Immunocytochemical evidence for a peroxisomal localizaiton of manganese superoxide dismutase in leaf protoplasts from a higher plan. Planta. 1983; 158: 216
  • Lumsden J., Hall D. O. Soluble and membrane-bound superoxide dismutases in a blue-green alga (Spirulina) and spinac. Biochem. Biophys. Res. Commun. 1974; 58: 35
  • Hayakawa T., Kanematsu S., Asada K. Occurrence of Cn, Zn-superoxide dismutase in the intrathylakoid space of spinach chloroplast. Plant Cell Physiol. 1984; 25: 883
  • Elstner E. F., Heupel A. Lamellar superoxide dismutase of isolated chlorplast. Planta. 1975; 123: 145
  • Okada S., Kanematsu S., Asada K. Intracellular distribution of manganic and ferric superoxide dismutases in blue-green alga. FEBS Lett. 1979; 103: 106
  • Gregory E. M., Yost F. J., Fridovich I. Superoxide dismutases of Escherichia coli: intracellular localization and functio. J. Bacteriol. 1973; 115: 987
  • Britton L., Fridovich I. Intracellular localization of the superoxide dismutases of Escherica coli: a reevaluation, . Bucteriol. 1977; 131: 815
  • Marklund S. L., Holme E., Hellner L. Superoxide dismutase in extracellular fluid. Clin. Chim. Acta 1982; 126: 41
  • Marklund S. L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian specie. Biochem. J. 1984; 222: 649
  • Bepmpn B. L., Scates S. M., Moring S. E., Deem R., Misra H. P. Purification and properties of a unique superoxide dismutase from Nocardia asteroide. J. Biol. Chem. 1983; 258: 91
  • Marklund S. L. Human copper-containing superoxide dismutase of high molecular weigh. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 1634
  • Marklund S. L. Properties of extracellular superoxidc dismutase from human lun. Biochem. J. 1984; 220: 269
  • Gregory E. M., Fridovich I. toxicity amel superoxide dismutase, Induction of superoxide dismutase by molecular oxyge. J. Bacteriol. 1978; 14: 543
  • Gregory E. M., Fridovich I. Oxygen toxicity and superoxide dismutas. J. Bacteriol. 1973; 114: 1193
  • Hasspm H. M., Fridovich I. Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Escherichia coli. . Bacteriol. 1977; 129: 1574
  • Hamson L., Haggstron M. H. Effects of growth conditions on superoxide dismutase and catalase activities in Saccharomyces cerevisiae var ellipsoiden. Curr. Microbiol. 1983; 9: 19
  • Crapo J. D., Tierney D. F. Superoxide dismutase and pulmonary oxygen toxicit. Am. J. Physiol. 1974; 226: 1401
  • Autor A. P., Frank L., Roberts R. J. Developmental characteristics of pulmonary superoxide dismutase: relationship of idiopathic respiratory distress syndrom. Pediatr. Res. 1976; 10: 154
  • Rister M., Baehner R. L. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leucocytes and alveolar macrophages during hyperoxi. J. Clin. Invest. 1976; 58: 1174
  • Privalle C. T., Gregory E. M. Superoxide dismutase and O2, lethality in Bacteriodes fragilis, . Bacteriol. 1979; 138: 139
  • Abeliovlch A. D., Kellenbug D., Shilo M. Effect of photo-oxidative conditions on levels of superoxide dismutase in Anacystis nidulans, Photoche. Photobiol. 1974; 19: 379
  • Pueleh W. M. Resistance to high oxygen tension, streptionigrin and ultraviolet irradiation in the green alga Chlorella sorokiniana strain OR. J. Cell Biol. 1974; 62904
  • Yano K., Nishie H. Superoxide dismutase in facultatively anaerobic bacteria: enzyme levels in relation to growth condition. J. Gen. Appl. Microbiol. 1978; 24: 33
  • Foster J. G., Hess J. L. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxyge. Plant Physiol. 1980; 66: 482
  • Dykens J. A., Shick J. M. Oxygen production by endosymbiotic algae controls superoxide dismutase activity in their animal hos. Nature (London) 1982; 297: 579
  • Clare D. A., Blum J., Fridovich I. A hybrid superoxide dismutase containing both functional iron and manganes. J. Biol. Chem. 1984; 259: 5932
  • Hasssn H. M., Fridovich I. Regulation of the synthesis of superoxide dismutase in Escherichia coli, . Biol. Chem. 1977; 252: 7667
  • Hassan H. M., Fridovich I. Paraquat and Escherìchìa coli Mechanìsm of production of extracellular superoxide radica. J. Biol. Chem. 1979; 254: 10864
  • Von Stein R. S., Barber L. E., Hpssan H. M. Biosynthesis of oxygen-detoxifying enzymes in Bdellovibrio stolpii, . Bacteriol. 1982; 152: 792
  • Kao S. M., Hassan H. M. Isolation of paraquat-resistant mutants of Escherichia coli: lack of correlation between resistance and the activity of superoxide dismutas. FEMS Microbiol. Lett. 1985; 28: 93
  • Shatzman A. R., Kosman D. J. The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus Dactylum dendroide. Biochim. Biophys. Acta, 544: 163–1478
  • Ljutakova S. G., Russanov E. M., Liochev S. I. Copper increases superoxide dismutase activity in rat live. Arch. Biochem. Biophys. 1984; 235: 636
  • Martin M. E., Strachan R. G., Aranha H., Evans S. L., Salin M. L., Welch B., Arceneaux J. E. L., Byers B. L. Oxygen toxicity in Streptococcus mutans: manganese, iron and superoxide dismutas. J. Bacteriol. 1984; 159: 745
  • Moody C. S., Hassan H. M. Anaerobic biosynthesis of the manganese-containing superoxide dismutase in Escherichia coli, . Biol. Chem. 1984; 259: 12821
  • Pugh S. Y. R., Fridovich I. Induction of superoxide dismutases in Escherichia coli B by metal chelator. J. Bacteriol. 1985; 162: 196
  • Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compound. Arch. Biochem. Biophys. 1979; 196: 385
  • Hpsspn H. M., Moody C. S. Induction of the manganese-containing superoxide dismutase in Escherichia coli by nalidixic acid and by iron chelator. FEMS Microbiol. Lett. 1984; 25: 233
  • Bannister J. V., Hill H. A. O., Bannister W. H. Cell-free synthesis of human Cu/Zn superoxide dismutas. FEBS Lett. 1980; 121: 215
  • Lieman Hurwitz J., Woli D., Goldman D., Groner Y. Isolation and cell-free translation of human mRNA coding for cytoplasmic super-oxide dismutase (SOD-I. Biochem. lnt. 1981; 3: 107
  • Lieman Hurwitz J., Daini N., Lavie V., Groner Y. Human cytoplasmic superoxide dismutase cDNA clone: a probe for studying the molecular biology of Downs syndrom. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 2808
  • Sherman L., Lieman Hurwitz J., Groner Y. Nucleotide sequence and expression of human chromosome 21-encoded superoxide dismutase mRN. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 5465
  • Barra D., Martini F., Bannister J. V., Shinins M. E., Rotilio G., Bannister W. H., Bossa F. The complete amino acid sequence of human CuZn superoxide dismutas. FEBS Lett. 1980; 120: 53
  • Jabusch J. R., Farb D. L., Kerschensteiner D. A., Deutsch H. F. Some sulfhydryl properties and primary structure of human erythrocyte superoxide dismutas. Bimhemistry 1980; 19: 2310
  • Sherman L., Levanon D., Lieman Hurwitz J., Dafni N., Groner Y. Human Cu/Zn superoxide dismutase gene: molecular characterization of its two mRNA specie. Nucleic Acids Res. 1984; 12: 9349
  • Levanon D., Lieman Hurwitz J., Dafni N., Wigderson M., Sherman L., Banstein Y., Laver Rudich Z., Daniger E., Stein O., Groner Y. Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutas. EMBO J. 1985; 4: 77
  • Marres C. A. M., Van Loon A. P. G.M., Oudshoorn P., Van Steeg H., Grivell L. A., Slater E. C. Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protei. Eur. J. Biochem. 1985; 147: 153
  • Ditlow C., Johansen J. T., Martin B. M., Svendsen I. B. The complete amino acid sequence of manganese-superoxide dismutase from Saccharomyces cerevisiae, Carlsberg Re. Commun. 1984; 47: 81
  • Autor A. P. Biosynthesis of mitochondrial manganese superoxide dismutase in Saccharomyces cerevisiae Recursor form of mitochondrial superoxide dismutase made in the cytoplas. J. Biol. Chem. 1982; 257: 2713
  • Spkamoto H., Tounti D. Cloning of the iron superoxide dismutase gene (sodB) in Escherichia coli K-1. J. Bacteriol. 1984; 159: 418
  • Touati D. Cloning and mapping of the manganese superoxide dismutase gene (sodA) of Escherichia coli K-1. J. Bacteriol. 1983; 155: 1078
  • Nettleton C. J., Bull C., Baldwin T. O., Fee J. A. Isolation of the Escherichia coli iron superoxide dismutase gene: evidence that intracellular superoxide concentration does not regulate oxygen-dependent synthesis of the manganese superoxide dismutas. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 4970
  • Bannister J. V., Bannister W. H. Isolation and characterization of superoxide dismutas. Methods Enzymol. 1984; 105: 88
  • Bannister J. V., Bannister W. H. Purification of copper/zinc superoxide dismutas. Handbook of Methods for Oxygen Radical Research, R. A. Greenwald. CRC Press, Boca Raton, Ha 1985; 5
  • Salln M. L. Preparation of iron-containing superoxide dismutases from eukaryotic organism. Handbook of Methods for Oxygen Radical Research, R. A. Greenwald. CRC Press, Boca Raton, Fla 1985; 9
  • Gregory E. M., Pennington C. D. Isolation of manganese-containing superoxide dismutase. Handbook of Methods for Oxygen Radical Research, R. A. Greenwald. CRC Press, Boca Raton, Fla 1985; 15
  • Keele B. B., McCord J. M., Fridovich I. Further characterization of bovine superoxide dismutase and its isolation from bovine hear. J. Biol. Chem. 1971; 246: 2875
  • Hartz J. W., Deutsch H. F. Subunit structure of human superoxide dismutas. J. Biol. Chem. 1972; 247: 7043
  • Steinman H. M., Naik U. R., Abernethy J. L., Hill R. A. Bovine erythrocyte superoxide dismutase Complete amino acid sequenc. J. Biol. Chem. 1974; 249: 7326
  • Lerch K., Ammer D. Amino acid sequence of copper-zinc superoxide dismutase from horse live. J. Biol. Chem. 1981; 256: 11545
  • Sehinina M. E., Barra D., Simmaco M., Bossa F., Rotilio G. Primary structure of porcine Cu, Zn superoxide dismutas. FEBS Lett. 1985; 186: 267
  • Hering K., Kim S.-M. A., Michelson A. M., Otting F., Puget K., Steffens E. J., Flohe L. The primary structure of porcine Cu-Zn superoxide dismutas. Evidence for allotypes of superoxide dismutase in pigs. Biol. Chem. Hoppe-Seyler 1985; 366: 435
  • Flohe L., Michelson A. M. Superoxide and Superoxide Dismutase in Chemistry. Biology and Medicine, G. Rotilio. Elsevier, Amsterdam, in press
  • Roeha H. A., Bannister W. H., Bannister J. V. The amino-acid sequence of copper/zinc superoxide dismutase from swordfish liver Comparison of copper zinc superoxide dismutase sequence. Eur. J. Biochem. 1984; 145: 477
  • Lee Y. M., Friedman D. J., Ayala F. J. Superoxide dismutase: an evolutionary puzzl. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 824
  • Johansen J. T., Overballe Petersen C., Martin B., Hasemann V., Svendsen I. The complete amino acid sequence of copper, zinc superoxide dismutase from Saccharomyces cerevisia. Carlsberg Res. Commun. 1979; 44: 201
  • Steinman H. M. The amino acid sequence of copper-zinc superoxide dismutase from bakers' yeas. J. Biol. Chem. 1980; 255: 6758
  • Lerch K., Schent E. Primary structure of copper-zinc superoxide dimutase from Neurospora crassa, . Biol. Chem. 1985; 260: 9559
  • Steffens C. J., Bannister J. V., Bannister W. H., Flohe L., Gunzler W. A., Kim S. M. A., Otting F. The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria Hoppe-Seyler's . Physiol. Chem. 1983; 364: 675
  • Mallnowski D. P., Fridovich I. Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutas. Biochemistry 1979; 18: 5909
  • Borders C. L., Saunders J. E., Blech D. M., Fridovich I. Essentiality of the active-site arginine residue for the normal catalytic activity of Cu, Zn superoxide dismutas. Biochem. J. 1985; 230: 771
  • Mc Lachlan A. D. Tests for comparing related amino-acid sequences Cytochrome c and cytochrome C55. J. Mol. Biol. 1971; 61: 408
  • Parker M. W., Schinina M. E., Bossa F., Bannister J. V. Chemical aspects of the structure, function and evolution of superoxide dismutase. inorg. Chim. Acta 1984; 91: 307
  • Ringe D., Petsko G. A., Yamakura F., Suzukl K., Ohmori D. The iron content of iron superoxide dismutase: determination by anomalous scatterin. Proc. R. Soc. London 1983; B218: 119
  • Brock C. J., Walker J. E. Superoxide dismutase from Bacillus stearothernophilus Complete amino acid sequence of a manganese enzym. Biochemistry 1980; 19: 2873
  • Steinman H. M. The amino acid sequence of manganese superoxide dismutase from Escherichia coli . J. Biol. Chem. 1978; 253: 8708
  • Brock C. J., Walker J. E. Superoxide dismutase from Bacillus stearothermophilus: metal binding and complete amino acid sequenc. Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase, 11A Dev Biochem, J. V. Bannister, H. A. O. Hill. Elsevier, Amsterdam 1980; 227
  • Barra D., Schinina M. E., Simmaeo M., Bannister J. V., Bannister W. H., Rotilio G., Bossa F. The primary structure of human liver manganese superoxide dismutas. J. Biol. Chem. 1984; 259: 12595
  • Stallings W C., Pattridge K. A., Strong R. K., Ludwig M. L. The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4 Å resolutio. J. Biol. Chem. 1985; 260: 16424
  • Barra D., Schinina M. E., Bossa F., Bannister J. V. Identity of the metal ligands in the manganese- and iron-containing superoxide dismutase. FEBS Lett. 1985; 179: 329
  • Stallings W. C., Pattridge K. A., Strong R. K., Ludwig M. L. Manganese and iron superoxide dismutases are structural homolog. J. Biol. Chem. 1984; 259: 10695
  • Tainer J. A., Getzoff E. D., Richardson J. S., Richardson D. E. Structure and mechanism of copper, zinc superoxide dismutas. Nature (London) 1983; 306: 284
  • Getzoff E. D., Talner J. A., Weiner P. K., Kollman P. A., Richardson J. S., Richardson D. C. Electrostatic recognition between superoxide and copper, zinc superoxide dismutas. Nature (London) 1983; 306: 287
  • Tainer J. A., Getzoff E. D., Beam K. M., Richardson J. S., Richardson D. C. Determination and analysis of the 2 Å structun of copper, zinc superoxide dismutas. J. Mol. Biol. 1982; 160: 181
  • Rotillo G., Morpargo L., Calabrese L., Mondovi B. On the mechanism of superoxide dismutase Reaction of the bovine enzyme with hydrogen peroxide and ferricyanid. Biochim. Biophys. Acta 1973; 302: 229
  • Bray R. C., Cockle S. A., Fielden E. M., Roberts P. B., Rotillo G., Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxid. Biochem. J. 1974; 139: 43
  • Rigo A., Viglino P., Rotllio E. Kinetic study of O2- dismutation by bovine superoxide dismutase Evidence for saturation of the catalytic sites by O. Biochem. Biophys. Res. Commun. 1975; 63: 1013
  • Mc Adam M. E., Fielden E. M., Lavelle F., Calabrese L., Cocco D., Rotillo G. The involvement of the bridging imidazolate in the catalytic mechanism of action of bovine superoxide dismutas. Biochem. J. 1977; 167: 271
  • Rotlio G., Rigo A., Calabrese K. Recent developments on the active-site structun and mechanism of bovine copper- and zinc-containing superoxide dismutas. Frontiers on Physicochemical Biology, B. Pullman. Academic Press, New York 1978; 357
  • Viglho P., Rlgo A., Argese E., Calabrese L., Cocco D., Rotilio G. 19F Relaxation as a probe of the oxidation state of Cu, Zn superoxide dismutas. Studies of the enzyme in steady-state turnover. Biochem. Biophys. Res. Commun. 1981; 100: 125
  • O'Neill P., Fielden E. M., Coceo D., Rotllo C., Calabrese L. Evidence for catalytic dismutation of superoxide by cobalt(II) derivatives of bovine superoxide dismutase in aqueous solution as studied by pulse radiolysi. Biochem. J. 1982; 205: 181
  • O'Neill P., Flelden E. M., Corro D., Calabrese L., Rotllo G. Mechanistic study of superoxide dismutation by Zn-free bovine superoxide dismutas. Oxy Radicals and Their Scavenger Systems, Molecular Aspects, G. Cohen, R. A. Greenwald. Elsevier, New York 1983; 316
  • Roulb G., Fhpzzl Agro A., Calabrese L., Bossa F., Guerrierl P., Mondovi B. Studies of the metal sites of copper proteins Ligands of copper in hernocuprei. Biochemistry 1971; 10: 616
  • Fee J. A., Gaber B. P. Anion binding to bovine erythrocyte superoxide dismutasc Evidence for multiple binding sites with qualitatively different propertie. J. Biol. Chem. 1972; 247: 60
  • Rigo A., Viglino P., Rotilio G., Tomat R. Effect of ionic strength on the activity of bovine superoxide dismutas. FEBS Lett. 1975; 50: 86
  • Rotilio G., Morpurgo L., Calabrese L., Finazzi Agro A., Mondovi B. Metal-ligand interactions in Cu-protein. Metal Ligands Interactions in Organic Chemistry and Biochemistry, B. Pullman, N. Goldblum. D. Reidel, Dordrecht 1977; 243
  • Rigo A., Stevanato R., Viglino P., Rotilio G. Competitive inhibition of Cu, Zn superoxide dismutase by monovalent anion. Biochem. Biophys. Res. Commun. 1977; 79: 776
  • Bertini I., Luchinat C., Scozzafava A. Superoxide dismutase-thiocyanate: a study of the binding sites of anions on copper(II) in superoxide dismutas. J. Am. Chem. Soc. 1980; 102: 7349
  • Strothkamp K. G., Lippard S. J. Anion binding to the fem-copper form of bovine erythrocyte superoxide dismutase; mechanistic implication. Biochemistry 1981; 20: 7488
  • Marmocchi F., Mavelli I., Rigo A., Stevanato R., Bossa F., Rotiiio G. Succinylated copper, zinc superoxide dismutase A novel approach to the problem of active subunit. Biochemistry 1982; 21: 2853
  • Cocco D., Rossi L., Barra D., Bossa F., Rotilio G. Carbomaylation of Cu, Zn-superoxide dismutase by cyanate Role of lysines in the enzyme actio. FEBS Lett. 1982; 150: 303
  • Cudd A., Fridovich I. Electrostatic interactions in the reaction mechanism of bovine erythrocyte superoxide dismutas. J. Biol. Chem. 1982; 257: 11443
  • Koppenol W. H. The physiological role of the charge distribution of superoxide dismutas. Oxygen and Oxy-Radicals in Chemistry and Biology, M. A. J. Rodgers, E. L. Powers. Academic Press, New York 1981; 671
  • Rotilio G., Morpurgo L., Calabrese L., Mondovi B. On the mechanism of superoxide dismutase Reaction of the bovine enzyme with hydrogen peroxide and ferrocyanid. Biochim. Biophys. Acta 1973; 302: 229
  • Fee J. A., Dicorleto P. E. Observations on the oxidation-reducton properties of bovine erythrocyte superoxide dismutas. Biochemistry 1973; 12: 4893
  • Blackburn N. J., Hasnaln S. S., Binsted N., Diakun G. P., Garner C. D., Knowles P. F. An extended-X-ray-absorption-fine-structure study of bovine erythrocyte superoxide dismutase in aqueous solution Direct evidence for three-co-ordinate Cu(I) in reduced enzym. Biochem. J. 1984; 219: 985
  • Tered M., Rigo A., Franconi C., Mondovi B., Calabrese L., Rotilio G. pH Dependence of the nuclear magnetic relaxation rate of solvent water protein in solutions of bovine superoxide dismutas. Biochim. Biophys. Acta 1974; 351: 230
  • Rigo A., Viglino P., Argese E., Terenzi M., Rotilio G. Nuclear magnetic relaxation of 19F as a novel assay method of superoxide dismutas. J. Biol. Chem. 1979; 254: 1759
  • Fee J. A., Peisech J., Mims W. B. Superoxide dismutas. Examination of the metal binding sites by electron spin echo spectroscopy. J. Biol. Chem. 1981; 256: 1910
  • Van Camp H. L., Sands R. H., Fee J. A. An examination of the cyanide derivative of bovine superoxide dismutase with electron-nuclear double resonanc. Biochim. Biophys. Acta 1982; 704: 75
  • Richardson D. C., personal communication
  • Rotilio C., Calabrese L., Bossa F., Barra D., Finazzi Agro A., Mondovi B. Properties of the apoprotein and role of copper and zinc in protein conformation and enzyme activity of bovine superoxide dismutas. Biochemistry 1972; 11: 2182
  • Rotilio G., Morpurgo L., Giovagnoli C., Calabrese L., Mondovi B. Studies of the metal sites of copper proteins Symmetry of copper in bovine superoxide dismutase and its functional significanc. Biochemistry 1972; 11: 2187
  • Fee J. A., Ward R. L. Evidence for a coordination position available to solute molecules on one of the metals at the active center of reduced bovine superoxide dismutas. Biochem. Biophys. Res. Commun. 1976; 71: 427
  • Viglino P., Scarpa M., Coin F., Rotilio G., Rigo A. Oxidation of reduced Cu, Zn superoxide dismutase by molecular oxyge. A kinetic study. Biochem J. 1986; 237: 305
  • Pantoliano M. W., Valentine J. S., Burger A. R., Lippard S. J. A pH-dependent superoxide dismutase activity for zinc-free bovine erythrocuprein Reexamination of the role of zinc in the holoptei. J. Inorg. Biochem. 1982; 17: 325
  • Rotilio G., Bray R. C., Fielden E. M. A pulse radiolysis study of superoxide dismutas. Biochim. Biophys. Acta 1972; 268: 605
  • Bannister J. V., Bannister W. H., Bray R. C., Fieiden E. M., Roberts P. B., Rotilio G. The superoxide dismutase activity of human erythrocuprie. FEBS Lett. 1973; 32: 303
  • Calabrese L., Cocco D., Morpurgo L., Mordovi B., Rotllio G. Reversible uncoupling of the copper and cobalt spin systems in cobalt bovine superoxide dismutase at low p. FEBS Lett. 1975; 59: 29
  • Rigo A., Viglino P., Rotilio G. Reduction and oxidation of bovine superoxide dismutase by H2O. Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine, G. Rotilio. Elsevier, Amsterdam 1986; 184
  • Hodgson E. K., Fridovich I. Reversal of the superoxide dismutase reactio. Biochem. Biophys. Res. Commun. 1973; 54: 270
  • Calabrese L., Rotilio G., Mondovi B. Cobalt erythrocuprein: preparation and propertie. Biochim. Biophys. Acta 1972; 263: 827
  • Rotilio G., Calabrese L., Mondovi B., Blumberg W. E. Electron paramagnetic resonance studies of cobalt-copper bovine superoxide dismutas. J. Biol. Chem. 1974; 249: 3157
  • Richardson J. S., Thomas K. A., Rubin B. H., Richardson D. C. Crystal structure of bovine Cu, Zn superoxide dismutase at 3 Å resolution; chain tracing and metal ligand. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 1349
  • Calabrese L., Cocco D., Morpurgo L., Mondovi B., Rotllio G. Cobalt bovine superoxide dismutase Reactivity of the cobalt chromosphore in the copper-containing and in the copper-free enzym. Eur. J. Biochem. 1976; 64: 465
  • Bailey D. B., Ellis P. D., Fee J. A. Cadmium-113 nuclear magnetic resonance studies of cadmium substituted derivatives of bovine superoxide dismutas. Biochemistry 1980; 19: 591
  • Bertini I., Lanini G., Luchinat C., Messori L., Monnanni R., Scozzafava A. Investigation of Cu2Co2SOD and its anion derivatives. 1H NMR and electronic spectr. J. Am. Chem. Soc. 1985; 105: 4391
  • Strothkamp K. G., Lippard S. J. Lyophilization results of cleavage of the active-site histidine bridge in the four-copper form of bovine erythrocyte superoxide dismutas. J. Am. Chem. Soc. 1982; 104: 852
  • Calabrese L., Rotilio G. Electron paramagnetic resonance in the study of binuclear centres of copper protei. Structure and Function of Hemocyanin, J. V. Bannister. Springer-Verlag, Berlin 1977; 180
  • Desideri A., Coin F., Morpurgo L., Cocco D., Calabrese L., Mondovl B., Maret W., Rotllio G. X-ray absorption edge spectroscopy of Co(II)-binding sites of copper- and zinc-containing protein. Biochim. Biophys. Acta 1981; 670: 312
  • Desideri A., Morante S., Cocco D., Rotilio G. EXAFS study at the copper K edge of the derivative of bovine superoxide dismutasc modified at the zinc sit. Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine, G. Rotilio. Elsevier, Amsterdam 1986; 161
  • Moss T. H., Fee J. A. On the magnetic properties of cobalt substituted bovine superoxide dismutase derivative. Biochem. Biophys. Res. Commun. 1975; 66: 799
  • Desideri A., Morpurgo L., Cocco D., Rotilio G. A room temperature magnetic susceptibility study on the cobalt derivative of cuprozinc superoxide dismutas. J. Inorg. Biochem. 1986; 26: 149
  • Borders C. L., Fridovich I. A comparison of the effects of cyanide, hydrogen peroxide and phenylglyoxal in eucaryotic and procaryotic Cu, Zn superoxide dismutas. Arch. Biochem. Biophys. 1985; 241: 472
  • Mota de Freitas D., Valentine J. S. Phosphate is an inhibitor of copper-zinc superoxide dismutas. Biochemistry 1984; 23: 2079
  • Rigo A., Terenzi M., Franconi C., Mondovi B., Calabrese L., Rotlio G. A nuclear magnetic relaxation study of Co(II) bovine superoxide dismutase Evidence that the Co(II) site is exchange-coupled to the copper and not accessible to the solven. FEES Lett. 1974; 39: 154
  • Calabrese L., Cocco D., Rotilio G. Physico-chemical studies of Cu-Zn superoxide dismtas. Oxy-Radicals and Their Scavenger Systems, Molecular Aspects, G. Cohen, R. A. Greenwald. Elsevier, Amsterdam 1983; 179
  • Bull C., Fee J. A. Steady-state kinetic studies of superoxide dismutases: properties of the iron containing protein from Escherichia coli, . Am. Chem. Soc. 1985; 107: 3295
  • Osman R., Basch H. On the mechanism of action of superoxide dismutase: theoretical stud. J. Am. Chem. Soc. 1984; 106: 5710
  • Valentine J. S., De Freitas D. M. NMR studies of the anion binding sites of oxidized and reduced bovine copper-zinc superoxide dismutas. Superoxide and Superoxide Dismutase in Chemisny, Biology and Medicine, G. Rotilio. Elsevier, Amsterdam 1986; 149
  • Roberts P. B., Flelden E. M., Rotilio E., Calabrese L., Bannister J. V., Bannister W. H. Superoxide dismutase inactivation by radiation-induced radicals: evidence for histidine residues in the active sit. Radiai. Res. 1974; 60: 441
  • Argeee E., Rigo A., Vigllao P., Orsega E., Marmocchi F., Cocco D., Rotilio G. A study of the pH dependence of the activity of porcine Cu, Zn superoxide dismutas. Biochim. Biophys. Acta 1984; 787: 205
  • Bermingham-McDonogh O., Mota de Freltas D., Kunamoto A., Saunders J. E., Blech D. M., Borders C. L., Jr, Valentine J. S. Reduced anion-binding affinity of Cu, Zn superoxide dismutases chemically modified at arginin. Biochem. Biophys. Res. Commun. 1982; 108: 1376
  • Salin M. L., Wilson W. W. Porcine superoxide dismutase Isolation and characterization of a relatively basic cuprozinc enzym. Mol. Cell. Biochem. 1981; 36: 157
  • Marmoccht F., Argeee E., Riga A., Mavelli I., Rossi L., Rotllio G. A comparative study of bovine, porcine and yeast super-oxide dismutase. Mol. Cell. Biochem. 1983; 51: 161
  • Koppenol W. H., personal communication
  • Malinowski D. P., Fridovich I. Bovine erythrocyte superoxide dismutase: diazo coupling, subunit interactions, and electrophoretic variant. Biochemistry 1979; 18: 237
  • Rigo A., Marmocchi F., Cocco D., Viglino P., Rotilio G. On the quaternary structures of copper-zinc superoxide dismutases Reversible dissociation into protomers of the isozyme I from wheat ger. Biochemistry 1978; 17: 534
  • Civnlleri L., Pini C., Rigo A., Federico R., Calabrese L., Rotilio G. Isolation and preliminary characterization of electrophoretic variants of copper, zinc superoxide dismutas. Mol. Cell. Biochem. 1982; 47: 3
  • Cockle S. A., Bray R. C. Do all the copper atoms in bovine superoxide dismutase function in catalysis?. Superoxide and Superoxide Dismutases, A. M. Michelson, J. M. McCord, I. Fridovichhis. Academic Press, London 1977; 215
  • Lawrence G. D., Sawyer D. T. Potentiometric titrations and oxidation-reduction potentials of manganese and copper-zinc super-oxide dismutase. Biochemistry 1979; 18: 3045
  • Rigo A., Viglio P., Calabrese L., Cocco D., Rotilio G. The binding of copper ions to copper-free bovine superoxide dismutase Copper distribution in protein samples recombined with less than sto-ichometric copper ion protein ratio. Biochem. J. 1977; 161: 27
  • Rigo A., Terenzi M., Viglino P., Calabrese L., Cocco D., Rotilio G. The binding of copper ions to copper-free bovine superoxide dismutase Properties of the protein recombined with increasing amounts of copper ion. Biochem. J. 1977; 161: 31
  • Rigo A., Viglino P., Bonori M., Cocco D., Calabrese L., Rotilio G. The binding of copper ions to copper-free bovine super-oxide dismutase Kinetic aspeft. Biochem. J. 1978; 169: 277
  • Cocco D., Calabrese L., Rigo A., Marmocchi F., Rotilio G. Preparation of selectively metal-free and metal-substituted derivatives by reaction of Cu-Zn superoxide dismutase by diethyldithiocarbonat. Biochem. J. 1981; 199: 675
  • Mc Lachlan A. D. Repeated folding patterns in copper-zinc superoxide dismutas. Nature (London) 1980; 285: 267
  • Stallings W. C., Powers T. B., Pattridge K. A., Fee J. A., Ludwig M. L. Iron superoxide dismutase from Escherichi coli at 3.1-Å resolution: a structure unlike that of copper/zinc protein at both monomer and dimer level. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 3884
  • Ringe D., Petsko G. A., Yamakura F., Suzuki K., Ohmori D. Structure of iron superoxide dismutase from Pseudomonas ovalis, at 2.9-Å resolutio. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 3879
  • Brock C. J., Harris J. I., Sato S. Superoxide dismutase from Bacillus stearothermophilus Preparation of stable apoprotein and reconstitution of fully active Mn enzym. J. Mol. Biol. 1976; 107: 175
  • Ose D. E., Fridovich I. Superoxide dismutase reversible removal of manganese and its substitution by cobal. nickel or zinc. J. Biol. Chem. 1976; 251: 1217
  • Ose D. E., Fridovich I. Manganese-containing superoxide dismutase from Escherichia coli: reversible resolution and metal replacement. Arch. Biochem. Biophys. 1979; 194: 360
  • Yamakura F., Suzuki K. Cadmium, chromium, and manganese replacement for iron in iron-superoxide dismutase from Pseudomonas ovalis, . Biochem. 1980; 988: 191
  • Richardson J. S., Richardson D. C., Thomas K. A., Silverton E. W., Davies D. R. Similarity of three-dimensional structure between the immunoglobin domain and the copper-zinc superoxide dismutase subuni. J. Mol. Biol. 1976; 102: 221
  • Villafranca J. J., Yost F. J., Fridovich I. Magnetic resonance studies of manganese(III) and iron(III) superoxide dismutas. J. Biol. Chem. 1974; 249: 3532
  • Villairanca J. J. EPR spectra of Fe(III)-superoxide dismutase with special reference to the electron spin relaxation time of Fe(III. FEBS Lett. 1976; 62: 230
  • Benovie J., Tillman T., Cudd A., Fridovich I. Electrostatic facilitation of the reaction catalysed by the manganese-containing and the hn-containing superoxide dismutase. Arch. Biochem. Biophys. 1983; 221: 321
  • Bull C., Fee J. A. Steady-state kinetic studies of superoxide dismutase: properties of the iron containing protcin from Eschericho coli, . Am. Chem. Soc. 1985; 107: 3295
  • Tuenzi M., Rigo A., Franconi C., Mondovi B., Calabrese L., Rotllio G. pH Dependence of the nuclear magnetic resonance relaxation rate of solvent water protons in solutions of bovine superoxide dismutas. Biochim. Biophys. Acta 1974; 351: 230
  • Fee J. A., Mc Clune G. J., Lees A. C., Zidovetzki R., Pecht I. The pH dependence of the spectral and anion binding properties of iron containing superoxide dismutase from E coli B: an explanation for the azide inhibition of dismutase activit. Isr. J. Chem. 1981; 21: 54
  • Fridovich I. The biology of oxygen radical. Science 1978; 201: 875
  • Fridovich I. Superoxide radical: an endogenous toxican. Annu. Rev. Phannacol. Toxicol. 1983; 23: 239
  • Sawyer D. T., Valentine J. S. How super is superoxide?. Acc. Chem. Res. 1981; 14: 393
  • Fee J. A. Is superoxide important in oxygen poisoning?. Trends Biochem. Sci. 1982; 84, March
  • Del Maestro R. F., Thaw H. H., Bjork J., Planker M., Arfors K. E. Free radicals as mediators of tissue injur. Acta Pbysiol. Scand. 1980; 492: 43
  • Halliwell B. Superoxide and superoxide-dependent formation of hydroxyl radicals are important in oxygen toxicit. Trends Biochem. Sci. 1982; 270, August
  • Freeman B. A., Crapo J D. Free radicals and tissue injur. Lab. Invest. 1982; 47: 412
  • Bannister W. H. Superoxide dismutase and diseas. Dev. Biochem. 1984; 26: 208
  • Hartz J. W., Funakoshi S., Deutsch H. F. The levels of superoxide dismutase and catalase in human tissues as determined immunochemicall. Clin. Chim. Acta 1973; 46: 125
  • Matkovics B., Novak R., Hanh H. D., Szabo L., Varga S. I. A comparative study of some more important experimental animal peroxide metabolism enzyme. Comp. Biocbem. Physiol. 1977; 56B: 397
  • Grankvist K., Marklund S. L., Taljedal I. B. CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mous. Biochem. J. 1981; 199: 393
  • Westman N. G., Marklund S. L. Copper- and zinc-containing superoxide dismutase and manganese-containing superoxide dismutase in human tissues and human malignant tumour. Cancer Res. 1981; 41: 2962
  • Marklund S. L., Westman N. G., Lundgren E., Roos G. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissue. Cancer Res. 1982; 42: 1955
  • Michelson A. M., Puget K., Durosay P., Bonneau J. C. Clinical aspects of the dosage of erythrocuprei. Superoxide and Superoxide Dismutases, A. M. Michelson, J. M. Mc Cord, I. Fri-Dovich. Academic Press, London 1977; 417
  • Halliwell B., Gutteridge J. M. C. Oxygen toxicity, oxygen radicals, transition metals and diseas. Biochem. J. 1984; 219: 1
  • Bielski B. H. J., Arudi R. L., Sutherland M. W. A study of the reactivity of HO2/O2- with unsaturated fatty acid. J. Biol. Chem. 1983; 258: 4758
  • Michelson A. M. Superoxide dismutase. Metalloprorein, Structure, Molecular Function and Clinical Aspecrs, U. Weser. Georg Theime, Stuttgart 1979; 88
  • Shet P. M. Metabolism of oxygen derivatives in Down's syndrom. Ann. N.Y. Acad. Sci. 1982; 3965: 83
  • Tan Y. H., Tischfield J., Ruddle F. H. The linkage of genes for the human interferon-induced antiviral protein and indophenol oxidase B traits to chromosome-2. J. Exp. Med. 1973; 137: 317
  • Creau Goldberg N., Cochet C., Turleau C., Finaz C., De Grouchy J. Comparative gene mapping of man and Cebus capucinus for FGD, ENO 1, PGM 2, and SOD . Cyrogenet. Cell Gener. 1980; 28: 140
  • Leong M. M. L., Lin C. C., Ruth R. F. Assignment of superoxide dismutase (SOD-1) gene to chromosome no. 9 of domestic pi. Can. 1. Genet. Cytol. 1983; 25: 233
  • Franckc U., Taggart R. T. Assignment of the gene for cytoplasmic superoxide dismutase (Sod-I) to a region of chromsome 16 and of Hprt to a region of the X chromosome in the mous. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 5230
  • Lin P. F., Slate D. L., Lawyer F. C., Ruddle F. H. Assignment of the mouse interferon sensitivity and cytoplasmic superoxide dismutase genes to chromosome 1. Science 1980; 209: 285
  • Cox D. R., Epstein L. B., Epstein C. J. Genes coding for sensitivity to interferon (lfRec) and soluble superoxide dismutase (SOD-1) are linked in mouse and man and map to mouse chromosome 1. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 2168
  • Creagan R., Tisehfleld J., Ricciuti F., Ruddle F. H. Chromosome assignments of genes in man using mouse-human somatic cell hybrids: mitochondrial superoxide dismutase (indophenol oxidase-B te-trameric) to chromosome . Humangenetik 1973; 20: 203
  • Smith M., Turner B. M., Tanigakl N., Hirschborn K. Regional localization of HLA, MEs and SODM on chromosome 6 Cytogene. Cell Genet. 1978; 22: 428
  • Szymura J. M., Wabl M. R., Klein J. Mouse mitochondrial superoxide dismutase locus is on chromosome 1. Immunogenetics. 1981; 14: 231
  • Novak R., Boszt Z., Matkovics B., Fachet J. Gene affecting superoxide dismutase activity linked to the histocompatibility complex in H-2 congenic mic. Science 1980; 207: 86
  • Bloor J. H., Holtz D., Kaars J., Kosman D. J. Characterization of superoxide dismutase (SOD-1 and SOD-2) activities in inbred mice: evidence for quantitative variability and possible nonallelic SOD-1 polymorphis. Biocbem. Genet. 1983; 21: 349
  • Hagemeijer A., Smit E. M. E. Partial trisomy 21: further evidence that trisomy of band 21q22 is essential for Down's phenotyp. Hum. Genet. 1977; 38: 15
  • Sichitiu S., Sinet P. M., Lejeune J., Frezal J. Overactivity of the indophenol oxidase (form dimeric) in trisomy 21, secondary to triplicated gen. Humangenetik 1974; 23: 65
  • Sinet P. M., Allard D., Lejeune J., Jerome H. Increased erythrocyte superoxide dismutase activity in trisomy for chromosome 2. C.R. Acad. Sci. Ser. D. 1974; 278: 3267
  • Crosti N., Serra A., Rigo A., Viglino P. Dosage effect of SOD-A gene in 21-trisomic cell. Hum. Genet. 1976; 31: 197
  • Gilles L., Ferradini C., Foos J., Pucheault J., Allard D., Sinet P. M., Jerome H. The estimation of red cell superoxide dismutase activity by pulse radiolysis in normal and trisomic 21 subjec. FEES Lett. 1976; 69: 55
  • Frants R. R., Eriksson A. W., Jongbloet P. H., Hamers A. J. Superoxide dismutase in Down's syndrom. Loncet. 1975; 2: 42
  • Mattei J. F., Baeteman M. A., Baret A., Ardissone J. P., Rebuffel P., Giraud F. Erythrocyte superoxide dismutase and redox enzymes in trisomy 2. Acta Paediatr. Scand. 1982; 71: 589
  • Sinet P. M., Lavelle F., Michelson A. M., Jerome H. Superoxide dismutase activities of blood platelets in trisomy 2. Biochem. Biophys. Res. Commun. 1975; 67: 904
  • Feaster W. W., Kwok L. W., Epstein C. J. Dosage effects for superoxide dismutase-1 in nucleated cells aneuploid for chromosome 2. Am. J. Hum. Genet. 1977; 29: 563
  • Frischer H., Chu L. K., Ahmad T., Justice P., Smith G. F. Superoxide dismutase and glutathione peroxidase abnormalities in erythrocytes and lymphoid cells in Down's syndrom. Prog. Clin. Biol. Res. 1981; 55: 269
  • Baret A., Baeteman M. A., Mattei J. F., Michel P., Brousolle B., Giraud F. lmmunoreactive CuSOD and MnSOD in the circulating blood cells from normal and trisomy 21 subject. Biochem. Biophys. Res. Commun. 1981; 98: 1035
  • Baeteman M. A., Baret A., Courtiere A., Rebuffel P., Mattei J. F. Immunoractive CU-SOD and Mn-SOD in lymphocyte sub-populations from normal and trisomy 21 subjects according to ag. Life Sci. 1983; 32: 895
  • Sinet P. M., Couturier J., Dutrillaux B., Poisonnier M., Raoul O., Rethore M. O., Allard D., Lejeune J., Jerome H. Trisomy 21 and superoxide dismutase-1 (IPO-A indophenol oxidase A) Attempt to localize the 21q22.1 subban. Exp. Cell Rex. 1976; 97: 47
  • Philip T., Fraisse J., Sinet P. M., Lauras B., Robert J. M., Freycon F. Confirmation of the assignment of the human SOD, gene to chromosome 21q22 Cytogene. Cell Genet. 1978; 22: 521
  • Yamarooto Y., Ogasawara N., Gotoh A., Komiya H., Nakai H., Kuroki Y. A case of 21q-syndrome with normal SOD-1 activit. Hum. Genet. 1979; 48: 321
  • Habedank M., Rodewald A. Moderate Down's syndrome in three siblings having partial trisorny 21q22.2 to qter and therefore no SOD-1 exces. Hum. Genet. 1982; 60: 74
  • Wulfsberg E. A., Carrell R. E., Klisak I. J., O'Brien T. J., Sykes J. A., Sparkes R. S. Normal superoxide dismutase-1 (SOD-1) activity with deletion of chromosome band 21q21 suppons localization of SOD-I locus to 21q2. Hum. Genet. 1983; 64: 271
  • Yoshimitsu K., Hatano S., Kobayashi Y., Takeoka Y., Hayashidani M., Ueda K., Numura K., Ohama K., Usui T. A case of 2lq-syndrome with half normal SOD-1 activit. Hum. Genet. 1983; 64: 200
  • Leschot N. J., Slater R. M., Joenje H., Becker Bloemkolk M. J., De Nef J. J. Sod-A and chromosome 21 Conflicting findings in a familial translocation (9p24;21q214. Hum. Genet. 1981; 57: 220
  • Kedziora J., Bartosz G., Leyko W., Rozynkowa D. Dismutase activity in translocation trisom. Lancer 1979; 1: 105
  • Garber P., Sinet P. M., Jerome H., Lejeune J. Coppedzinc superoxide dismutase activity in trisomy 21 by translocatio. Loncet 1979; 2: 914
  • Crosti N., Rigo A., Stevanato R., Bajer J., Neri G., Bova R., Serra A. Lack of position effect on the activity of the SODCu/za gene in subjects with 21/D and 21/G Robertsonian translocation. Hum. Genet. 1981; 57: 203
  • Jeziorowska A., Jakubowski L., Armatys A., Kaluzewski B. Copper/zinc superoxide dismutase (SOD 1) activity in regular trisomy 21, trisomy 21 by translocation and mosaic trisomy 2. Clin. Genet. 1982; 22: 160
  • Couturier J., Dutrillaux B., Garber P., Raoul O., Croquette M. F., Fourlinnie J. C., Maillard E. Evidence for a correlation between late replication and autosomal gene inactivation in a familiar translocation t(X;21. Hum. Genet. 1979; 49: 319
  • Mattei J. F., Mattei M. G., Baeteman M. A., Giraud F. Trisomy 21 for the region 21 q 223; identification by high resolution R-banding pattern. Hum. Genet. 1981; 56: 409
  • Sinet P. M., Michelson A. M., Bazin A., Lejeune J., Jerome H. Increase in glutathione peroxidase activity in erythrocytes from trisomy 21 patient. Biochem. Biophys. Res. Commun. 1975; 67: 910
  • Sinet P. M., Lejeune J., Jerome H. Trisomy 21 (Down's syndrome) Glutathione peroxidase, hexose monophosphate shunt and I.. Life Sci. 1979; 24: 29
  • Brooksbank B. W. L., Balazs R. Superoxide dismutase and lipoperoxidation in Down's syndrome fetal brai. Loncet 1983; 1: 881
  • Hestan L. L. Alzheimer's disease, trisomy 21 and myeloproliferative disorders: asSociations suggesting a genetic diathesi. Science 1977; 196: 322
  • Marklund S. L. Superoxide dismutase catalase and glutathione peroxidase in degenerative disease. Clin. Resp. Physiol. 1981; 17(Suppl.)259
  • Brewer G. J. Achromatic regions of tetrazolium stained starch gels: inherited electrophoretic variatio. Am. 1. Hum. Genet. 1967; 19: 674
  • Beckman G. Population studies in northern Sweden VI. Polymorphism of superoxide dismutas. Her-editas 1973; 73: 305
  • Kirjarinta M., Fellman J., Gustsfson C., Keisala E., Erikspon A. W. Two rare electrophoretic variants of erythrocyte enzymes in Finlan. Scand. J. Clin. Lob. Invesr. 1969; 22(Suppl. 108)46
  • Beckman G., Beckman L., Nilsson L A. A rare homozygous phenotype of superoxide dismutase, SOD . Her editas 1973; 75: 138
  • Beckman G., Paluuinen A. Superoxide dismutase A population stud. Hum. Hered. 1973; 23: 346
  • Eriksson A. W. Genetic polymorphism in Finno-Ugrian populations Finn. Lapps and Maris. Isr. J. Mrd. Sci. 1973; 9: 1156
  • Welch S. G., Mars G. W. Genetic variants of human indophenol oxidase in the Westray Island of the Orkeny. Hum. Hered. 1972; 22: 38
  • Carter N. D., Auton J. A., Welch S. G., Marshall W. H., Fraser G. R. Superoxide dismutase variants in Newfoundland — a gene from Scandinavia?. Hum. Hered. 1976; 26: 4
  • Weissman J., Vollmer M., Pribilla O. Survey of the distribution of adenosine deaminase and superoxide dismutase markers in different population. Hum. Hered. 1982; 35: 344
  • Crostl N., Serra A., Cagiano Mdvezzi D., Taguaferri I. The ran allele SOD-A' in the Italian populatio. Ann. Hum. Biol. 1976; 3: 343
  • Papiha S. S., Ai-Agidi S. K. Esterase D and superoxide dismutase polymorphism in Ira. Hum. Hered. 1976; 26: 394
  • Spedini G., Capued E., Crosti N., Danubio M. E., Romagndi S. Erythrocyte glyoxalase I and superoxide dismutase polymorphism in the Mbugu and some other populations of the Central African Republi. Hum. Hered. 1982; 32: 253
  • Marklund S., Beckman C., Stigbrand T. A comparison between the common type and a rare genetic variant of human cup-zinc superoxide dismutas. Eur. J. Biochem. 1976; 65: 415
  • Shiaoda T., Matsunaga E., Koshinaga J. Polymorphism at a second structural locus for tetrazolium oxidase in Japanes. Jpn. J. Hum. Genet. 1974; 19: 243
  • Tan S. G., Teng Y. S. Saliva acid phosphatase and amylase in Senoi and aboriginal Malays and superoxide dismutase in various racial groups of peninsular Malaysi. Jpn. 1. Hum. Gener. 1978; 23: 133
  • Beckman G., Beckman L., Nilsson L. O. Genetics of human superoxide dismutas. Hereditas. 1975; 79: 43
  • Kellogp E. W., III, Fridovich I. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxid. J. Biol. Cbem. 1977; 252: 6721
  • Cprrell R. W., Winterbourn C. C., Rachmilewitz E. A. Activated oxygen and haemolysi. Br. J. Haematol. 1975; 30: 259
  • Muller M., Dumdey R., Rapport S. Superoxide radicals in the metabolism of the d cel. Biomed. Biochim. Acca 1983; 42(11–12 Suppl.)297
  • Lynch R. E., Fridovich I. Permeation of erythrocyte stroma by superoxide radica. J. Biol. Chem. 1978; 253: 4697
  • Hebbel R. P., Eaton J. W., Balasingam M., Steinberg M. H. Spontaneous oxygen radical generation by sickle CrythrocyteS. . Clin. Invest. 1982; 70: 1253
  • Fuzukawa K., Gebicki J. M. Oxidation of a-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl and superoxide free radical. Arch. Biochem. Biophys. 1983; 226: 242
  • Brunori M., Falclnid G., Fioreffl E., Giardina B., Rotilio G. Formation of superoxide in the autoxidation of the isolated a and |3 chains of human hemoglobin and its involvement in hemichme precipitatio. Eur. J. Biochem. 1975; 53: 99
  • Winterbourn C. C., Mc Cmth B. M., Camell R. W. Reactions involving superoxide and normal and unstable kmoglobin. Biochem. J. 1976; 155: 493
  • Kono Y., Fridovfcb I. Superoxide radical inhibits catalas. J. Biol. Chem. 1982; 257: 5751
  • Mc Mahon S., Stern A. The interrelationship of superoxide dismutase and pcroxidatic enzymes in the d cel. Biochim. Biophys. Acra 1979; 566: 253
  • Wellace W. J., Maxwell J. C, Caughey W. S. The mechanisms of hemoglobin autoxidation Evidence for proton-assisted nucleophilic displacement of superoxide by anion. Biochem. Biophys. Res. Commun. 1974; 57: 1104
  • Sugawara Y., Shikama K. Autoxidation of native oxymyoglobin Thermodynamic analysis of the pH profil. Eur. J. Biochem. 1980; 110: 241
  • Wallace W. J., Houtchens R. A., Maxwell J. C., Caughey W. S. Mechanisms of autoxidation for hemoglobins and myoglobins Prorootion of superoxide production by protons and anion. J. Biol. Chem. 1982; 257: 4966
  • Sutton H. C., Roberts P. B., Winterbourn C. C. The rate of reaction of superoxide radical with oxyhaemoglobin and methaemoglobi. Biochem. J. 1976; 155: 503
  • Lyncb F. E., Thomas J. E., Lee G. R. Inhibition of methemolgobin formation from purified oxyhemoglobin by superoxide dismutas. Biochemistry 1977; 16: 4563
  • Miura T., Ogawa N., Ogiso T. Involvement of superoxide radicals in the formation of methe-moglobin from oxyhemoglobin: inhibition of superoxide dismutase by diethyldithiowbamat. Chem pharm. Bull. 1978; 26: 1261
  • Miura T., Ogiso T. Effect of 3-amino-l,2,4-triazole on catalase and formation of methemoglobin from oxyhemoglobin in erythrocyte by superoxide radical. Chem. Pharm. Bull. 1978; 26: 3450
  • Goldberg B., Stern A. Superoxide anion as a mediator of drug-induced oxdiative hemolysi. J. Biol. Chem. 1976; 251: 6468
  • Goldberg B., Stern A. The role of the superoxide anion as a toxic species in the erythrocyt. Arch. Biochem. Biophys. 1977; 178: 218
  • Miura T., Ogiso T. Lipid peroxidation of erythrocyte membrane induced by xanthine oxidase system: modification of superoxide dismutase effect by hemoglobi. Chem. Phann. Bull. 1982; 30: 3662
  • Kobayashi Y., Okahata S., Usui T. Hemolysis of human erythrocytes by paraquat in relation to superoxide dismutase activit. Biochem. Biophys. Res. Commun. 1979; 91: 1288
  • Okahata S. Mechanism of methylviologen induced hemolysi. Hiroshima J. Med Sci. 1980; 29: 49
  • Lynch R. E., Fridovich I. Effects of superoxide on the erythrocyte membran. J. Biol. Chem. 1978; 253: 1838
  • Weiss S. J. The role of superoxide in the destruction of erythrocyte targets by human neutrophil. J. Biol. Chem. 1980; 255: 9912
  • Web S. J. Neutrophil-mediated methemoglobin formation in the erythrocyte: the role of superoxide and hydrogen peroxid. J. Biol. Chem. 1982; 257: 2497
  • Faldoni G. C., Coderoni S., Tedescbi G. G., Brunori M., Rotilio G. Red cell lysis by microorganisms as a case of superoxide- and hydrogen peroxide-dependent hemolysis mediated by oxyhemoglobi. Biochim. Biophys. Acta 1981; 678: 437
  • Lin P. S., Quamo S., Ho K. C. Erythrocyte as scavenge. Oxy-Radicals and Their Scavenger Systems, Molecular Aspects, G. Cohen, R. A. Grtenwald. Elsevier, New York 1983; 246
  • Bartosz G., Fried R., Grzelinska E., Leyko W. Effect of hyperoxide radicals on bovine erythrocyte membran. Eur. J. Biochem. 1977; 73: 261
  • Maridonneau I., Braquet P., Garay R. P. Sodium and potassium transport damage induced by oxygen free radicals in human red cell membrane. J. Biol. Chem. 1983; 258: 3107
  • Girotti A. W., Thomas J. P. Damaging effects of oxygen radicals on resealed erythrocyte ghost. J. Biol. Chem. 1984; 259: 1744
  • Rosen G. M., Barber M. J., Rauckman E. J. Disruption of eryulrocyte membrane organization bv superoxid. J. Biol. Chem. 1983; 258: 2225
  • Stone D., Lin P. S., Kwock L. Radiosensitization of human erythrocytes by diethyldithiocarbamat. Int. J. Radiat. Biol. 1978; 33: 393
  • Westman N. G., Marklund S. L. Diethyldithiocarbamate inhibition of CuZn superoxide dismutase in human erythrocytes: no increase in radiation haemolysi. Int. J. Radiat. Biol. 1983; 43: 103
  • Inouye B., Aow K., Iida S., Utsumi K. Influence of superoxide generating system, vitamin E and superoxide dismutase on radiation consequence. Physiol. Chem. Phys. 1978; 11: 151
  • Bartosz G., Leyko W., Kedziora J., Jeske J. Radiation sensitivity of erythrocytes with an increased level of superoxide dismutas. Int. J. Radiat. Biol. 1977; 31: 197
  • Bartosz G., Leyko J., Jeske J. Superoxide dismutase and radiation-induced haemolysis: no benefit of its increased content in red cell. Int. 1. Radiar. Biol. 1980; 38: 187
  • Kong S., Davison A. J. The role of interactions between O2, H2O2, OH, e-and O2; in free radical damage to biological system. Arch. Biochem. Biophys. 1980; 204: 18
  • Krizala J., Ledvina M. The activity of superoxide dismutase in the liver and bone marrow of γ-irradiated rat. Int. J. Rodiat. Biol. 1980; 37: 459
  • Krizala J., Kovmva H., Stoklasova A., Ledvina M. Superoxide dismutase levels in various radioresistant and radiosensitive tissue of irradiated rat. Physiol. Bohemoslov. 1982; 31: 151
  • Pektau A., Kelly K., Chelack W. S., Barefoot C. Protective effect of superoxide dismutase on erythrocytes of X-irradiated mic. Biochem. Biophys. Res. Commun. 1976; 70: 452
  • Winterbourn C. C., Hawkins R. E., Brian M., Carrell R. W. The estimation of red cell superoxide dismutase activit. J. Lab. Clin. Med. 1975; 85: 337
  • Saito T., Ito K., Kurasaki M., Fujimoto S., Kaji H., Saito K. Determination of true specific activity of superoxide dismutase in human erythrocyte. Clin. Sci. 1982; 63: 251
  • Baret A., Michel P., Imbert M. R., Morcellet J. L., Micheison A. M. A radioimunoassay for copper containing superoxide dismutas. Biochem. Biophys. Res. Commun. 1979; 88: 337
  • Stansell M. J., Deutsch H. F. The levels of catalase and erythrocuprein in human erythrocyte. Clin. Chim. Acta 1966; 14: 598
  • Del Viiiano B. C., Tischfleld J. A. A radioimmunoassay for human cupro-zonc superoxide dismutase and its application to erythrocyte. J. Immunol. Methods 1979; 29: 253
  • Maral J., Puget K., Micheison A. M. Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animal. Biochem. Biophys. Res. Commun. 1977; 77: 1525
  • Tyan M. L. Age-relatcd increase in erythrocyte oxidant sensitivit. Mech. Ageing Dev. 1982; 20: 25
  • Glass G. A., Gershon D. Enzymatic changes in rat erythrocytes with increasing cell donor age: loss of superoxide dismutase activity associated with increases in catalytically defective form. Biochem. Biophys. Res. Commun. 1981; 103: 1245
  • Reis U., Gershon D. Rat-liver superoxide dismutase Purification and age-related modificatio. Eur. J. Biochem. 1976; 63: 617
  • Glass G. A., Lavie L., Dovrat A., Shpund S., Gershon D. Further studies on SOD function and properties in different tissues of animals of different age. Oxy-Radicals and Their Scavenger Sysrems, Cellular and Medical Aspects, R. A. Gntnwald, G. Cohen. Elsevier, New York 1983; 1
  • Bartosz G., Tannert C., Fried R., Leyko W. Superoxide dismutase activity decreases during erythrocyte agein. Erperientia 1978; 34: 1464
  • Bartosz G., Soszynski M., Retelewska W. Ageing of the erythrocyte X. Immunoelectrophorctic studies on the denaturation of superoxide dismutas. Mech. Ageing Dev. 1981; 17: 237
  • Vanella A., Geremia E., Tirlolo P., Monachino M. E., Vanella G., Morino M., Pinturo R. Superoxide dismutasc activity and reduced glutathoine content in red blood cells as a function of ag. IRCS Med. Sci. 1982; 10: 235
  • Mavelli I., Ciriolo M. R., Rd L., Melonl T., Forteleoni G., De Flora A., Benaffl U., Morelli A., Rotilio G. Favism: a hemolytic disease asSociated with incd superoxide dismutase and decreased glutathione peroxidase activities in red blood cell. Eur. J. Biochem. 1984; 139: 13
  • Stevens C., Goldblatt M. J., Freedman J. C. Lack of erythrocyte superoxide dismutase change during human senescenc. Mech. Ageing Dev. 1975; 4: 415
  • Ueda K., Ognta M. Levels of erythrocyte superoxide dismutase activity in Japanese peopl. Acta Med. Okayama 1978; 32: 393
  • Joenje H., Fronts R. R., Arwert F., Eriksson A. W. Specific activity of human erythrocyte superoxide dismutase as a function of donor ag. A brief note. Mech. Ageing Dev. 1978; 8: 265
  • Bortkowiak A., Gnellnslta E., Bartosz G. Ageing of the erythrocyte XVII. Changes in the properties of superoxide dismutas. Int. J. Biochem. 1983; 15: 763
  • Mavelli I., Cirlolo M. R., Rotilio G. Multiple electrophoretic variants of copper, zinc superoxide dismutase as an expression of enzyme ageing Effects of hydrogen peroxide, ascorbate and metal ion. Biochem. Biophys. Res. Commmun. 1983; 117: 677
  • Crosti N., Sausa P. Evidence for tissue-specific electromorphs of cu/Zn SOD unrelated to genetic contro. Biochem. Genet. 1980; 18: 693
  • Croeti N. Post-translational polymorphism of copper/zinc SOD hypothesis of a biological rol. Acta Med. Rom. 1983; 20: 178
  • Kobaysshl Y., Ishlgame K., Ishigame Y., Usul T. Superoxide dismutase activity of human blood cell. Biochemical and Medical Aspecrs of Active Oxygen, O. Hayaishi, K. Asada. University of Tokyo Ress, Tokyo 1977; 261
  • Yoshioka T., Sugule A., Shimada T., Utsumi K. Superoxide dismutase activity in the maternal and cord bloo. Biol. Neonar. 1979; 36: 173
  • Bontp B. W., Gawron E R., Warshaw J. B. Neonatal red cell superoxide dismutase enzyme levels: possible role as a cellular defence mechanism against pulmonary oxygen toxicit. Paediatr. Res. 1977; 11: 754
  • Autor A. P., Frank L., Roberts R. J. Developmental characteristics of pulmonary superoxide dismutase: relationship to idiopathic respiratory distress syndrom. Paediatr. Res. 1976; 10: 154
  • Legge M., Brian M., Winterbourn C. C., Carrell R. Red cell superoxide dismutase activity in the newbor. Aust. Paediatr. J. 1977; 13: 25
  • Rotilio G., Rigo A., Bracci R., Bagnoli F., Sargentini I., Brunori M. Determination of red blood cell superoxide dismutase and glutathione in newborns in relation to neonatal hemolysi. Clin. Chim. Acta 1977; 81: 131
  • Bracci R., Ciccoli L., Falciani G., De Donno M., Dettori M. Vitamin E glutathione peroxidase and superoxide dismutase as possible factors inhibiting oxidative hemolysis in the neonat. Boll. Soc. Ital. Biol. Sper. 1978; 54: 879
  • Saik L. A., Hsieh H. L., Baricos W. H., Shapira E. Enzymatic and immunologic quantitation of erythrocyte superoxide dismutase in adults and in neonates of different gestational age. Paediatr. Res. 1982; 16: 933
  • Russanov E. M., Kirkova M. D., Setchenska M. S., Amstein H. R. V. Enzymes of oxygen metabolism during erythrocyte differentiatio. Biosci. Rep. 1981; 1: 927
  • Haga P. Ceruloplasmin levels and erythrocyte superoxide dismutase activity in small preterm infants during the early anemia of prematurit. Actu Puediarr. Scand. 1981; 70: 861
  • Shields G. S., Markowitz H., Klassen W. H., Cartwright G. E., Wintrobe M. M. Studies on copper metabolism XXXI. Erythrocyte coppe. J. Clin. Invest. 1961; 40: 2007
  • Gartner A., Weser U. Erythrocuprein (Cu2Zn2 superoxide dismutase) is the major copper protein of the red blood cel. FEES Lett. 1983; 155: 15
  • Williams D. M., Lynch R. E., Lee G. R., Carhvright G. E. Superoxide dismutase activity in copper-deficient swin. Proc. Soc. Exp. Biol. Med. 1975; 149: 534
  • Bettger W. J., Fish T. J., O'Dell B. L. Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activit. Proc. Soc. Exp. Biol. Med. 1978; 158: 279
  • Okahata S., Nishi Y., Hatano S., Kobaypshi Y., Usui T. Changes in erythrocyte superoxide dismutase in a patient with copper dieficienc. Eur. 1. Puediutr. 1980; 134: 121
  • Scudder P., Stocks J., Dormandy T. L. The relation between erythrocyte superoxide dismutase activity and erythrocyte copper levels in normal subjects and in patients with rheumatoid arthriti. Clin. Chim. Actu 1976; 69: 397
  • Banford J. C., Brown D. H., Hazelton R. A., Mc Neil C. J., Sturrock R. D., Smith W. E. Serum copper and erythrocyte superoxide dismutase in rheumatoid arthriti. Ann. Rheum. Dis. 1982; 41: 458
  • Crouch R. K., Chambers J. K. Absence of abnormal erythrocyte superoxide dismutase, copper, or zinc levels in patients with retinitis pigmentos. Br. J. Oprhalmol. 1982; 66: 417
  • Polidoro G., Di Ilio C., Ardini A., La Rovere G., Federici G. Superoxide dismutase, reduced glutathione and TBA-nactive products in erythrocytes of patients with multiple sclerosi. Inf. J. Biochem. 1984; 16: 505
  • Marceau N., Aspin N. The association of the copper derived from ceruloplasmin with cytocuprei. Biochim. Eiophys. Acta 1973; 328: 351
  • Bohnenkamp W., Weser U. Copper deficiency and erythrocuprein (2Cu, 22n-1 superoxide dismutase. Biochim. Biophys. Acm 1976; 444: 396
  • Alexander N. M., Benson C. D. Superoxide dismutase activity (erythrofuprein) in Wilson's diseas. LgeSci. 1975; 16: 1025
  • Panchenko L. F., Lomehingiin T., Gerasimov A. M., Sukhanov Yu. S., Konoplina L. A. Activity of superoxide dismutase in the blood of children with iron deficiency anemi. Vopr. Med. Khim. 1979; 25: 181
  • Oknhata S., Kobayashi Y., Usui T. Erythrocyte superoxide dismutase activity in Fanconi's anaemi. Clin. Sci. 1980; 58: 173
  • Kobayshl Y., Yoshimitsu Y., Okahata S., Usui T. Superoxide dismutase activity in rabbit reticulocyte. Expcrientia. 1983; 39: 69
  • Audair C., Dhermy D., Bolvin P. Intravascular hemolysis in patients with erythrocyte superoxide dismutase deficiency: further evidence for the protective role of superoxide dismutase in aerobic cell. Clin. Resp. Physiol. 1981; 17(Suppl.)207
  • Agostoni A., Gerli G. C., Beretta L., Binnchf M., Vignoli M., Bombelli F. Superoxide dismutase, catalase and glutathione peroxidase activities in maternal and cord blood erythrocyte. J. Clin. Chem. Clin. Biochern. 1980; 18: 771
  • Kobaypshi Y., Okahata S., Tanabe K., Ueda K., Usui T. Erythrocyte superoxide dismutase activity in hemolytic uremic syndrom. Hiroshima 1. Med. Sci. 1978; 27: 181
  • Concetti A., Mpssei P., Rotilio G., Brunori M., Rachmilewitz E. A. Superoxide dismutase in red blood cells: method of assay and enzyme content in normal subjects and in patients with β-thalassemia (major and intermedia). . Lab. Clin. Med. 1976; 87: 1057
  • Gerli G. C., Beretta L., Bianchi M., Pe Uegatta A., Agostoni A. Erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities in p-thalassaemia (major and minor. Scund. J. Hacmurol. 1980; 25: 87
  • Gerli G. C., Beretta L., Bianchl M., Agostonl A. Erythrocyte superoxide dismutase, catalase and glutathione peroxidase in conditions of augmented oxidant stres. Clin. Resp. Physiol. 1981; 17(Suppl.)201
  • Vanella A., Rizza V., Li Volti S., Pinturo R., Musumeci S., Mollica F. Effect of polyamines on autohemolysis: studies on normal and thalassaemic childre. Acta Haematol. 1980; 63: 226
  • Yenehitsomaks P., Wasi P. Increased erythrocyte superoxide dismutase activities in β-thalassae-miahaemoglobin E and in haemoglobin H disease. J. Clin. Pathol. 1983; 36: 329
  • Das S. K., Nair R. C. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocyte. Br. J. Haematol. 1980; 44: 87
  • Sree Kumar K., Rowse C., Hochstein P. Copper-induced generation of superoxide in human red cell membrane. Biochem. Biophys. Res. Commun. 1978; 83: 587
  • Chan P. C., Peller O. G., Kesner L. Copper(II)-catalyztd lipid peroxidation in liposomes and erythrocyte membrane. Lipids. 1982; 17: 331
  • Beretta L., GerU G. C., Ferrarese R., Agostoni A., Gualandri V., Orsini G. B. Antioxidant system in sickle cell. Acta Haemurol. 1983; 70: 194
  • Schacter L. P., Del Villano B. C., Gordon E. M., Klein B. L. Red cell superoxide dismutase and sickle cell anemia sympton severit. Am. 1. Hemarol. 1985; 19: 137
  • Sehacter L. P. Enhanced free radical oxygen generation by red cells from individuals with sickle cell trai. Prog. Clin. Biol. Res. 1984; 165: 547
  • Allison A. C., Eugui E. M. The role of cell-mediated immune responses in resistance to malaria, with special reference to oxidant stns. Annu. Rev. Immunol. 1983; 1: 361
  • Clark I. A., Hunt N. H. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malari. Infccr. Immun. 1983; 39: 1
  • Suthfpark U., Krungkrpi J., Jeampfpatkul A., Yuthavong Y., Panfjpn B. Superoxide dismutase (SOD) in mouse red blood cells infected with Plasmodium berghei, . Parasitol. 1982; 68: 337
  • Kulknmi A. B., Renapurkar D. M., Sham K. D. Hepatic superoxide dismutase in the mouse infected with Plosmodim berghei, Folio Parasito. Prague 1984; 31: 89
  • Joenje H., Eriksson A. W., Fronts R. R., Arwert F., Houwen B. Erythrocyte superoxide dismutase deficiency in Fanconi's anaemi. Lancet. 1978; 1: 204
  • Nordenson I. Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi's anaemi. Hereditas 1977; 86: 147
  • Raj A. S., Heddle J. A. The effect of superoxide dismutase, catalase and L-cysteine on spontaneous and on mitomycin C induced chromosomal breakage in Fanconi's anaemia and normal fibroblasts as measured by the micronucleus metho. Mutat. Res. 1980; 78: 59
  • Nagpspwa H., Little J. B. Suppression of cytotoxic effect of mitomycinC by superoxide disrnutase in Fanconi's anemia and dyskeratosis congenita fibroblast. Carcinogenesis 1983; 4: 795
  • Emerit I. Chromosome breakage factors: origin and possible significanc. Prog. Mutal. Res. 1982; 4: 61
  • Joenje H., Arwert F., Eriksson A. W., De Koning H., Oostrp A. B. Oxygen-dependence of chromosomal aberrations in Fanconi's anaemi. Nature (London) 1981; 290: 142
  • Joenje H., Fronts R. R., Arwert F., De Brain G. J. M., Kosknse P. J., Van de Ksmp J. J. P., de Koning J., Eriksmn A. W. Erythrocyte superoxide dismutase deficiency in Fanconi's anaemia established by two independent methods of assa. Scand. 1. Clin. Lob. Invest. 1979; 39: 759
  • Mavelli I., Clriolo M. R., Rotilio G., De Sole P., Castorino M., Stabile A. Superoxide dismutase, glutathione peroxidase and catalase in oxidative hemolysis A study of Fanconi's anaemia erythrocyte. Biochem. Biophys. Res. Commun. 1982; 106: 286
  • Lammi Keefe C. J., Hegarty P. V. J., Swan P. B. Effect of starvation and refceding on catalase and superoxide dismutase activities in skeletal and cardiac muscles from 12-monthsld rat. Expcrientia. 1961; 37: 25
  • Kor N. C., Pearson C. M. Catalase, superoxide dismutase, glutathione peroxidase and thiobarbituric acid-mctive products in nonnal and dystrophic human muscl. Clin. Chim. Acm 1979; 94: 277
  • Mizuno Y. Superoxide dismutase activity in early stages of development in normal and dystrophic chicken. Life Sci. 1984; 34: 909
  • Hunter M. I. S., Bneskf M. S., De Vane P. J. Superoxide dismutase, glutathione peroxidase and thiobarbituric acid-reactive compounds in erythrocytes in Duchenne muscular dystroph. Clin. Chim. Acrcr 1981; 115: 93
  • Bud B. J., Chan S. G., Berry A. J., Yarnell S. K. Blood levels of superoxide dismutase and glutathione peroxidase in Duchenne muscular dystroph. Clin. Chim. Acta 1980; 105: 249
  • Matkovlcs B., Laszlo A., Szabo L. A comparative study of superoxide dismutase, catalase and lipid peroxidation in red blood cells from muscular dystrophy patients and normal control. Clin. Chim. Acta 1982; 118: 289
  • Matkovics B., Gyurkovits K., Laszlo A., Szabo L. Altered peroxide metabolism in erythrocytes from children with cystic fibrosi. Clin. Chim. Acta. 1982; 125: 59
  • Shnet P. M., Debray Q., Carmagnol F., Pelicier Y., Nicole A., Jerome H. Normal erythrocyte SOD values in two human diseases: schizophrenia and cystic fibrosi. Oxy-Radicals and Their Scavenger System. Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevir, New York 1983; 302
  • Chauhan D. P., Gupta P. H., Nampoothiri M. R. N., Singhd P. C., Chugh K. S., Nair C. R. Determination of erythrocyte superoxide dismutase, catalase, glucose-6-dphosphate dehydrogenase, reduced glutathione and malonyldialdehyde in uremi. Clin. Chim. Acta 1982; 123: 153
  • Del Villano B. C., Miller S. I., Schacter L. P., Tischfleld J. A. Elevated superoxide dismutase in black alcoholic. Science 1980; 207: 991
  • Storozhok S. A. Lipid hydroperoxide content, activity of superoxide dismutase, and glucose-6-phosphate dehydrogenase in erythrocytes in alcohol intoxicatio. Vopr. Med. Khim. 1983; 29: 31
  • Boveris A., Fraga C. C., Varsavsky A. I., Koch O. R. Increased chemiluminescence and superoxide production in the liver of chronically ethanol-treated rat. Arch. Eiochem. Biophys. 1983; 227: 534
  • Dreosti I. E., Manuel S. J., Buckky R. A. Superoxide dismutase (EC 1.15.1.1), manganese, and the effect of ethanol in adult and foetal rat. Br. J. Nurr. 1982; 48: 205
  • Takahara S., Ogata M. Metabolism in Japanese acatalasemia with special reference to superoxide dismutase and glutathione peroxidas. Biochemical and Medical Aspects of Arrive Oxygen, O. Hayaishi, K. Asada. University of Tokyo Press, Tokyo 1977; 275
  • Medeiras M. H. G., Marchiori P. E., Bechara E. J. H. Superoxide dismutase, glutathione peroxidase, and catalase in the erythrocytes of patients with intermittent acute porphyri. Clin. Chem. 1982; 28: 242
  • Hagglof B., Marklund S. L., Holmgren G. CuZn superoxide dismutase Mn superoxide dismutase, catalase and glutathione peroxidase in lymphocytes and erythrocytes in insulin-dependent diabetic childre. Acta Endocrinol. 1983; 102: 235
  • Babior B. M. Oxygen-dependent microbial killing by phagocyte. N. Engl. 1. Med. 1978; 298: 659–721
  • Badwey J. A., Karnovsky M. L. Active oxygen species and the function of phagocytic leukocyte. Annu. Rev. Biochem. 1980; 49: 695
  • Fantone J. C., Ward P. A. Role of oxygen-derived free radicals and metabolites in leucocyte-dependent inflammatory reaction. Am. J. Parhol. 1982; 107: 397
  • Halliwell B. Production of superoxide, hydrogen peroxide and hydroxyl radicals by phagocytic cells: a cause of chronic inflammatory disease?. Cell Biol. Int. Rep. 1982; 6: 529
  • Webs S. J., Lo Buglio A. F. Phagocyte generated oxygen metabolites and cellular injur. Lab. Invest. 1982; 47: 5
  • Lynch R. E. The metabolism of superoxide anion and its progeny in blood cell. Top. Cur. Chem. 1983; 108: 35
  • Huber W., Saifer M. G. P. Orgotein, the drug version of bovine Cu-Zn superoxide dismutase. I. A summary account of safety and pharmacology in laboratory animal. Superoxide and Superoxide Dismutases, A. M. Michelson, J. M. Mc Cord, I. Fridovich. Academic Press, London 1977; 517
  • Oyanagui Y. Participation of superoxide anions at the prostaglandin phase of carrageenan foot-oedem. Biochem. Pharmacol. 1976; 25: 1465
  • Mc Cord J. M., Stokes S. H., Wong K. Superoxide radical as a phagocyte-produced chemical mediator of inflammatio. Adv. Infimmation Res. 1979; 1: 273
  • Huber W., Saifer M. G. P., Williams L. D. Superoxide dismutase pharmacology and orgotein efficacy: new perspective. Dev. Biochem. 1980; 11B: 395
  • Hirschelmann R., Bekemeier H. Effects of catalase, superoxide dismutase and 10 scavengers of oxygen radicals in carrageenan aedema and in adjuvant arthritis of rat. Experientia 1981; 37: 1313
  • Bragt P. C., Bansberg J. I., Bonta I. L. Antiinflammatory effects of free radical scavengers and antioxidants Further support for proinflammatory roles of endogenous hydrogen peroxide and lipid peroxide. Inflammation 1980; 4: 289
  • Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide-dependent activation of a neutrophil cherootactic factor in plasm. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1159
  • Pyatak P. S., Abuchowski A., Davis F. F. Preparation of a polyethylene glycol:superoxide dismutase adduct, and an examination of its blood circulation life and anti-inflammatory activit. Res. Commun. Chem. Parhol. Pharmacol. 1980; 29: 113
  • Boccu E., Velo G. P., Veronese F. M. Pharmacokinetic properties of polyethylene glycol, de-rivatized superoxide dismutas. Pharmacol. Res. Commun. 1982; 14: 113
  • Beauchamp C. O., Gonias S. L., Menapace D. P., Pizzo S. V. A new procedure for the synthesis of polyethylene glycol protein adducts: effects on function, receptor recognition, and clearance of superoxide dismutase, lactofemn and a,-macroglobuli. Anal. Biochem. 1983; 131: 25
  • Veronese F. M., Boccu E., Shiavon O., Velo G. P., Conforti A., Franco L., Milanino R. Anti-inflammatory and pharmacokinetic properties of superoxide dismutase derivatized with polyethylene glycol via active ester. J. Pharm. Pharmacol. 1983; 35: 757
  • Wong K., Cleland L. G., Pornansky M. J. Enhanced anti-inflammatory effect and reduced immunogenicity of bovine liver superoxide dismutase by conjugation with homologous albumi. Agents Actions 1980; 10: 231
  • Kelly K., Boux H., Petkau A., Sehon A. On the safety of treatment with bovine superoxide dismutase: production of a humoral antibody response in rabbits with repeated treatmen. Can. J. Physiol. Pharmacol. 1982; 60: 1374
  • Cleland L. G., Blellcki J., Vernon Roberts B., Betts H. W. Superoxide dismutase (SOD) and albumin conjugates with delayed clearance from plasma and body cavities. Is SOD anti-inflammatory?. Oxy-Radicals and Their Scavenger Systems, Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevier, New York 1983; Vol. II: 268
  • Huber W., Menander-Huber K. B. Orgotei. Clin. Rheum, Dis. 1980; 6: 465
  • Baret A., Jadot G., Valli M., Brugerolle B., Puget K., Midelson A. M. Pharmacokinetic and anti-inflammatory properties in the ra. Oxy-Radicals and Their Scavenger Systems. Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevier, New York 1983; 274
  • Chiu P., Davis P., Wong K. Rheumatoid arthritis and superoxide generation in neutrophil. Oxy-Radicals and Their Scavenger Systems, Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevier, New York 1983; 379
  • Strauss R. G., Snyder E. L., Wallace P. D., Rosenberger T. G. Oxygendetoxifying enzymes in neutrophils of infants and their roother. J. Lab. Clin. Med. 1980; 95: 897
  • Rister M., Bauermeister K., Graved U., Gladtke E. Superoxide dismutase and glutathione peroxidase in polymorphonuclear leukocyte. Eur. J. Paediatr. 1979; 130: 127
  • Rister M., Bauermeister K. Superoxide-dismutase and superoxide-radical release in juvenile rheumatoid arthriti. Klin. Wochenschr. 1982; 60: 561
  • Salin M. L., McCord J. M. Free radicals and inflammation Protection of phagocytosing leukocytes by superoxide dismutas. J. Clin. Invest. 1975; 56: 1319
  • Flohe L., Martia W., Lashen G., Gunzler W. A. Is leukotriene B,-induced cherootaxis mediated by superoxide?. Life Chem. Rep. 1984, Suppl. 2: 318
  • Martin W., Losehen G., Gunzler W. A., Flohe L. Superoxide dismutase inhibits LTB4-induced Ieukotaxi. Agents Actions 1985; 16: 48
  • Parente L. Study on the effect of superoxide dismutase on arachidonic acid metabolis. Prostaglandins 1982; 23: 725
  • Oyanagui Y. Steroid-like anti-inflammatory effect of superoxide dismutase in serotonin-, histamine- and kinin-induced edemata of mice: existence of vascular permeability regulating protein(s. Biochem. Pharmacol. 1981; 30: 1791
  • Oyanagui Y. Physiological regulation of vascular permeability by endogenous glucocozticoids and active oxyge. Inflammation 1983; 7: 81
  • Oyanagul Y. Anti-inflammatory effects of polyamines in serotonin and carrageenan paw edemate — possible mechanism to increase vascular permeability inhibitory protein level which is regulated by glucocorticoids and superoxide radica. Agents Actions 1984; 14: 228
  • Del Maestro R. F., Bjork J., Arfors K. E. Increase in microvascular permeability induced by enzymatically generated free radicals I. In vivo stud. Microvasc. Res. 1981; 22: 239
  • Del Maestro R. F., Bjork J., Arfors K. E. Increase in microvascular permeability induced by enzymatically generated free radicals II. Role of superoxide anion radical, hydrogen peroxide and hydroxyl radica. Microvasc. Res. 1981; 22: 255
  • Del Maestro R. F. Role of superoxide anion radicals in microvascular permeability and leukocyte behaviou. Can. J. Physiol. Phatmacol. 1982; 60: 1406
  • Del Maestro R. F., Planker M., Arfors K. E. Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium in viv. Int. J. Microcirc. Clin. Exp. 1982; 1: 105
  • Okak E., Todoki K., Odajima C., Ito H. Free radicals-induced changes in mesenteric microvascular dimensions in the anesthetized ca. Jpn. J. Pharmacol. 1983; 33: 1233
  • Bjork J., Arturson G. Effect of cimetidine, hydrocortisone, superoxide dismutase and catalase on the development of cedema after thermal injur. Burns Incl. Them. Inj. 1983; 9: 249
  • Mc Cormick J. R., Harkin M. M., Johnson K. J., Ward P. A. Suppression by superoxide dismutase of immune-complex-induced pulmonary alveolitis and dermal inflammatio. Am. J. Pathol. 1981; 102: 55
  • Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damag. J. Clin. Invest. 1978; 61: 1161
  • Mc Cord J. M. Free radicals and inflammation. Protection of synovial fluid by superoxide dismutas. Science 1974; 185: 529
  • Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts Its role in degradation of hyaluronic acid by a superoxide-generating syste. FEBS Lett. 1978; 96: 238
  • Puig Parellada P., Planas J. M. Synovial fluid degradation induced by free radicals In vitro action of several free radical scavengers and antiinflammatory drug. Biochem. Pharmocol. 1978; 27: 535
  • Greenwald R. A., Moy W. W. Effect of oxygenderived free radicals on hyaluronic aci. Arthritis Rheum. 1980; 23: 455
  • Greenwdd R. A. The role of oxygenderived free radicals (ODFR) in connective tissue degredation III. Studies on hyaluronic acid (HA) depolymerization in inflamed synovial fluids (SF. Semin. Arthritis Rheum. 1981; 11(Suppl. l)97
  • Greenwald R. A., Moy W. W. Inhibition of collagen gelation by the action of superoxide radica. Arthritis Rheum. 1979; 22: 251
  • Greenwald R. A., Moy W. W., Lazarus D. Degradation of Cartilage proteoglycans and collagen by superoxide radica. Arthritis Rheum. 1976; 19: 799
  • Carp H. A., Janoff A. Potential mediator of inflammation Phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha1-proteinase inhibitor in vitr. J. Clin. Invest. 1980; 66: 987
  • Evans C. H., Mears D. C., Cosgrove J. L. Release of neutral proteinases from mononuclear phagocytes and synovial cells in response to cartilaginous wear particles in vitro, Biochi. Biophys. Acta 1981; 677: 287
  • Blake D. R., Hall N. D., Treby D. A., Halliwell B., Gutteridge J. M. C. Protection against superoxide and hydrogen peroxide in synovial fluid from rheumatoid arthriti. Clin. Sci. 1981; 61: 483
  • Igari T., Kaneda H., Horiuchi S., Ono S. A remarkable increase of superoxide dismutase activity in synovial fluid of patients with rheumatoid arthriti. Clin. Orthop. Relat. Res. 1982; 162: 282
  • Goebel K. M., Herbert V., Storck U. Clinical and intrasynovial efficacy of orgotein treatment in rheumatoid arthritis of the knee joint. Oxy Radicals and Their Scavenger Systems, Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevier, New York 1983; 255
  • Beckmann R., Flohe L. The pathogenic role of superoxide radicals in inflammation: efficacy of exogenous superoxide dismutas. Clin. Resp. Physiol. 1981; 17(Suppl.)275
  • Granger D. N., Rutili G., McCord J. M. Superoxide radicals in feline intestinal ischemi. Gastroenterology 1981; 81: 22
  • Parks D. A., Bulkley G. B., Granger D. N., Hamilton S. R., McCord J. M. Ischemic injury in the cat small intestine: role of superoxide raidcal. Gastroenterology 1982; 82: 9
  • Roy R. S., McCord J. M. Superoxide and ischemia: conversion of xanthine dehydrogenase to xanthine oxidas. Oxy-Radicals and Their Scavenger Systems, Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevier, New York 1983; 145
  • Dplsing M. C., Grosfeld J. L., Shlffier M. A., Vane D. W., Hull M., Baehner R. L., Weber T. R. Superoxide dismutase: a cellular protective enzyme in bowel ischemi. J. Surg. Res. 1983; 34: 589
  • Grogaard B., Parks D. A., Granger D. N., Mc Cord J. M., Forsberg J. O. Effects of ischemia and oxygen radicals on mucosal albumin clearance in intestin. Am. J. Physiol. 1982; 242: G448
  • Parks D. A., Granger D. N. Oxygen-derived radicals and ischemia-induced tissue injur. Oxy-Radicals and Their Scavenger Systems, Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevier, New York 1983; 135
  • Sehoenberg M. H., Younes M., Muhl E., Haglund U., Sellin D., Schildberg F. W. Free radical involvement in ischemic damage of small intestin. OxyRadicaIs and Their Scavenger Systems, Cellular and Medical Aspects, R. A. Greenwald, G. Cohen. Elsevier, New York 1983; 154
  • Hammond B., Kontos H. A., Hess M. L. Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damag. Can. J. Physiol. Phannacol. 1985; 63: 173
  • Mc Cord J. M. Oxygen-derived free radicals in postischemic tissue injur. N. Engl. J. Med. 1985; 312: 159
  • Guarnieri C., Flamigni F., Caldarera C. M. Role of oxygen in the cellular damage induced by reoxygenation of the hypoxic hear. J. Mol. Cell. Cardiol. 1980; 12: 797
  • Shlafer M., Kane P. F., Kirsh M. M. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused hear. J. Thorac. Cardiovasc. Surg. 1982; 83: 830
  • Palma J. M., Sanddo L. M., Del Rio L. A. J. Plant Physiol. 1986; 125: 427
  • Barra D., Sehinina M. E., Bannister W. H., Bannister J. V., Bossa F. . Biol. Chem. 1987; 262: 1001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.