278
Views
197
CrossRef citations to date
0
Altmetric
Research Article

Enzymatic Oxidation of Xenobiotic Chemical

Pages 97-153 | Published online: 26 Sep 2008

References

  • Williams R. T. Detoxication Mechunisms, 1st ed. Chapman and Hall, London 1947
  • Williams R. T. Deroxicarion Mechanisms, 2nd ed. John Wiley & Sons, New York 1959
  • Keller W. Ueber Verwandlung der Benzoesäure in Hippursäur. J. Liebig's Ann. Chem. 1842; 43: 108
  • Shultzen O., Naunyn B. Ueber das Verhalten der Kohlenwas-serstoffe im Organismu. Arch. Anat. Physiol. 1867; 349
  • Baumann E., Preusse C. Ueber Bromphenylmercaptursäur. Ber. Dtsch. Chem. Ges. 1879; 12: 806
  • Jaffe M. Ueber die nach Einfihrung von Brombenzol und Chlor-benzol im Organismus entstehenden schwefelhaftigen Säure. Ber. Dtsch. Chem. Ges. 1879; 12: 1092
  • Miller E. C., Miller J. A. The presence and siflicance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazo-benzen. Cancer Res. 1947; 7: 486
  • Enzymatic Busis of Detoxicarion, W. B. Jakoby. Academic Press, New York 1980; Vols. 1 and 2
  • Guengerich F. P., Macdonald T. L. Chemical mechanisms of catalysis by cytochromes P-450: a unified vie. Acc. Chem. Res. 1984; 17: 9
  • Cyrochrome P-450, P. R. Ortfi de Montellano. Plenum Press, New York 1986
  • Nebert D. W., Gonzalez F. J. P-450 genes: structure, evolution, and regulatio. Annu. Rev. Biochem. 1987; 56: 945
  • Mammalian Cyrochromes P-450, F. P. Guengerich. CRC Press, Boca Raton, FL 1987; Vols. 1 and 2
  • Gonzalez F. J. The molecular biology of cytochrome P-45O. Pharmacol. Rev. 1989; 40: 243
  • Guengerich F. P. Epoxide hydrolase: properties and metabolic role. Rev. Biochem. Toxicol. 1982; 4: 5
  • Schladt L., Thomas H., Hartmann R., Oesch F. Human liver cytosolic epoxidehydrolase. Eur. J. Biochem. 1988; 176: 715
  • Thomas H., Oesch F. Functions of epoxide hydrolase. ISI Atlas Sci. Biochem. 1988; 1: 287
  • Glutathione S-Transferuse and Carcinogenesis, T. J. Mantle, C. B. Pickett, J. D. Hayes. Taylor and Francis, London 1987
  • Glutorhione Conjugation: Its Mechanisms and Biological Significance, H. Sies, B. Ketterer. Academic Press, London 1988
  • Mannervik B., Danielson U. H. Glutathione transfer-ases—structure and catalytic activit. CRC Crit. Rev. Biochem. 1988; 23: 283
  • Bock K. W. Drug glucuronidation and sulfation in rat and human live. ISI Atlas Sci. Pharmacol. 1987; 5
  • Tephley T., Green M., Puig J., Irshaid Y. Endogenous substrates for UDP-glucuronosyltransferase. Xenobiorica 1988; 18: 1201
  • Burchell B., Cough trie M. W. H. UDP-glucuronosyltransferase. Pharmacol. Ther.
  • Mnckenzie P. I. Structure and function of UDP glucuronosyltrans-ferase. Frontiers in Biotransformution, K. Ruckpaul, H. Rein. Akademie-Verlag, Berlin, in press
  • Weber W. W., Hein D. W. N-Acetylation pharmacogenetic. Pharmacol. Rev. 1985; 37: 25
  • Weber W. W. Commentary: the molecular basis of hereditary ace-tylation polymorphism. Drug Metab. Dispos. 1986; 14: 377
  • Hein D. W. Acetylator genotype and arylamine-induced carcinogenesi. Biochim. Biophys. Acta 1988; 948: 37
  • Andres H. H., Klem A. J., Schopfer L. M., Harrison J. K., Weber W. W. On the active site of liver acetyl-CoA. Arylamine N-acetyltransferase from rapid acetylator rabbits (III/J. J. Biol. Chem. 1988; 263: 7521
  • Ziegler D. M. Flavin-containing monooxygenases. Catalytic mechanism and substrate specificitie. Drug Metab. Rev. 1988; 19: 1
  • Ziegler D. M. Detoxication. Oxidation and reductio. The Liver: Biology and Pathobiology, 2nd ed., I. M. Arias, W. B. Jakoby, H. Popper, D. Schacter, D. A. Shafritz. Raven Press, New York 1988; 363
  • Marnett L. J., Eling T. E. Cooxidation during prostaglandin biosynthesis. A pathway for the metabolic activation of xenobiotic. Reviews in Biochemical Toxicology, E. Hodgson, J. R. Bend, R. M. Philpot. Elsevier, New York 1983; 135
  • Marnett L. J. Arachidonic acid metabolism and tumor initiatio. Arachidonic Acid Metabolism and Tumor Initiation, L. J. Marnett. Martinus Nijhoff, Boston 1985; 39
  • Krauss R. S., Eling T. E. Arachidonic acid-dependent coox-idation: a potential pathway for the activation of chemical carcinogens in vivo. Biochem. Pharmacol. 1984; 33: 3319
  • Prochaska H. J., DeLong M. J., Talalay P. On the mechanisms of induction of cancer-protective enzymes: a unifying proposa. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 8232
  • DT Diaphorase, L. Ernster, R. W. Estabrook, P. Hochstein, S. Orrenius. Cambridge University Press, Cambridge 1987
  • Jaiswal A. K., McBride O. W., Adesnik M., Nebert D. W. Human dioxin-inducible cytosolic NAD(P)H:menadione oxi-doreductase. cDNA sequence and localization to chromosome 1. J. Biol. Chem. 1988; 263: 13572
  • von Bahr-Lindström H., Höög J.-O., Hedén L.-O., Kaiser R., Fleetwood L., Larsson K., Lake M., Holmquist B., Holmgren A., Hempel J., Vallee B. L., Jörnvall H. cDNA and protein structure for the α subunit of human liver alcohol dehydrogenas. Biochemistry 1986; 25: 2465
  • Bosron W. F., Li T.-K. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationships to alcohol metabolism and alcoholis. Hepatology 1986; 6: 502
  • Hempel J., von Bahr-Lindström, Jörnvall H. Aldehyde dehydrogenase from human liver. Primary structure of the cytoplasmic isoenzym. Eur. J. Biochem. 1984; 141: 21
  • Wermuth B., Bohren K. M., Heineman G., von Wartburg J.-P., Gubbay K. H. Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protei. J. Biol. Chem. 1988; 263: 16185
  • Ansher S. S., Jakoby W. B. Amine N-methyltransferases from rabbit live. J. Biol. Chem. 1986; 261: 3996
  • Scott M. C., Van Loon J. A., Weinshilbum R. M. Phar-macogenetics of N-methylation: heritability of human erythrocyte his-tamine N-methyltransferase activit. Clin. Pharmacol. Ther. 1988; 43: 256
  • Weinshilboum R. Pharmacogenetics of methylation: relationship to drug metabolis. Clin. Biochem. 1988; 21: 201
  • Shinohara A., Saito K., Yamazoe Y., Kamataki T., Kato R. Acetyl coenzyme A dependent activation N-hydroxy derivatives of carcinogenic arylamines. Mechanism of activation, species difference, tissue distribution, and acetyl donor specificit. Cancer Res. 1986; 46: 4362
  • Weinshilboum R. M. Phenol sulfotransferase in humans: properties, regulation, and functio. Fed. Proc. 1986; 45: 2223
  • Ramaswamy S. G., Jakoby W. B. Amine N-sulfotransferas. J. Biol. Chem. 1987; 262: 10039
  • Weinshilboum R. Sulfotransferase pharmacogenetic. Pharmacol. Ther.
  • Stevens J., Jakoby W. B. Cysteine conjugate β-lyas. Mol. Pharmacol. 1983; 23: 761
  • Lash L. H., Elfm A. A., Anders M. W. Renal cysteine conjugate β-lyase. Bioactivation of nephrotoxic cysteine Sconjugates in mitochondrial outer membran. J. Biol. Chem. 1986; 261: 5930
  • Tomisawa H., Ichhuoto N., Takanohashi Y., Ichihara S., Fu-Kazawa H., Tateishi M. Purification and characterization of cysteine conjugate transaminases from rat live. Xenobiotica 1988; 18: 1015
  • Tipton K. F., Dostert P., Strolin-Benedetti M. Monomine Oxidose and Diseuse: Prospects for Therapy with Reversible Inhibitors. Academic Press, New York 1984
  • Sies H., Cadenas E. Biological basis of detoxication of oxygen free radical. Biological Busis of Detoxication, J. Caldwell, W. B. Jakoby. Academic Press, New York 1983; 181
  • Bradley G., Juranka P. F., Ling V. Mechanisms of multidrug resistanc. Biochim. Biophys. Acta. 1988; 948: 87
  • Moscow J. A., Cowan K. H. Multidrug resistanc. J. Natl. Cancer Inst. 1988; 80: 14
  • Tew K. D. Enzyme changes linked to anticancer drug resistanc. Annu. Rep. Med. Chem. 1988; 23: 265
  • Meister A., Anderson M. E. Glutathion. Am. Rev. Biochem. 1983; 52: 711
  • Meister A. Glutathione metabolism and its selective modificatio. J. Biol. Chem. 1988; 263: 17205
  • Kägi J. H. R., Schäffer A. Biochemistry of metallothionie. Biochemistry 1988; 27: 8509
  • Bohr V. A., Hanawalt P. C. DNA repair in gene. Pharmacol. Ther. 1988; 38: 305
  • Farmer P. B. Metabolism and reactions of alkylating agent. Pharmacol. Ther. 1987; 35: 301
  • Damon L. E., Cadman E. C. The metabolic basis for combination chemotherap. Pharmacol. Ther. 1988; 38: 73
  • Sartorelli A. C. Therapeutic attack of hypoxic cells of solid tumors: presidential addres. Cancer Res. 1988; 48: 775
  • Boyd M. R., Statham C. N. The effect of hepatic metabolism on the production and toxicity of reactive metabolites in extrahepatic organ. Drug Me rab. Rev. 1983; 14: 35
  • Guengerich F. P., Liebler D. C. Enzymatic activation of chemicals to toxic metabolite. CRC Crit. Rev. Toxicol. 1985; 14: 259
  • Miller R. E., Guengerich F. P. Metabolism of trichloroethylene in isolated hepatocytes, microsomes. and reconstituted enzyme systems containing purified cytochromes P-45. Cancer Res. 1983; 43: 1145
  • Shen A. L., Fahl W. E., Jefcoate C. R. Metabolism of benzo(a)pyrene by isolated hepatocytes and factors affecting covalent binding of benzo(a)pyrene metabolites to DNA in hepatocyk and mi-crosomal system. Arch. Biochem. Biophys. 1980; 204: 511
  • Umbenhauer D. R., Peg A. E. Alkylation of intracellular and extracellular DNA by dimethylnitrosamine following activation by isolated rat hepatocyte. Cancer Res. 1981; 41: 3471
  • Guengerich F. P., Mason P. S., Stott W., Fox T. R., Wa-Tanabe P. G. Roles of 2-haloethylene oxides and 2-haloacetaldehydes derived from vinyl bromide and vinyl chloride in irreversible binding to protein and DN. Cancer Res. 1981; 41: 4391
  • Liebler D. C., Meredith M. J., Guengerich F. P. Formation of glutathione conjugates by reactive metabolites of vinylidene chloride in microsomes and isolated hepatocyte. Cancer Res. 1985; 45: 186
  • Inskeep P. B., Koga N., Cmarik J. L., Guengerich F. P. Covalent binding of l,2-dihaloalkanes to DNA and stability of the major DNA adduct, S-[2-(N1-guanyl)ethyI]glutathion. Cancer Res. 1986; 46: 2839
  • Kari F. W., Thurman F. C., Thurman R. G. Characterization of mutagenic glucuronide formation from benzo(a)pyrene in the non-recirculating perfused rat live. Cancer Res. 1984; 44: 5073
  • Whalen D. L., Montemarano J. A., Thakker D. R., Yagi H., Jerina D. M. Changes of mechanisms and product distributions in the hydrolysis of benzo[a]pyrene-7,8-diol 9,10-epoxide metabolites induced by changes in p. J. Am. Chem. Soc. 1977; 99: 5522
  • Islam N. B., Whalen D. L., Yagi H., Jerina D. M. Kinetic studies of the reactions of benzo[a]pyrene-7,8-diol 9,IOepoxides in aqueous solutions of human serum albumin and nonionic micelle. Chem. Res. Toxicol. 1988; 1: 398
  • Kapitulnik J., Wislocki P. G., Levin W., Yagi H., Jerina D. M., Conney A. H. Tumorigenicity studies with diol-epoxides of benzo[a]pyrene which indicate that (±)-trans-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene is an U1timate carcinogen in newborn mic. Cancer Res. 1978; 38: 354
  • Slaga T. J., Bracken W. J., Gleason G., Levin W., Yagi H., Jerina D. M., Conney A. H. Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereo-meric benzo[a]pyrene 7,8-diol-9,10-epoxide. Cancer Rex 1979; 39: 67
  • Wood A. W., Chang R. L., Levin W., Yagi H., Thakker D. R., Jerina D. M., Conney A. H. Differences in mutagen-icity of the optical enantiomers of the diastereomeric benzo[a]pyrene 7,8-diol-9,10-epoxide. Biochem. Biophys. Res. Commun. 1977; 77: 1389
  • Conney A. H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lectur. Cancer Res. 1982; 42: 4875
  • Baertschi S. W., Raney K. D., Shimada T., Harris T. M., Guengerich F. P. Comparison of rates of enzymatic oxidation of aflatoxin B1, aflatoxin G1, and sterigmatocystin and activities of the epoxides in forming N1-guanyl adducts and inducing various genetic response. Chem. Res. Toxicol. 1989; 2: 114
  • Data J. L., Wilkinson G. R., Nies A. S. Interaction of quinidine with anticonvulsant drug. N. Engl. J. Med. 1976; 294: 699
  • Guengerlch F. P., Müller-Enoch D., Blair I. A. Oxidation of quinidine by human liver cytochrome P-45. Mol. Pharmacol. 1986; 30: 287
  • Reimers D., Ježek A. Rifampicin und andere Antituberkulotika bei gleichzeitiger oraler Kontweptio. Prax. Pneumol. 1971; 25: 255
  • Bolt H. M., Kappas H., Remmer H. Studies on the metabolism of ethynylestradiol in vitro and in vivo: the significance of 2-hydmxylation and the formation of polar adduct. Xenobiotica 1983; 3: 773
  • Guengerich F. P. Oxidation of 17α cthynylestradiol by human liver cytochrome P-45. Mol. Pharmacol. 1988; 33: 500
  • Shah R. R., Oates N. S., Idle J. R., Smith R. L., Lockhart J. D. F. Imparied oxidation of debrisoquine in patients with perhex-iline newpath. Br. Med. J. 1982; 284: 295
  • Henry E. C., Gasciewlcz T. A. Changes in thyroid hormones and thyroxine glycuronidations in hamsters compared with rats following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxi. Toxicol. Appl. Pharmacol. 1987; 89: 165
  • Guengerich F. P. Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherap. Cancer Res. 1988; 48: 2946
  • Coon M. J., Koop D. R. P-450 oxygenases in lipid biotrans-formatio. The Enzymes. Academic Press, New York 1983; Vol. 16: 645
  • Waterman M. R., John M. E., Simpson E. R. Regulation of synthesis and activity of cytochrome P-450 enzymes in physiological pathway. Cytochrome P-450, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 345
  • Peterson L. A., Guengerich F. P. Comparison of and relationship between glutathione S-transferase and cytochrome P-450 system. Glutathione Conjugation: Its Mechanisms and Biological Significance, H. Sies, B. Ketterer. Academic Press, London 1988; 193
  • Guengerich F. P. Enzymology of rat liver cytochromes P-45. Mammalian Cytochromes P-450, F. P. Guengerich. CRC Press, Boca Raton, FL 1987; Vol. 1: 1
  • Fersht A. R., Shi J.-P., Wilkinson A. J., Blow D. M., Carter P., Waye M. Y. E., Winter G. P. Analysis of enzyme structures and activity by protein engineerin. Angew. Chem. 1984; 23: 467
  • Jakoby W. B. Detoxication enzyme. Enzymatic Basis of Detox-icaion, W. B. Jakoby. Academic Press, New York 1980; 1
  • Ames B. N. Dietary carcinogens and anti-carcinogen. Science (Washington, D.C.) 1983; 221: 1256
  • Guengerich F. P. Biochemical characterization of human cytochrome P-450 enzyme. Annu. Rev. Pharmacol. Toxicol. 1989; 29: 241
  • Donnerer J., Oka K., Brossi A., Rice K. C., Spector S. Presence and formation of codeine and morphine in the ra. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 4566
  • Kronbach T., Fischer V., Meyer U. A. Cyclosporine metabolism in human liver: identification of a cytochrome P-450 III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drug. Clin. Pharmacol. Ther. 1988; 43: 630
  • Combalbert J., Fabre I., Fabre G., Dalet I., Derancourt J., Cano J. P., Maurel P. Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamil. Drug Metab. Disp. 1989; 17: 197
  • Enzyme Nomenclature, Enzyme Commission. Academic Press, Orlando 1984
  • Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein natur. J. Biol. Chem. 1964; 239: 2370
  • Cytochrome P-450, R. Sato, T. Omura. Academic Press, New York 1978
  • Nebert D. W., Nelson D. R., Adesnik M., Coon M. J., Esta-Brook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B., Levin W., Phillips I. R., Sato R., Waterman M. R. The P450 superfamily: update on listing of all genes and recommended nomenclature of the chromosomal loc. DNA 1989; 8: 1
  • Kalb V. F., Loper J. C. Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarit. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 7221
  • Haurand M., Ullrich V. Isolation and characterization of throm-boxane synthase from human platelets as a cytochrome P-450 enzym. J. Biol. Chem. 1985; 260: 15059
  • Hecker M., Ullrich V. On the mechanism of prostacyclin and thromboxane A, biosynthesi. J. Biol. Chem. 1989; 264: 141
  • Hollenberg P. F., Hager L. P. The P-450 nature of the carbon monoxide complex of ferrous chloroperoxidas. J. Biol. Chem. 1973; 248: 2630
  • Blanke S. R., Hager L. P. Identification of the fifth axial heme ligand of chloroperoxidas. J. Biol. Chem. 1988; 263: 18739
  • Geigert J., Dalietos D. J., Neidleman S. L., Lee T. D., Wadsworth J. Peroxide oxidation of primary alcohols to aldehydes by chloroperoxidase catalysi. Biochem. Biophys. Res. Commun. 1983; 114: 1104
  • Geigert J., Neidleman S. L., Dalietos D. J. Novel halope-roxidase substrates. Alkynes and cyclopropane. J. Biol. Chem. 1983; 258: 2273
  • Sono M., Dawson J. H., Hager L. P. The generation of a hyperporphyrin spectrum upon thiol binding to ferric chloroperoxidase. Further evidence of endogenous thiolate ligation to the femc enzym. J. Biol. Chem. 1984; 259: 13209
  • Kedderis G. L., Hollenberg P. F. Peroxidase-catalyzed N-demethylation reactions: deuterium solvent isotope effect. Biochemistry 1985; 24: 6158
  • Geigert J., Lee T. D., Dalietos D. J., Hirano D. S., Neidleman S. L. Epoxidation of akenes by chloroperoxidase catalysi. Biochem. Biophys. Res. Commun. 1986; 136: 778
  • Ortiz de Montellano P. R., Choe Y. S., DePillis G., Cata-Lano C. E. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidas. J. Biol. Chem. 1987; 262: 11641
  • Nebert D. W., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B., Levin W., Phillips I. R., Sato R., Waterman M. R. The P450 gene superfamily. Recommended nomenclatur. DNA 1987; 6: 1
  • Wen L.-P., Fulco A. J. Cloning of the gene encoding a cata-lytically self-sufficient cytochrome P-450 fatty acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous (Bacillus megaterium) host. J. Biol. Chem. 1987; 262: 6676
  • Narhi L. O., Fulco A. J. Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 1987; 262: 6683
  • Murakami H., Yabbusaki Y., Sakaki T., Shibata M., Ohk-Awa H. A genetically engineered P450 monooxygenase: constxuction of the functional fused enzyme between rat cytochrome P-450c and NADPH-cytochrome P450 reductas. DNA 1987; 6: 189
  • McMurry T. J., Groves J. T. Metalloporphyrin models for cytochrome P-45. Cyrochrome P-450, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 1
  • Poulos T. L. The crystal structure of cytochrome P-450cam. Cytochrome P-450, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 505
  • Oka K., Kantrowitz J. D., Spector S. Isolation of morphine from toad ski. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 1852
  • Goldstein A., Barrett R. W., James I. F., Lowney L. I., Weitz C. J., Knipmeyer L. L., Rapoport H. Morphine and other opiates from beef brain and adrena. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 5203
  • Kodaira H., Lisek C. A., Arimura A., Jardine I., Spector S. Identification of the convulsant opiate thebaine in mammalian brai. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 216
  • Weitz C. J., Faull K. F., Goldstein A. Synthesis of the skeleton of the morphine molecule by mammalian live. Nature (London) 1987; 330: 674
  • Kodaira H., Spector S. Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsome. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 1267
  • Cunningham C., Gavin M. P., Whiting P. H., Burke M. D., Macintyre F., Thomson A. W., Sipson J. G. Serum cy-closporin A levels, hepatic drug metabolism and renal tubulo-toxicit. Biochem. Pharmacol. 1984; 33: 2857
  • Kohan D. E. Possible interaction between cyclosporine and eryth-romyci. N. Engl. J. Med. 1986; 314: 448
  • D'Souza M. J., Pollock S. H., Solomon H. M. Cyclosporine-phenytoin interactio. Drug Metab. Disp. 1988; 16: 256
  • Böcker R. H., Guengerich F. P. Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis-(alkoxycarbonyl)-1,4-dihydro-pyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-45. J. Med. Chem. 1986; 29: 1596
  • Guengerich F. P., Martin M. V., Beaune P. H., Kremers P., Wow T., Waxman D. J. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolis. J. Biol. Chem. 1986; 261: 5051
  • Waxman D. J., Attisano C., Guengerich F. P., Lapenson D. P. Cytochrome P-450 steroid hormone metabolism catalyzed by human liver microsome. Arch. Biochem. Biophys. 1988; 263: 424
  • Alexandrov K., Brookes P., King H. W. S., Osborne M. R., Thompson M. H. Comparison of the metabolism of benzo[a]pyrene and binding to DNA caused by rat liver nuclei and microsome. Chem. Biol. Interact. 1976; 12: 269
  • Pezzuto J. M., Lea M. A., Yang C. S. Binding of meta-bolically activated benzo(a)pyrene to nuclear macromolecule. Cancer Res. 1976; 36: 3647
  • Rogan E., Cavalieri E. Differences between nuclear and microsomal cytochrome P-450 in uninduced and induced rat live. Mol. Pharmacol. 1978; 14: 215
  • Bresnick E. Nuclear activation of polycyclic hydrocarbon. Drug Metab. Rev. 1979; 10: 209
  • Kano I., Nebert D. W. Subcellular localization of membrane-bound and hydrocarbon hydroxylase and NAD(P)H-dependent reductase activities in mouse live. Eur. J. Biochem. 1980; 109: 25
  • Bresnick E., Hassuk B., Liberator P., Levin W., Thomas P. E. Nucleolar cytochrome P-45. Mol. Pharmacol. 1980; 18: 550
  • Baron J., Kawabata T. T., Redick J. A., Knapp S. A., Wick D. G., Wallace R. B., Jakoby W. B., Guengerich F. P. Localization of carcinogen-metabolizing enzymes in human and animal tissu. Extrahepatic Drug Metabolism and Chemical Carcinogen-esis, J. Rydström, J. Montelias, M. Bengtsson. Elsevier, New York 1983; 73
  • Fahl W. E., Jefcoate C. R., Kasper C. B. Characteristics of benzo(a)pyrene metabolism and cytochrome P-450 heterogeneity in rat liver nuclear envelope and comparison to microsomal membran. J. Biol. Chem. 1978; 253: 3106
  • DeLuca H. F., Schnoes H. K. Vitamin D: recent advance. Annu. Rev. Biochem. 1983; 52: 411
  • Pedersen J. I., Shobaki H. H., Holmberg I., Bergseth S., Björkhem I. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondri. J. Biol. Chem. 1983; 258: 742
  • Dahlbäck H., Wikvall K. 25-Hydroxylation of vitamin D3 by a cytochrome P-450 from rabbit liver mitochondri. Biochem. J. 1988; 252: 207
  • Masumoto O., Ohyama Y., Okuda K. Purification and characterization of vitamin D 25-hydroxylase from rat liver mitochondri. J. Biol. Chem. 1988; 263: 14256
  • Pedersen J. I., Ghszarian J. G., Orme-Johnson N. R., DeLuca H. F. Isolation of chick renal mitochondrial ferredoxin active in the 25-hydroxyvitamin D3-lα-hydroxylase syste. J. Biol. Chem. 1976; 251: 3933
  • Pedersen J. I., Oftebro H., Vänngard T. Isolation from bovine liver mitochondria of a soluble ferredoxin active in a reconstituted steroid hydroxylation reactio. Biochem. Biophys. Res. Com-mun. 1917; 76: 666
  • Pedersen J. I., Björkhem I., Gustafsson J. 26-Hydroxylation of C27-steroids by soluble liver mitochondrial cytochrome P-45. J. Biol. Chem. 1979; 254: 6464
  • Niraqjan B. G., Wilson N. M., Jefcoate C. R., Avadhani N. G. Hepatic mitochondrial cytochrome P-450 system: distinctive features of cytochrome P-450 involved in the activation of aflatoxin B, and benzo(a)pyren. J. Biol. Chem. 1984; 259: 12495
  • Niranjan B. G., Raza H., Shayiq R. M., Jefcoate C. R., Avadhani N. G. Hepatic mitochondrial cytochrome P-450 system. Identification and characterization of a precursor form of mitochondrial cytochrome P-450 induced by 3-methylcholanthren. J. Biol. Chem. 1988; 263: 575
  • Raza H., Avadhani N. G. Hepatic mitochondrial cytochrome P-450 system: purification and characterization of two distinct forms of mitochondrial cytochrome P-450 from β-naphthoflavone-induced rat live. J. Biol. Chem. 1988; 263: 9533
  • Park S. S., Fujino T., West D., Guengerich F. P., Gelboin H. V. Monoclonal antibodies to 3-methylcholanthrene-induced rat liver microsomal cytochrome P-45. Cancer Res. 1982; 42: 1798
  • Honkakoski P., Kojo A., Raunio H., Pasanen M., Juvonen R., Lang M. A. Hepatic mitochondrial coumarin 7-hydroxylase. Comparison with the microsomal enzym. Arch. Biochem. Biophys. 1988; 267: 558
  • White R. E., Coon M. J. Oxygen activation by cytochrome P-45. Annu. Rev. Biochem. 1980; 49: 315
  • Ortiz de Montellano P. R. Oxygen activation and transfe. Cytochrome P-450, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 217
  • Guengerich F. P. Cytochrome P-450 enzymes and drug metabolis. Progress in Drug Metabolism, J. W. Bridges, L. F. Chasseaud, G. G. Gibson. Taylor and Francis, London 1987; Vol. 10: 1
  • Strobel H. W., Coon M. J. Effect of superoxide generation and dismutation on hydroxylation reactions catalyzed by liver microsomal cytochrome P-45. J. Biol. Chem. 1971; 246: 7826
  • Debey P., Balny C. Production of superoxide ions in rat liver microsome. Biochimie 1973; 55: 329
  • Ingelman-Sundberg M., Johansson I. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-45. J. Bid. Chem. 1984; 259: 6447
  • Hamilton G. A. Chemical models and mechanisms for oxygenase. Molecular Mechanisms of Oxygen Activation, O. Hayaishi. Academic Press, New York 1974; 405
  • Tyson C. A., Lipscomb J. D., Gunsplus I. C. The roles of putidaredoxin and P450cam in methylene hydroxylatio. J. Biol. Chem. 1972; 247: 5777
  • Gunsalus I. C., Pedersen T. C., Sligar S. G. Oxygenase-catalyzed biological hydroxylation. Annu. Rev. Biochem. 1975; 44: 377
  • Guengerich F. P., Coon M. J. Rates of individual steps in hydroxylation reactions catalyzed by reconstituted liver microsomal systems containing cytochrome P-45. Pharmacologist 1975; 17: 216
  • Macdonald T. L., Gutheim W. G., Martin R. B., Guengerich F. P. Oxidation of substituted N,N-dimethylanilines by cytochrome P-450. Estimation of the effective oxidation-reduction potential of cytochrome P-45. Biochemistry 1989; 28: 2071
  • Waterman M. R., Ullrich V., Estabrook R. W. Effect of substrate on the spin state of cytochrome P-450 in hepatic microsome. Arch. Biochem. Biophys. 1973; 155: 355
  • Guengerich F. P. Oxidation-reduction properties of rat liver cytochrome P-450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted system. Biochemistry 1983; 22: 2811
  • Guengerich F. P., Dannan G. A., Wright S. T., Martin M. V., Kaminsky L. S. Purification and characterization of liver microsomal cytochromes P-450. Electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or β-naphthoflavon. Biochemistry 1982; 21: 6019
  • Backes W. C., Eyer C. S. Cytochrome P-450 LM2 reduction. Substrate effects on the rate of reductase-LM2 associatio. J. Biol. Chem. 1989; 264: 6252
  • Kominami S., Takemori S. Effect of spin state on reduction of cytochrome P-450 (P-450C21,) from bovine adrenocortical microsome. Biochem. Biophys. Acta 1982; 709: 147
  • Huang Y.-Y., Hara T., Sligar S. G., Coon M. J., Kimura T. Thermodynamic properties of oxidation-reduction reactions of bacterial, microsomal, and mitochondrial cytochromes P-450. An entropy-enthalpy microsomal compensation effec. Biochemistry 1986; 25: 1390
  • Estabrook R. W., Hildebrandt A. G., Baron J., Netter K. J., Leibman K. J. A new spectral intermediate associated with cytochrome P-450 function in liver microsome. Biochem. Biophys. Res. Commun. 1971; 42: 132
  • Guengerich F. P., Ballou D. P., Coon M. J. Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-45. Biochem, Biophys. Res. Commun. 1976; 70: 951
  • Bonfils C., Debey P., Maurel P. Highly purified microsomal P-450. The oxyfem intermediate stabii at low temperatur. Biochem. Biophys. Res. Commun. 1979; 88: 1301
  • Hildebrandt A., Estabrook R. W. Evidence for the participation of cytochrome b, in hepatic microsomal mixed function oxidation reaction. Arch. Biochem. Biophys. 1971; 143: 66
  • Noshiro M., Harada N., Omura T. Immunochemical study on the route of electron transfer from NADH and NADPH to cytochrome P-450 of liver microsome. J. Biochem. (Tokyo) 1980; 88: 1521
  • Shimada T., Misono K. S., Guengerich F. P. Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism: purification and characterization of two similar forms involved in the reactio. J. Biol. Chem. 1986; 261: 909
  • Pompon D. Rabbit liver cytochrome P-450 LM. Roles of substrates, inhibitors, and cytochrome b, in modulating the partition between productive and abortive mechanism. Biochemisrry 1987; 26: 6429
  • Dawson J. H. Probing structure-function relations in heme-contain-ing oxygenases and peroxidase. Science (Washington, D.C.) 1988; 240: 433
  • Guengerich F. P., Peterson L. A., Böcker R. H. Cytochrome P-450-catalyzed hydroxylation and carboxylic acid ester cleavage of Hantzsch pyridine ester. J. BioZ. Chem. 1988; 263: 8176
  • Fishman J. Biochemical mechanism of aromatizatio. Cancer Res. 1982; 42: 3277s
  • Miwa G. T., West S. B., Lu A. Y. H. Studies on the rate-limiting enzyme component in the microsomal monooxygenase system. Incorporation of purified NADPH-cytochrome c reductase and cytochrome P-450 into rat liver microsome. J. Biol. Chem. 1978; 253: 1921
  • Kaminsky L. S., Guengerich F. P. Cytochrome P-450 isozymel isozyme functional interactions and NADPH-cytochrome P-450 reductase concentrations as factors in microsomal metabolism of warfari. Eur. J. Biochem. 1985; 149: 479
  • Gustafsson J.-Å., Rondahl L., Bergman J. Iodosylbenzene derivatives as oxygen donors in cytochrome P-450 catalyzed steroid hydroxylation. Biochemistry 1979; 18: 865
  • Miwa G. T., Harada N., Lu A. Y. H. Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions: full expression of the intrinsic isotope effect during the O-deethylation of 7-ethoxycou-marin by liver microsomes from 3-methylcholanthrene-induced hamster. Arch. Biochem. Biophys. 1985; 239: 155
  • Galliani G., Nali M., Rindone B., Tollari S., Racchetti M., Salmona M. The rate of N-demethylation ofN,N-dimethylan-ilines and N-methylanilines by rat-liver microsomes is related to their first ionization potential, their lipophilicity and to a steric bulk facto. Xenobioticu 1986; 16: 511
  • Shapiro S., Piper J., Caspi E. J. Steric course of hydroxylation at primary carbon atoms. Biosynthesis of l-octanol from (1R)-and (lS)-[I-3H,2H,1H; 14C] octane by rat liver microsome. J. Am. Chem. Soc. 1982; 104: 2301
  • White R. E., Miller J. P., Favreau L. V., Bhattacharyya A. Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-45. J. Am. Chem. Soc. 1986; 108: 6024
  • Ortiz de Montellano P. R., Steam R. A. Timing of the radical recombination step in cytochrome P-450 catalysis with ring-strained probe. J. Am. Chem. Soc. 1987; 109: 3415
  • Floss H. G. Preparation, analysis, and biochemical applications of chiral methyl group. Methods Enzymol. 1982; 87: 126
  • Stearns R. A., Ortiz de Montellano P. R. Cytochrome P-450 catalyzed oxidation of quadricyclane. Evidence for a radical cation intermediat. J. Am. Chem. Soc. 1985; 107: 4081
  • Nagata K., Liberato D. J., Gillette J. R., Sasame H. A. An unusual metabolite of testosterone. 17β-Hydroxy-4.6-androsta-diene-3-on. Drug Merab. Disp. 1986; 14: 559
  • Rettie A. E., Rettenmeier A. W., Howald W. N., Baillie T. A. Cytochrome P-450 catalyzed formation of Δ'-VPA, a toxic metabolite of valproic aci. Science (Washington, D.C.) 1987; 235: 890
  • Kaminsky L. S., Fasco M. J., Guengerich F. P. Comparison of different forms of purified cytochrome P-450 from rat liver by immunological inhibition of regio- and stereoselective metabolism of warfari. J. Biol. Chem. 1980; 255: 85
  • McMahon R. E., Culp H. W., Occolowitz J. C. Studies on the hepatic microsomal N-dealkylation reaction: molecular oxygen as the source of the oxygen ato. J. Am. Chem. Soc. 1969; 91: 3389
  • Wislocki P. G., Miwa G. T., Lu A. Y. H. Reactions catalyzed by the cytochrome P-450 syste. Enzymatic Basis of Detoxication, W. B. Jakoby. Academic Press, New York 1980; 135
  • Kurehayashi H., Tanaka A., Yamaha T. Oxygen-18 studies on the oxidative deamination mechanism of alicyclic primary amines in rabbit liver microsome. Arch. Biochem. Biophys. 1982; 215: 433
  • Kedderis G. L., Dwyer L. A., Rickert D. E., Hollenberg P. F. Source of the oxygen atom in the product of cytochrome P-450-catalyzed N-demethylation reaction. Mol. Pharmacol. 1983; 23: 758
  • Guengerich F. P. Oxidation of sparteines by cytochrome P-450: evidence against the formation of N-oxide. J. Med. Chem. 1984; 27: 1101
  • Macdonald T. L., Zirvi K., Burka L. T., Peyman P., Guengerich F. P. Mechanism of cytochrome P-450 inhibition of cyclopropylamine. J. Am. Chem. Soc. 1982; 104: 2050
  • Guengerich F. P., Willard R. J., Shea J. P., Richards L. E., Macdonald T. L. Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened product. J. Am. Chem. Soc. 1984; 106: 6446
  • Bondon A., Macdonald T. L., Harris T. M., Guengerich F. P. Oxidation of cyclobutylamines by cytochrome P-450. Mechanism-based inactivation, adduct formation, ring expansion, and nitrone formatio. J. Biol. Chem. 1989; 264: 1988
  • Miwa G. T., Walsh J. S., Kedderis G. L., Hollenberg P. F. The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidase-catalyzed N-demethylation reaction. J. Biol. Chem. 1983; 258: 1445
  • Shea J. P., Nelson S. D., Ford G. P. MNDO calculations of kinetic isotope effects in model cytochrome P-450 oxidation. J. Am. Chem. Soc. 1983; 105: 5451
  • Augusto O., Bellan H. S., Ortiz de Montellano P. R. The catalytic mechanism of cytochrome P-450. Spin-trapping evidence for one-electron substrate oxidatio. J. Biol. Chem. 1982; 257: 11288
  • Kadlubar F. F., Morton K. C., Ziegler D. M. Microsomal-catalyzed hydroperoxidedependent C-oxidation of amine. Biochem. Biophys. Res. Commun. 1983; 54: 1255
  • Griffin B. W., Marth C., Yasukochi Y., Masters B. S. S. Radical mechanism of aminopyrine oxidation by cumene hydroper-oxide catalyzed by purified liver microsomal cytochrome P-45. Arch. Biochem. Biophys. 1980; 205: 543
  • Watanabe Y., Iyanagi T., Oae S. Kinetic study on enzymatic S-oxygenation promoted by a reconstituted system with purified cytochrome P-45. Ter. Lett. 1980; 21: 3685
  • Watanabe Y., Numata T., Iyanagi T., Oae S. Enzymatic oxidation of alkyl sulfides by cytochrome P-450 and hydroxyl radica. Bull. Chem. Soc. Jpn. 1981; 54: 1163
  • Watanabe Y., Oae S., Iyanagi T. Mechanisms of enzymatic S-oxygenation of thioanisole derivatives and O-demethylation of ani-sole derivatives promoted by both microsomes and a reconstituted system with purified cytochrome P-45. Bull. Chem. Soc. Jpn. 1982; 55: 188
  • Watanabe Y., Iyanagi T., Oae S. One electron transfer mechanism in the enzymatic oxygenation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P-45. Ter. Lett. 1982; 23: 533
  • Oae S., Mikami A., Matsuura, Ogawa-Asada K., Watanabe Y., Fujimori K., Iyanagi T. Comparison of sulfide oxygenation mechanism for liver microsomal FAD-containing monooxygenase with that for cytochrome P-45. Biochem. Biophys. Res. Commun. 1985; 131: 567
  • Guengerich F. P., Bikker R. H. Cytochrome P-45O-catalyzed dehydrogenation of 1,4-dihydropyridine. J. Biol. Chem. 1988; 263: 8168
  • Lee J. S., Jacohsen N. E., Ortiz de Montellano P. R. 4-Alkyl radical extrusion in the cytochrome P-45O-catalyzed oxidation of 4-alkyl-1,4-dihydropyridine. Biochemistry 1988; 27: 7703
  • Bäärnhielm C., Westerlund C. Quantitative relationship between structure and microsomal oxidation rate of 1.4-dihydropyridine. Chem. Biol. Interacr. 1986; 58: 277
  • Carlson B. W., Miller L. L., Neta P., Grodkowski J. Oxidation of NADH involving rate-limiting one-electron transfe. J. Am. Chem. Soc. 1984; 106: 7233
  • Sinha A., Bruice T. C. Rate-determining general-base catalysis in an obligate le- oxidation of a dihydropyridin. J. Am. Chem. Soc. 1984; 106: 7291
  • Powell M. F., Bdce T. C. Hydride vs. electron transfer in the oxidation of NADH model compound. Oxidnses and Related Redox Systems. Alan R. Liss, New York 1988; 369
  • Manring L. E., Peters K. S. Picosecond observation of kinetic vs. thermodynamic hydrogen atom transfe. J. Am. Chem. Soc. 1983; 105: 5708
  • Nelsen S. F., Ippoltti J. T. On the deprotonation of trialkylamine cation radicals by amine. J. Am. Chem. Soc. 1986; 108: 4879
  • Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P-45. J. Mol. Biol. 1987; 195: 687
  • Ortiz de Montellano P. R. Control of the catalytic activity of prosthetic heme by the structure of hemoprotein. Acc. Chem. Res. 1987; 20: 289
  • Born J. L., Hadley W. M. Isotopic sensitivity in the microsomal oxidation of the dihydmpyxidine calcium entry blocker nifedipin. Chem. Res. Toxicol. 1989; 2: 57
  • Silverman R. B., Zieske P. A. 1-Phenylcyclobutylamine, the fmt in a new class of monoamine oxidase inactivators: further evidence for a radical intermediat. Biochemistry 1986; 25: 341
  • Burka L. T., Guengerich F. P., Willard R. J., Macdonald T. L. Mechanism of cytochrome P-450 catalysis. Mechanism of N-dealkylation and amine oxide & oxygenatio. J. Am. Chem. Soc. 1985; 107: 2549
  • Guengerich F. P. Oxidative cleavage of carboxylic esters by cytochrome P-45. J. Biol. Chem. 1987; 262: 8459
  • Northrop D. B. Deuterium and tritium kinetic isotope effects on initial rate. Methods Enzymol. 1982; 87: 607
  • Harada N., Mwa G. T., Walsh J. S., Lu A. Y. H. Kinetic isotope effects on cytochrome P-4SO-catalyzed oxidation reactions. Evidence for the irreversible formation of an activated oxygen intermediate of cytochrome P-44. J. Biol. Chem. 1984; 259: 3005
  • Mlwa G. T., Walsh J. S., Lu A. Y. H. Kinetic isotope effects on cytochrome P-45O-catalyzed oxidation reactions. The oxidative O-dealkylation of 7-ethoxycoumari. J. Biol. Chem. 1984; 259: 3000
  • Funaki T., Soons P. A., Guengerich F. P., Breimer D. D. In vivo oxidative cleavage of a pyridine carboxylic acid ester of ni-fedipin. Biochem. Pharmacol.
  • Jones J. P., Konekwa K. R., Rettie A. E., Trager W. F. Isotopically sensitive branching and its effect on the observed intramolecular isotope effects in cytochrome P-450 catalyzed reactions: a new method for the estimation of intrinsic isotope effect. J. Am. Chem. Soc. 1986; 108: 7074
  • Miwa G. T., Lu A. Y. H. Kinetic isotope effects and “metabolic switching” in cytochrome P-450-catalyzed reaction. BioEssays 1987; 7: 215
  • Mlwa G. T., Lu A. Y. H. The topology of the mammalian cytochrome P-450 active sit. Cytochrome P-450, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 77
  • Prough R. A., Brown M. I., Dannan G. A., Guengerich F. P. Major isozymes of rat liver microsomal cytochrome P-450 involved in the N-oxidation of N-isopropyl-α-(2-methylazo)-p-toluamide, the azo derivative of procarbazin. Cancer Res. 1984; 44: 543
  • Ziegler D. M. Microsomal flavin-containing monooxygenase: oxy-genation of nucleophilic nitrogen and sulfur compound. Enzymatic Busis of Detoxication, W. B. Jakoby. Academic Press, New York 1980; Vol. 1: 201
  • Baba T., Yamada H., Oguri K., Yoshimura H. Participation of cytochrome P-450 isozymes in N-demethylation, N-hydrox-ylation and aromatic hydroxylation of methamphetamin. Xenobiatica 1988; 18: 475
  • Williams D. E., Reed R. L., Kedzierski B., Guengerich F. P., Buhler D. C. Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 isozymes in rat live. Drug Metab. Disp. 1989; 17: 387
  • Bordwell F. G., Chen J.-P., Bansch M. J. Acidities of radical cations derived from remotely substituted and phenyl-substituted flu-orene. J. Am. Chem. Soc. 1988; 110: 2867
  • Hammerich O., Parker V. D. Kinetics and mechanisms of reactions of organic cation radicals in solutio. Adv. Phys. Org. Chem. 1984; 20: 55
  • March J. Advanced Orgunic Chemistry: Reactions, Mechanisms, and Structure, 3rd ed. John Wiley & Sons, New York 1985; 114: 138
  • Smyser B. P., Levi P. E., Hodgson E. Interactions of die-thylphenylphosphine with purified reconstituted mouse liver cytochrome P-450 monooxygenase system. Biochem. Phamacol. 1986; 35: 1719
  • Chin D.-H., La Mar G. N., Balch A. L. Role of ferry1 (FeO2+) complexes in oxygen atom transfer reactions. Mechanism of iron(II) porpbyrin catalyzed oxygenation of triphenylphosphin. J. Am. Chem. Soc. 1980; 102: 5945
  • Macdonnld T. L. Chemical mechanisms of halocarbon metabolis. CRC Crit. Rev. Toxicol. 1982; 11: 85
  • Burka L. T., Thorsen A., Guengerich F. P. Enzymatic monooxygenation of halogen atoms: cytochrome P-450-catalyzed oxidation of iodobenzene by iodosobenzen. J. Am. Chem. Soc. 1980; 102: 7615
  • Nguyen T. T., Wilson S. R., Martin J. C. A stable aryl-dialkoxybrominane: synthesis, structure, and reactions of an organo-nonmetallic 10-Br-3 specie. J. Am. Chem. Soc. 1986; 108: 3803
  • Groves J. T., Avaria-Neisser G. E., Fish K. M., Imachi M., Kuczkowski R. L. Hydrogen-deuterium exchange during propylene oxidation by cytochrome P-45. J. Am. Chem. Soc. 1986; 108: 3837
  • Miller R. E., Guengerich F. P. Oxidation of trichloroethylene by liver microsomal cytochrome P-450 evidence for chlorine migration in a transition state not involving trichloroethylene oxid. Biochemistry 1982; 21: 1090
  • Liebler D. C., Guengerich F. P. Olefin oxidation by cytochrome P-450: evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans- 1-phenyl-1-buten. Biochemistry 1983; 22: 5482
  • Ortiz de Montellano P. R., Correia M. A. Suicidal destruction of cytochrome P-450 during oxidative drug metabolis. Annu. Rev. Phamacol. Toxicol. 1983; 23: 481
  • Ortiz de Montellano P. R., Reich N. O. Inhibition of cytochrome P-450 enzyme. Cytochrome P-450, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 273
  • Guengerich F. P. Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dmucleotide phos-phate-cytochrome P-450 reductas. Biochemistry 1978; 17: 3633
  • Schaefer W. H., Harris T. M., Guengerich F. P. Characterization of the enzymatic and nonenzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 hem. Biochemistry 1985; 24: 3254
  • Guengerich F. P. Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P-450 is destroye. Biochem. Biophys. Res. Commun. 1986; 138: 193
  • Davies H. W., Britt S. G., Pohl L. R. Carbon tetrachloride and 2-isopropyl-4-pentenamide-induced inactivation of cytochrome P-450 leads to hemederived protein adduct. Arch. Biochem. Biophys. 1986; 244: 387
  • Davies H. W., Britt S. G., Pohl L. R. Inactivation of cytochrome P-450 by 2-isopropyl-4-pentenamide and other xenobiotics leads to heme-derived protein adduct. Chem.-Biol. Interact. 1986; 58: 345
  • Correia M. A., Decker C., Sugiyama K., Caldera P., Bornheim L., Wrighton S. A., Rettie A. E., Trager W. F. Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-di-methy-4–4ethyl-I, Cdihydropyridine to irreversibly bound protein adduct. Arch. Biochem. Biophys. 1987; 258: 436
  • Iwamoto Y., Tsubaki M., Hiwetashi A., Ichikawa Y. Crystallization of cytochrome P-450SCC from bovine adrenocortical mitochondri. FEBS Lett. 1988; 233: 31
  • De Lomos-Chiarandini C., Frey A. B., Sabatini D. D., Kreibach G. Determination of the membrane topology of the phen-obarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodie. J. Cell. Biol. 1987; 104: 209
  • Brown C. A., Black S. D. Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated animal. J. Biol. Chem. 1989; 264: 4442
  • Tarr G. E., Black S. D., Fujita V. S., Coon M. J. Complete amino acid sequence and predicted membrane topology of phenobar-bital-induced cytochrorne P-450 (isozyme 2) from rabbit liver micro-some. Proc. Notd. Acad. Sci. U.S.A. 1983; 80: 6552
  • Ohkawa H., Yab U. S., Aki Y., Sakaki T., Murakami H., Shibata M. Protein engineering of microsomal P450 monooxygenas. Ynmada Conference XVII, Cytochrome P-450: New Trends, R. Sato, T. Omura, Y. Imai, Y. Fujii-Kuriyama. Yamada Science Foundation, Tokyo 1987; 103
  • Imai Y. Cytochrome P-450 related to P-450, from phenobarbital-treated rabbit liver: molecular cloning of cDNA and characterization of cytochrome P-450 obtained by its expression in yeast cell. J. Biochem. (Tokyo) 1987; 101: 1129
  • Larson J. R., Porter T. D. Membrane association in Esche-richia coli of cytochrome P-450 3a lacking the hydrophobic NH2-terminal segmen. J. Cell Biol. 1989; 107: 408a
  • Frey A. B., Kreibicb G., Wadhera A., Clarke L., Waxman D. J. 3-(Trifluoromethyl)-3(rn-[125I] iodopheny1)diazirine photolabels a substrate-binding site of rat hepatic cytochrome P-450 form PB-. Biochemistry 1986; 25: 4797
  • Halpert J., Neal R. A. Inactivation of purified rat liver cytochrome P-450 by chloramphenico. Mol. Phannacol. 1981; 17: 427
  • Nagabisa A., Spencer R. W., Orme-Johnson W. H. Ace-tylenic mechanism-based inhibitors of cholesterol side chain cleavage by cytochrome P-45. J. Biol. Chem. 1983; 258: 6721
  • Gan L A. L., Acebo A. L., Alworth W. L. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo[a]pyrene hydroxylase in liver microsome. Biochemistry 1984; 23: 3827
  • Hammons G. J., Guengerich F. P., Weis C. C., Beland F. A., Kadlubar F. F. Metabolic oxidation of carcinogenic arylamines by rat, dog, and human hepatic microsomes and by flavin-containing and cytochrome P-450 monooxygenas. Cancer Res. 1985; 45: 3578
  • CaJacob C. A., Chan W. K., Shepherd E., Ortiz de Mon-Tellano P. R. The catalytic site of rat hepatic lauric acid o-hydrox-ylase. Protein versus prosthetic heme alkylation in the o-hydroxylation of acetylenic fatty acid. J. Biol. Chem. 1988; 263: 18640
  • Frey A. B., Waxman D. J., Kreibach G. The smcture of phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4. Production and characterization of site-specific antibodie. J. Biol Chem. 1985; 260: 15253
  • Ozols J., Heinemann F. S., Johnson E. F. Amino acid sequence of an analogous peptide from two forms of cytochrome P-45. J. Biol. Chem. 1981; 256: 11405
  • Sakaki T., Shibata M., Yabusaki Y., Ohkawa H. Expression in Saccharomyces cerevesiue of chimeric cytochrome P-450 cDNAs constructed from cDNAs for rat cytochrome P-45Oc and P-450. DNA 1987; 6: 31
  • Imai Y. Characterization of rabbit liver cytochrome P-450 (laurate w-1 hydroxylase) synthesized in transformed yeast cell. J. Biochem. (Tokyo) 1988; 103: 143
  • Kronbach T., Larabee T. M., Johnson E. F. Localized sequence differences between P450IIC4 and P450IIC5 are critical determinants of 21-hydroxylase activit. J. Cell Biol. 1989; 107: 197a
  • Ishida N., Aoyama Y., Hatanaka R., Oyama Y., Imajo S., Ishipro M., Oshima T., Nakazato H., Noguchi T., Maitra U. S., Moban V. P., Sprinson D. B., Yoshida Y. A single amino acid substitution converts cytochrome P45014DM to an inactive form, cytochrome P-450.,: complete primary structures deduced from cloned DNA. Biochem. Biophys. Res. Commun. 1988; 155: 317
  • Imai Y., Nakamura M. The importance of threonine-301 from cytochromes P-450 (laurate (ω-1)-hydroxylase and testosterone 16α-hydroxylase) in substrate binding as demonstrated by site-directed mu-tagenesi. FEBS Lett. 1988; 234: 313
  • Imai Y., Nakamura M. Point mutations at threonine-301 modify substrate specificity of rabbit liver microsomal cytochromes P-450 (lam (ω-l)-hydroxylase and testosterone 16α-hydroxylase. Biochem. Biophys. Res. Commun. 1989; 158: 717
  • Kimura A., Gonzalez F. J., Nebert D. W. The murine Ah locus. Comparison of the complete cytochrome P,-450 and P3-450 cDNA nucleotide and amino acid sequence. J. Biol. Chem. 1984; 259: 10705
  • Kaminsky L. S., Dannan G. A., Guengerich F. P. Composition of cytochrome P-450 isozymes from hepatic microsomes of C57BL/6 and DBA/2 mice assessed by warfarin metabolism, immu-noinhibition, and immunoelectrophoresis with anti-(rat cytochrome P-450. Eur. J. Biochem. 1984; 141: 141
  • Yanase T., Kagimoto M., Matsui N., Simpson E. R., Waterman M. R. Combined 17α-hydroxylase/17.20-lyase deficiency due to a stop codon in the N-terminal region of 17α-hydroxylase cytochrome P-45. Mol. Endocrinol. 1988; 59: 249
  • Kimura S., Smith H. H., Hankinson O., Nebert D. W. Analysis of two benzo[a]pyrene-resistant mutants of the mouse hepa-toma Hepa-1 P1450 gene via cDNA expression in yeas. EMBO J. 1987; 6: 1929
  • Ohyama T., Nebert D. W., Negishi M. Isosafrole-induced cytochrome P2-450 in DBA/2N mouse liver. Characterization and genetic control of inductio. J. Biol. Chem. 1984; 259: 2675
  • Kimura S., Nebert D. W. cDNA and complete amino acid sequence of mouse P2450 allelic variant of mouse P3450 gen. Nucleic Acids Res. 1986; 14: 6765
  • Lubet R. A., Mayer R. T., Cameron J. W., Nims R. W., Burke M. D., Wolff T., Guengerich F. P. Dealkylation of pentox-yresorufin: a rapid and sensitive assay for measuring induction of cy-tochrome(s) P-450 by phenobarbital and other xenobiotics in the ra. Arch. Biochem. Biophys. 1985; 238: 43
  • Wolff T., Wanders H., Guengerich F. P. Organic solvents as modifiers of aldrin epoxidase activity of purified cytochromes P-450 and of microsome. Biochem. Pharmacol.
  • Marnett L. J., Weller P., Battista J. R. Comparison of the peroxidase activity of hemoproteins and cytochrome P-45. Cytochrome P-150, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 29
  • Nakamura M., Yamazaki I., Kotani T., Obtaki S. Thyroid peroxidase selects the mechanism of either 1- or 2-electron oxidation of phenols, depending on their substituent. J. Biol. Chem. 1985; 260: 13546
  • Potter D. W., Hinson J. A. The 1- and 2-electron oxidation of acetaminophen catalyzed by prostaglandin H synthas. J. Biol. Chem. 1987; 262: 974
  • Poulos T. L., Krant J. The stereochemistry of peroxide catalysi. J. Biol. Chem. 1980; 255: 8199
  • Gaudiello J. G., Sharp P. L., Bard A. J. Electrochemistry in liquid sulfur dioxide. III. Electrochemical production of new highly oxidized 2,2′-bipyridine complexes of ruthenium and iro. J. Am. Chem. Soc. 1982; 104: 6373
  • Dolphin D., Felton R. H. The biochemical significance of porphyrin ± cation radical. Acc. Chem. Res. 1974; 7: 26
  • Hayashi Y., Yamazaki I. The oxidation-reduction potentials of Compound I/Compound II and Compound II/ferric couples of horseradish peroxidases A2 and . J. Biol. Chem. 1979; 254: 9101
  • Egan R. W., Gale P. H., Baptista E. M., Kennicott K. L., Vanden Heuvel W. J. A., Walker R. W., Fagerness P. E., Kuehl F. A. Oxidation reactions by prostaglandin cyclooxygenase-hydroperoxidas. J. Biol. Chem. 1981; 256: 7352
  • Kobayashi S., Nakano M., Kimura T., Schaap A. P. On the mechanism of the peroxidase-catalyzed oxygen-transfer reactio. Biochemistry 1987; 26: 5019
  • Doerge D. R. Oxygenation of organosulfur compounds by peroxidases: evidence of an electron transfer mechanism for lactoperoxidas. Arch. Biochem. Biophys. 1986; 244: 678
  • Kedderis G. L., Rickert D. E., Pandey R. N., Hollenberg P. F. 18O studies of the peroxidase-catalyzed oxidation of N-meth-ylcarbazole. Mechanisms of carbinolamine and carboxaldehyde formatio. J. Biol. Chem. 1986; 261: 15910
  • Powell M. F., Wu J. C., Bruice T. C. Ferricyanide oxidation of dihydropyridines and analogue. J. Am. Chem. Soc. 1984; 106: 3850
  • Sadler A., Subrahmanyam V. V., Ross D. Oxidation of catechol by horseradish peroxidase and human leukocyte. peroxidaw: reactions of o-benzoquinone and o-benzosemiquinon. Toxicol. Appl. Phamol. 1988; 93: 62
  • DeWitt D. L., Smith W. L. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complimentary DNA sequenc. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 1412
  • Merlie J. P., Fagan D., Mudd J., Needleman P. Isolation and characterization of the complimentary DNA for sheep vesicle prostaglandin endoperoxidase synthase (cyclooxygenase. J. Biol. Chem. 1988; 263: 3550
  • Yokoyama C., Takai T., Tanabe T. Primary structure of sheep prostaglandin endoperoxide synthase deduced from cDNA sequenc. FEES Len. 1988; 231: 347
  • Marshall P. J., Kulmacz R. J. Prostaglandin H synthase: distinct binding sites for cyclooxygenase and peroxidase substrate. Arch. Biochem. Biophys. 1988; 266: 162
  • Marnett L. J., Chen Y.-N. P., Maddipati K. R., Plé P., Labèque R. Functional differentiation of cyclooxygenase and peroxidase activities of prostaglandin synthase by trypsin treatmen. J. Biol. Chem. 1988; 263: 16532
  • Kulmacz R. J., Tsai A.-L., Palmer G. Heme spin states and peroxidase-induced radical species in prostaglandin H synthas. J. Biol. Chem. 1987; 262: 10524
  • Lambeir A.-M., Markey C. M., Dunford H. B., Marnett L. J. Spectral properties of the higher oxidation states of prostaglandin H synthas. J. Biol. Chem. 1985; 260: 14894
  • Marnett L. J., Wlodawer P., Samuelsson B. Co-oxygenation of organic substrates by the prostaglandin synthetase of sheep vesicular glan. J. Biol. Chem. 1975; 250: 8510
  • Elig T. E., Boyd J. A., Reed G. A., Mason R. P., Siva-Rajah K. Xenobiotic metabolism by prostaglandin endoperoxidase sythetas. Drug Metab. Rev. 1983; 14: 1023
  • Zenser T. V., Cohen S. M., Mattammal M. B., Wise R. W., Rapp N. S., Davis B. B. Prostaglandin hydroperoxidase-cat-alyzed activation of certain N-substituted aryl renal and bladder carcinogen. Environ. Health Perspect. 1983; 49: 33
  • Harvison P. J., Egan R. W., Gale P. H., Christian G. D., Hill B. S., Nelson S. D. Acetaminophen and analogs as cosubstrates and inhibitors of prostaglandin H synthas. Chem.-Biol. Interact. 1988; 64: 251
  • Battista J. R., Marnett L. J. Prostaglandin H synthase-de-pendent epoxidation of aflatoxin B1. Carcinogenesis 1985; 6: 1227
  • Dix T. A., Fontana R., Panthani A., Marnett L. J. He-matin-catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydro-benzo(a)pyrene by polyunsaturated fatty acid hydroperoxide. J. Biol. Chem. 1985; 260: 5358
  • Samokyszyn V. M., Marnett L. J. Hydroperoxide-dependent cooxidation of 13-cis-retinoic acid by prostaglandin H synthas. J. Biol. Chem. 1987; 262: 14119
  • Josephy P. D., Elig T. E., Mason R. P. Co-oxidation of benzidine by prostaglandin synthase and comparison with the action of horseradish peroxidas. J. Biol. Chem. 1983; 258: 5561
  • Yamazoe Y., Zenser T. V., Miller D. W., Kadlubar F. F. Mechanism of formation and structural characterization of DNA adducts derived from peroxidative activation of benzidin. Carcinogenesis 1988; 9: 1635
  • Eling T. E., Curtis J., Battista J. R., Marnett L. J. Oxidation of (+)-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene by mouse keratinocytes: evidence for peroxyl radical- and monooxygenase-de-pendent metabolis. Carcinogenesis 1986; 7: 1957
  • Marnett L. J., Reed G. A., Johnson J. T. Prostaglandin synthetase-dependent benzo(a)pyrene oxidation: products of the oxidation and inhibition of their formation by antioxidant. Biochem. Biophys. Res. Commun. 1977; 79: 569
  • Marnett L. J., Johnson M. T., Bienkowski M. J. Arachi-donic acid-dependent metabolism of 7,8-dihydroxy-7,8-dihydro-benzo(a)pyrene by ram seminal vesicle. FEBS Len. 1979; 106: 13
  • Marnett L. J. Hydroperoxide-dependent oxygenation of polycyclic aromatic hydrocarbons and their metabolite. Polycyclic Hydrocarbons and Carcinogenesis. American Chemical Society Symp. Ser., Washington, D.C. 1985; 308
  • Marnett L. J. Peroxyl free radicals: potential mediators of tumor initiation and promotio. Carcinogenesis 1987; 8: 1365
  • Panthananickal A., Marnett L. J. Arachidonic acid-dependent metabolism of 7,8-dihydroxy-7,8-dihydrobem(a)pyrene to polyguanylic acid-binding derivative. Chem.-Biol. Interact. 1981; 33: 239
  • Melikian A. A., Bagheri K., Hecht S. S. Contrasting disposition and metabolism of topically applied benzo(a)pyrene, trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and 7β,8α-dihydroxy-9α,10αepoxy-7,8,9,10-tetrahydrobenzo(a)pyrene in mouse skin epidermis, in vivo. Cancer Res. 1987; 47: 5354
  • Reed G. A., Grafstrom R. C., Krauss R. S., Autrup H., Eling T. E. Prostaglandin H synthase-dependent co-oxygenation of (±)-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrne in hamster trachea and human bronchus explant. Carcinogenesis 1984; 5: 955
  • Shimada T., Iwasaki M., Martin M. V., Guengerich F. P. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA1535/pSK100. Cancer Res. 1989; 49: 3218
  • Stock B. H., Schreiber J., Guenat C., Mason R. P., Bend J. R., Eling T. E. Evidence for a free radical mechanism of styrene-glutathione conjugate formation catalyzed by prostaglandin H synthase and horseradish peroxidas. J. Biol. Chem. 1986; 261: 15915
  • Ortiz de Montellano P. R., Grab L. A. Cooxidation of styrene by horseradish peroxidase and glutathion. Mol. Pharmacol. 1986; 30: 666
  • Murasaki G., Zenzer T. V., Davis B. B., Cohen S. M. Inhibition by aspirin of N-[4–(5-nitro-2-furyl)-2-thimlyl] formamide-induced bladder carcinogenesis and enhancement of forestomach carcinogen. Carcinogenesis 1984; 5: 53
  • Zenser T. V., Palmier M. O., Mattammal M. B., Davis B. B. Metabolic activation of the carcinogen N-[4–(5-nitro-2-furyl)-2-thimlyl] acetamide by prostaglandin H synthas. Carcinogenesis 1984; 5: 1225
  • Adriaenssens P. I., Sivarajah K., Boorman G. A., Eling T. E., Anderson M. W. Effect of aspirin and indomethacin on the formation of benzo(a)pyrene-induced pulmonary adenomas and DNA adducts in A/HeJ mic. Cancer Res. 1983; 43: 4762
  • Pruess-Schwartz D., Nimesheim A., Marnett L. J. Peroxy radical- and cytochrome P-450-dependent metabolic activation of (+) 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene in mouse skin in vitro and in vivo. Cancer Res. 1989; 49: 1732
  • Boyd J. A., Eling T. E. Metabolism of aromatic amines by prostaglandin H synthas. Environ. Health Perspect. 1985; 61: 45
  • Bull A. W. Reducing substrate activity of some aromatic amines for prostaglandin H synthas. Carcinogenesis 1987; 8: 387
  • Nelson S. D., Dahlin D. C., Rauckman E. J., Rosen G. M. Peroxidase-mediated formation of reactive metabolites of acetaminophe. Mol. Pharmacol. 1981; 20: 195
  • Moldéus P., Andersson B., Rahimtula A., Berggren M. Prostaglandin synthetase catalyzed activation of paracetamo. Biochem. Pharmacol. 1982; 31: 1363
  • West P. R., Harman L. S., Josephy P. D., Mason R. P. Acetaminophen: an enzymatic formation of a transient phenoxy free radica. Biochem. Pharmacol. 1984; 33: 2933
  • Mohandas J., Duggin G. G., Horvath J. S., Tiller D. J. Metabolic oxidation of acetaminophen (paracetamol) mediated by cytochrome P-450 mixed-function oxidase and prostaglandin endoperoxidase synthetase in rabbit kidne. Toxicol. Appl. Pharmacol. 1981; 61: 252
  • Flammang T. J., Yamazoe Y., Benson R. W., Roberts D. W., Potter D. W., Chu D. Z. J., Lang N. P., Kadlubar F. F. The arachidonic acid-dependent peroxidative activation of carcinogenic arylamines by extrahepatic human tissue microsome. Cancer Res. 1989; 49: 1977
  • Zenser T. V., Davis B. B. Enzyme systems involved in the formation of reactive metabolites in the renal medulla: cooxidation via prostaglandin H synthas. Fund. Appl. Toxicol. 1984; 4: 922
  • Wu K. K., Hatzakis H., Lo S. S., Seong D. C., Sanduja S. K., Tai H.-H. Stimulation of de novo synthesis of prostaglandin G/H synthase in human endothelial cells by phorbol este. J. Biol. Chem. 1988; 263: 1904, 3
  • Paterson A., Lundquist K. Radical breakdown of ligni. Nature (London) 1985; 316: 575
  • Lagrimini L. M., Burkhart W., Moyer M., Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expressio. Proc. Natl. Acad. Sci. V.S.A. 1987; 84: 7542
  • Tien M., Tu C.-P. D. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature (London) 1987; 326: 520
  • Anderson L. A., Renganathan V., Loehr T. M., Gold M. H. Lignin peroxidase: resonance Raman spectral evidence for Compound II and for a temperature-dependent coordination-state equilibrium in the ferric enzym. Biochemistry 1987; 26: 2258
  • Renganathan V., Gold M. H. Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 1986; 25: 1626
  • Andrawis A., Johnson K. A., Tien M. Studies on Compound I formation of the lignin peroxidase from Phanerochaete chrysosporium. J. Biol. Chem. 1988; 263: 1195
  • Marquez L., Wariishi H., Dunford H. B., Gold M. H. Spectroscopic and kinetic properties of the oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium. J. Biol. Chem. 1988; 263: 10549
  • Hammel K. E., Kalyanaraman B., Kirk T. K. Substrate free radicals are intermediates in ligninase catalysi. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 3708
  • Shimada M., Habe T., Umezawa T., Higuchi T., Okamoto T. The C-C bond cleavage of a lignin model compound, 1,2-diaryl-propane-1,3-diol. with a heme-enzyme model catalyst tetraphenylpor-phyrinatoiron(III) chloride in the presence of tert-butyl hydroperoxid. Biochem. Biophys. Res. Commun. 1984; 122: 1247
  • Renganathan V., Miki K., Gold M. H. Role of molecular oxygen in lignin peroxidase reaction. Arch. Biochem. Biophys. 1986; 246: 155
  • Huynh V.-B., Paszczynski A., Olson P., Crawford R. Transformations of arylpropane lignin model compounds by a lignin pxidase of the white-rot fungus Phanermhaere chrysosporium. Arch. Biochem. Biophys. 1986; 250: 186
  • Miki K., Kondo R., Renganathan V., Mayfield M. B., Gold M. H. Mechanism of aromatic ring cleavage of a β-biphenylyl ether dimer catalyzed by lignin peroxidase of Phanerochaere chrysosporium. Biochemistry 1988; 27: 4787
  • Haemmerll S. D., Leisola M. S. A., Sanglard D., Fiechter A. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninas. J. Biol. Chem. 1986; 261: 6900
  • Bumpus J. A., Tien M., Wright D., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungu. Science 1985; 228: 1434
  • Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo-[p]-dioxins by Phanerochaete chrysosporium ligninas. J. Biol. Chem. 1986; 261: 16948
  • Renganathan V., Miki K., Gold M. H. Haloperoxidase reactions catalyzed by lignin peroxidase, an extracellular enzyme from the basidiomycete, Phanerochaere chrysosporium. Biochemistry 1987; 26: 5127
  • Hammel K. E., Tardone P. J. The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidase. Biochemistry 1988; 27: 6563
  • Ziegler D. M., Mitchell C. H. Microsomal oxidase. IV. Roperties of a mixed-function amine oxidase isolated from pig liver microsome. Arch. Biochem. Biophys. 1972; 150: 116
  • Dannan G. A., Guengerich F. P. Immunochemical comparison and quantitation of microsomal flavin-containing monooxygenase in various hog, mouse, rat, rabbit, dog, and human tissue. Mol. Pharmacol. 1982; 22: 787
  • Kimura T., Kodama M., Nagata C. Purification of mixed-function amine oxidase from rat liver microsome. Biochem. Biophys. Res. Commun. 1983; 110: 640
  • Sabourin P. J., Snuyser B. P., Hodgson E. Purification of the flavin-containing monooxygenase from mouse and pig liver microsome. Int. J. Biochem. 1984; 16: 713
  • Ohimaya Y., Mehendale H. M. N-Oxidation of N,N-dimethy-laniline in the rabbit and rat lun. Biochem. Pharmacol. 1983; 32: 1281
  • Williams D. E., Hale S. E., Muerhoff A. S., Masters B. S. S. Rabbit lung flavin-containing monooxygenase: purification, characterization, and induction during pregnanc. Mol. Pharmacol. 1985; 28: 381
  • Tynes R. E., Sabourin P. J., Hodgson E. Identification of distinct hepatic and pulmonary forms of microsomal flavin-containing monooxygenase in the mouse and rabbi. Biochem. Biophys. Res. Commun. 1985; 126: 1069
  • Ball S., Bruice T. C. 4a-Hydroperoxyflavin N-oxidation of tertiary amine. J. Am. Chem. Soc. 1979; 101: 4017
  • Hodgson E. Production of pesticide metabolites by oxidation reaction. J. Clin. Toxicol. 1983; 19: 609
  • Williams D. E., Ziegler D. M., Hordin D. J., Hale S. E., Masters B. S. S. Rabbit lung flavin-containing monooxygenase is immunochemically and catalytically distinct from the liver enzym. Biochem. Biophys. Res. Commun. 1984; 125: 116
  • Tynes R. E., Hodgson E. Catalytic activity and substrate specificity of the flavin-containing monooxygenase in microsomal systems: characterization of the hepatic, pulmonary and renal enzymes of the mouse, rabbit, and ra. Arch. Biochem. Biophys. 1985; 240: 77
  • Poulsen L. L., Taylor K., Williams D. E., Masters B. S. S., Ziegler D. M. Substrate specificity of the rabbit lung flavin-containing monooxygenase for amines: oxidation products of primary alkylamine. Mol. Pharmacol. 1986; 30: 680
  • Frederick C. B., Mays J. B., Ziegler D. M., Guengerich F. P., Kadlubar F. F. Cytochmme P-450 and flavin-containing mon-ooxygenase-catalyzed formation of the carcinogen N-hydroxy-2-ami-nofluorene, and its covalent binding to nuclear DN. Cancer Res. 1982; 42: 2671
  • Ziegler D. M., Ansher S. S., Nagata T., Kadlubar F. F., Jakoby W. B. N-Methylation: potential mechanism for metabolic activation of carcinogenic primary arylamine. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 2514
  • Jones K. C., Ballou D. P. Reactions of the 4a-hydroperoxide of liver microsomal flavin-containing monooxygenase with nucleophilic and electrophilic substrate. J. Biol. Chem. 1986; 261: 2553
  • Poulsen L. L., Ziegler D. M. The microsomal flavin-containing monooxygenase: spectral characterization and kinetic studie. J. Biol. Chem. 1979; 254: 6449
  • Beaty N. B., Ballou D. P. The oxidative half-reaction of liver microsomal FAD-containing monooxygenas. J. Biol. Chem. 1981; 256: 4619
  • Beaty N. B., Ballou D. P. The reductive half-reaction of liver FAD-containing monooxygenas. J. Biol. Chem. 1981; 256: 4611
  • Al-Waiz M., Mitchell S. C., Idle J. R., Smith R. L. The metabolism of 14C-labeled trimethylamine and its N-oxide in ma. Xenobiotica 1987; 17: 551
  • Al-Walz M., Ayesh R., Mitchell S. C., Idle J. R., Smith R. L. A genetic polymorphism of the N-oxidation of triethylamine in human. Clin. Pharmacol. Ther. 1987; 42: 588
  • Walsh C. Enzymatic Reaction Mechanisms. W. H. Freeman, San Francisco 1979
  • Bruice T. C. Mechanisms of flavin catalysi. Acc. Chem. Res. 1980; 13: 256
  • Bruice T. C., Noar J. B., Ball S. S., Venkataram U. V. Monooxygen donation potential of 4a-hydroperoxyflavins as compared with those of a percarboxylic acid and other hydroperoxides. Monooxygen donation to olefin, tertiary amine, alkyl sulfide, and iodide io. J. Am. Chem. Soc. 1983; 105: 2452
  • Chiba K., Trevor A., Castagnoli N., Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidas. Biochem. Biophys. Res. Commun. 1984; 120: 574
  • Singer T. P., Ramsay R. R., McKeown K., Trevor A., Castagnoli N. E., Jr. Mechanism of the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+), the toxic bioactivation product of I-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Toxicology 1988; 49: 17
  • Jayitch J. A., D'Amoto R. J., Strittmatter S. M., Snyder S. H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-l,2,3,6-tetrahydmpyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicit. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 2173
  • Trevor A. J., Castagnoli N., Jr., Caldera P., Ramsay R. R., Singer T. P. Bioactivation of MPTP reactive metabolites and possible biochemical sequela. Life Sci. 1987; 40: 713
  • Leung L., Ottoboni S., Oppenheimer N., Castagnoli N. Characterization of a product derived from the l-methyl-4-phenyl-2,3-dihydropyridinium ion, a metabolite of the nigrostriatal toxin l-methyl-4-phenyl-l,2,3,6-tetrahydmpyridin. J. Org. Chem. 1989; 54: 1052
  • Erwin V. G., Hellerman L. Mitochondrial monoamine oxidase. I. Purification and charactexization of the bovine kidney enzym. J. Biol. Chem. 1967; 242: 4230
  • Minamiura N., Yasunobu K. T. Bovine liver monoamine oxidase: a modified purification procedure and preliminary evidence for two subunits and one FA. Arch. Biochem. Biophys. 1978; 189: 481
  • Salach J. I. Preparation of monoamine oxidase from beef liver mitochondri. Methods Enzymol. 1978; 53: 495
  • Weyler W., Salach J. I. Purification and properties of mitochondrial monoamine oxidase type A from human placent. J. Biol. Chem. 1985; 260: 13199
  • Tipton K. F. The purification of pig brain monoamine oxidas. Eur. J. Biochem. 1968; 4: 103
  • Tipton K. F. The submitochondrial localization of monoamine oxidation in rat liver and brai. Biochim. Biophys. Acta 1967; 135: 910
  • Youdim M. B. H., Banerjee D. K., Kelner K., Offutt L., Pollard H. B. Steroid regulation of monoamine oxidase activity in the adrenal medull. FASEB J. 1989; 3: 1753
  • Malmstrom B., Andreasson L., Reinhammar B. Copper-containing oxidases and superoxide dismutas. The Enzymes, 3rd ed., P. Boyer. Academic Press, New York 1975; Vol. 12: 507
  • Singer T. P., Von Korff R. W., Murphy D. C. Monoamine Oxidare: Structure, Function and Altered Functions. Academic Press, New York 1979
  • Tipton K. F. Monoamine oxidas. Enzymaric Basis of Detoxication, W. B. Jakoby. Academic Press, New York 1980; Vol. 1: 355
  • Kamijo K., Usdin E., Nagatsu T. Monoamine Oxidase: Basis and Clinical Frontiers. Excerpta Medica, Princeton 1982; 378
  • Youdim M. B. H., Finberg J. P. M., Riederer P., Heikkila R. E. Monoamine oxidase type B inhibitors in human and animal Parkinsonis. Basic and Clinical Strategies in Alzheimer's Disease and Other Neuropsychiatric Disorders, A. Fisher. Plenum Press, New York 1985
  • Dostart P. L., Benedetti M. S., Tipton K. F. Interactions of monoamine oxidase with substrates and inhibitor. Med. Res. Rev. 1989; 9: 45
  • Denney R. M., Denney C. B. An update on the identity crisis of monoamine oxidase: new and old evidence for the independence of MAO A and . Pharmacol. Ther. 1986; 30: 227
  • Kochersperger L. M., Waguespack A., Patterson J. C., Hsieh C.-C. W., Weyler W., Salach J. I., Denney R. M. Immunological uniqueness of human monoamine oxidases A and B: new evidence from studies with monoclonal antibodies to human monoamine oxidase . J. Neurosci. 1985; 5: 2874
  • Denney R. M., Fritz R. R., Patel N. T., Abell C. W. Human liver MAO-A and MAO-B separated by immunoaffinity chromatography with MAO-B-specific monoclonal antibod. Science (Washington, D.C.) 1982; 215: 1400
  • Denney R. M., Patel N. T., Fritz R. R., Abell C. W. A monoclonal antibody elicited to human platelet monoamine oxidase: isolation and specificity for human monoamine oxidase B but not . Mol. Pharmacol. 1982; 22: 500
  • Strolin-Benedetti M., Keane P. E. Differential changes in monoamine oxidase A and B activity in the aging rat brai. J. Neurochem. 1980; 35: 1026
  • Fuller R. W. Kinetic studies and effects in vitro of a new monoamine oxidase inhibitor N-(1–(o-chloro-phenoxy)-ethyl]-cyclopropylamin. Biochem. Pharmacol. 1968; 17: 2097
  • Youdim M. B. H., Paykel E. S. Monoamine Oxidase Inhibitors. John Wiley & Sons, New York 1980
  • McCauley R., Racker E. Separation of two monoamine oxidases from bovine brai. Mol. Cell. Biochem. 1983; 1: 73
  • Smith D., Filipowicz C., McCauley R. Monoamine oxidase A and monoamine oxidase B activities are catalyzed by different protein. Biochim. Biophys. Acta 1985; 831: 1
  • Bach A. W. J., Lan N. C., Johnson D. L., Abell C. W., Bern-Benek M. E., Kwan S.-W., Seeburg P. H., Shlh J. C. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic propertie. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 4934
  • Nagy J., Salach J. I. Identity of the active site flavin-peptide fragments from the human “A”-form and the bovine “B”-form of monoamine oxidas. Arch. Biochem. Biophys. 1981; 208: 388
  • Peterson L. A., Caldera P. S., Trevor A., Chiba K., Castagnoli N., Jr. Studies on the 1-methyl-4-phenyl-2,3-dihydropyri-dinium species 2,3-MPDP+, the monoamine oxidase catalyzed oxidation product of the nigrostriatal toxin 1-methyl-4-phenyl-l,2,3,6-tetrahy-dmpyridine (MPTP. J. Med. Chem. 1985; 28: 1432
  • Bridge T. P., Soldo B. J., Phelp B. H., Wise C. D., Francak M. J., Wyatt R. J. Platelet monoamine oxidase activity: demographic characteristics contribute to enzyme activity variabilit. J. Gerontol. 1985; 40: 23
  • Husain M., Edmondson D. E., Singer T. P. Kinetic studies on the catalytic mechanism of liver monoamine oxidas. Biochemistry 1982; 21: 595
  • Ramsay R. R., Koerber S. C., Singer T. P. Stopped-flow studies on the mechanism of oxidation of N-methyl-4-phenyltetahy-dropyridine by bovine liver monoamine oxidas. Biochemistry 1987; 26: 3045
  • Silverman R. B. Mechanism of inactivation of monoamine oxidase by trans-2-phenylcyclopropylamine and the structure of the enzyme-inactivator adduc. J. Biol. Chem. 1983; 258: 14766
  • Paech C, Salach J. I., Singer T. P. Suicide inactivation of monoamine oxidase by trans-phenylcyclopropylamin. J. Biol. Chem. 1980; 255: 2700
  • Silverman R. B., Hoffman S. J., Catus W. B., III. A mechanism for mitochondrial monoamine oxidase catalyzed amine oxidatio. J. Am. Chem. Soc. 1980; 102: 7126
  • Silverman R. B., Yamasaki R. B. Mechanism-based inactivation of mitochondrial monoamine oxidase by N-(1-methylcyclopro-pyl)benzylamin. Biochemistry 1984; 23: 1322
  • Silverman R. B., Hiebert C. K. Inactivation of monoamine oxidase A by the monoamine oxidase B inactivators 1-phenylcyclo-propylamine, 1-benzylcyclopropylamimine, and N-cyclopropyl-α-methylbenzylamin. Biochemistry 1988; 27: 8448
  • Silverman R. B. Effect of α-methylation on inactivation of monoamine oxidase by N-cyclopropylbenzylamin. Biochemistry 1984; 23: 5206
  • Silverman R. B., Zieske P. A. Mechanism of inactivation of monoamine oxidase by 1-phenylcyclopropylamin. Biochemistry 1985; 24: 2128
  • Yamasaki R. B., Silverman R. B. Mechanism for reactivation of N-cyclopropylbenzylamine-inactivated monoamine oxidase by amine. Biochemistry 1985; 24: 6543
  • Vazquez M. L., Silverman R. B. Revised mechanism for inactivation of mitochondrial monoamine oxidase by N-cyclopropylbenzylamin. Biochemistry 1985; 24: 6538
  • Silverman R. B., Bank G. M. (Aminoalkyl)trimethylsilanes. A new class of monoamine oxidase inhibitor. J. Am. Chem. Soc. 1987; 109: 2219
  • Silverman R. B., Vadnere M. K. (Aminoalkyl) trimethylger-manes, the first organogermanium mechanism-based enzyme inactivators: a new class of monoamine oxidase inactivator. Bioorg. Chem. 1987; 15: 328
  • Kearney E. B., Salach J. I., Walker W. H., Seng R. L., Kenney W., Zeszotek E., Singer T. P. The covalently-bound flavin of hepatic monoamine oxidase. I. Isolation and sequence of a flavin peptide and evidence for binding at the 8α positio. Eur. J. Biochem. 1971; 24: 321
  • Ged C., Umbenhauer D. R., Bellew T. M., Bork R. W., Srivastava P. K., Shinriki N., Lloyd R. S., Guengerich F. P. Characterization of cDNAs, -As, and proteins related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylas. Biochemistry 1988; 27: 6929
  • Guengerich F. P., Aust S. D. Activation of the parasympa-thomimetic alkaloid slaframine by microsomal and photochemical oxidatio. Mol. Pharmacol. 1977; 13: 185
  • Levin R. More clues to the cause of Parkinson's diseas. Science (Washington, D.C.) 1987; 237: 978
  • Fitzpatrick P. F., Villafranca J. J. Mechanism-based inhibitors of dopamine β-hydroxylas. Arch. Biochem. Biophys. 1987; 257: 231
  • Stewart L. C., Klinman J. P. Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and functio. Annu. Rev. Biochem. 1988; 57: 551
  • Lamouroux A., Vigny A., Bignet N. F., Darmon M. C., Franck R., Henry J.-P., Mallet J. The primary structure of human dopamine-β-hydroxylase: insights into the relationship between the soluble and the membrane-bound forms of the enzym. EMBO J. 1987; 6: 3931
  • Kohayashi K., Kurosawa Y., Fujita K., Nagatsu T. Human dopamine beta-hydroxylase gene — 2 messenger RNA types having different 3′-terminal regions are produced through alternative poly-adenylatio. Nucleic Acids Res. 1989; 17: 1089
  • Colombo G., Papadopoulos N. J., Ash D. E., Villafranca J. J. Characterization of highly purified dopamine β-hydroxylas. Arch. Biochem. Biophys. 1987; 252: 71
  • DeWolff W. E., Jr., Carr S. A., Varrichio A., Goodhart P. J., Mentzer M. A., Roberts G. D., Southan C., Dolle R. E., Kruse L. I. Inactivation of dopamine β-hydroxylase by p-cresol: isolation and characterization of covalently modified active site pep-tide. Biochemistry 1988; 27: 9093
  • Miller S. M., Klinman J. P. Magnitude of intrinsic isotope effects in the dopamine β-monooxygenase reactio. Biochemistry 1983; 22: 3091
  • Miller S. M., Klinman J. P. Secondary isotope effects and structure-reactivity correlations in the dopamine β-monooxygenase reaction: evidence for a chemical mechanis. Biochemistry 1985; 24: 2114
  • May S. W., Phillips R. S. Asymmetric sulfoxidation by dopamine β-hydroxylase, an oxygenase heretofore considered specific for methylene hydroxylatio. J. Am. Chem. Soc. 1980; 102: 5981
  • May S. W., Phillips R. S., Mueller P. W., Herman H. H. Dopamine β-hydroxylase: demonstration of enzymatic ketonization of the product enantiomer, S-octapamin. J. Biol. Chem. 1981; 256: 2258
  • Padgette S. R., Wimalasena K., Herman H. H., Sirimanne S. R., May S. W. Olefin oxygenation and N-dealkylation by dopamine β-monooxygenase: catalysis and mechanism-based inhibitio. Biochemistry 1985; 24: 5826
  • Kruse L. I., Kaiser C., DeWolf W. E., Jr., Chambers P. A., Goodhart P. J., Ezekiel M., Ohlstein E. H. β-Substituted phenethylamines as high-affinity mechanism-based inhibitors of dopamine β-hydroxylas. J. Med. Chem. 1988; 31: 704
  • Fitzpatrick P. F., Floyr D. R., Jr., Villafranca J. J. 3-Phenylpropenes as mechanism-based inhibitors of dopamine β-hydroxylase: evidence for a radical mechanis. Biochemistry 1985; 24: 2108
  • Fitzpatrick P. F., Villafranca J. J. Mechanism-based inhibitors of dopamine β-hydroxylase containing acetylenic or cyclopropyl group. J. Am. Chem. Soc. 1985; 107: 5022
  • May S. W., Mueller P. W., Padgette S. R., Herman H. H., Phillips R. S. Dopamine-β-hydroxylase: suicide inhibition by the novel olefinic substrate, 1-phenyl-1-aminomethylethen. Biochem. Biophys. Res. Commun. 1983; 110: 161
  • Komives E. A., Ortiz de Montellano P. R. Mechanism of oxidation of bonds by cytochrome P-450. Electronic requirements of the transition state in the turnover of phenylacetylene. J. Biol. Chem. 1987; 262: 9793
  • Ortiz de Montellano P. R., Beilan H. S., Kunze K. L., Mico B. A. Destruction of cytochrome P-450 by ethylene. Structure of the resulting prosthetic heme adduc. J. Biol. Chem. 1981; 256: 4395
  • Ortiz de Montellano P. R., Beilan H. S., Mathews J. M. Alkylation of the prosthetic heme in cytochrome P-450 during oxidative metabolism of the sedative-hypnotic ethchlorvyno. J. Med. Chem. 1982; 25: 1174
  • Ortiz de Montellano P. R., Kunze K. L., Beilan H. S., Wheeler C. Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidatio. Biochemistry 1982; 21: 1331
  • Mangold J. B., Klinman J. P. Mechanism-based inactivation of dopamine β-monwxygenase by β-chlorophenethylamin. J. Biol. Chem. 1984; 259: 7772
  • Bossard M. J., Khman J. P. Mechanism-based inhibition of dopamine β-monooxygenase by aldehydes and amide. J. Biol. Chem. 1986; 261: 16421
  • Goodhart P. J., DeWolf W. E., Jr., Kruse L. I. Mechanism-based inactivation of dopamine β-hydroxylase by p-cresol and related alkylphenol. Biochemistry 1983; 26: 2576
  • Wimalasena K., May S. W. Mechanistic studies on dopamine β-monooxygenase catalysis: N-dealkylation and mechanism-based inhibition by benzylic-nitrogen-containing compounds. Evidence for a single-electron-transfer mechanis. J. Am. Chem. Soc. 1987; 109: 4036
  • Thompson J. S. Copper-dioxygen chemistry. Synthesis and properties of a dicopper(II)-peroxide comple. J. Am. Chem. Soc. 1984; 106: 8308
  • Karlin K. D., Haka M. S., Cruse R. W., Gultneh Y. Dioxygen-copper reactivity. Reversible O2 and CO binding by a new series of binuclear copper(I) complexe. J. Am. Chem. Soc. 1985; 107: 5828
  • Kusenose M., Kusenose E., Coon M. J. Enzymatic ω-oxidation of fatty acids. I. Products of octanoate, decanoate, and laurate oxidatio. J. Biol. Chem. 1964; 239: 1374
  • Peterson J. A., Basu D., Coon M. J. Enzymatic ω-oxidation. I. Electron carriers in fatty acid and hydrocarbon hydroxylatio. J. Biol. Chem. 1966; 241: 5162
  • Ueda T., Coon M. J. Enzymatic o-oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in ω hydroxylatio. J. Biol. Chem. 1972; 247: 5010
  • Peterson J. A., Coon M. J. Enzymatic o-oxidation. III. Purification and properties of rubredoxin, a component of the ω-hydroxylation system of Pseudomonas oleovarans. J. Biol. Chem. 1968; 243: 329
  • McKenna E. J., Coon M. J. Enzymatic ω-oxidation. IV. Purification and propehes of the ω-hydroxylase of Pseudomom oleovarans. J. Biol. Chem. 1970; 245: 3882
  • Ruettinger R. T., Griffith G. R., Coon M. J. Characterization of the ω-hydroxylase of Pseudomonas oleovarans as a nonheme iron protei. Arch. Biochem. Biophys. 1977; 183: 528
  • Kok M., Oldenhuis R., van der Linden M. P. G., Raatjes P., Kingma J., van Lelyveld P. H., Witholt B. The Pseudomonas oleovarans alkane hydroxylase gene. Sequence and expressio. J. Biol. Chem. 1989; 264: 5435
  • Kok M., Oldenhuis R., van der Linden M. P. G., Medenberg C. H. C., Kingma J., Witholt B. The Pseudomom oleovarans alkABC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenas. J. Biol. Chem. 1989; 264: 5442
  • Boyer R. F., Lode E. T., Coon M. J. Reduction of alkyl hydroperoxides to alcohols: role of rubredoxin, an electron carrier in the bacterial hydroxylation of hydrocarbon. Biochem. Biophys. Res. Commun. 1971; 44: 925
  • Katopodis A. G., Wimalasena K., Lee J., May S. Mechanistic studies on non-heme iron monooxygenase catalysis: epoxidation, aldehyde formation and demethylation by the ω-hydroxylation system of Pseudomonas oleovarans. J. Am. Chem. Soc. 1984; 106: 7928
  • Kaiser E. T., Lawrence D. S. Chemical mutation of enzyme active site. Science (Washington, D.C.) 1984; 226: 505
  • Kokubo T., Sassa S., Kaiser E. T. Flavohemoglobm: a semisynthetic hydroxylase acting in the absence of reductas. J. Am. Chem. Soc. 1987; 109: 606
  • Gustafsson J.-Å., Bergman J. Iodine- and chlorine-containing oxidation agents as hydroxylating catalysts in cytochrome P-450-dependent fatty acid hydroxylations in rat liver microsome. FEBS Len. 1976; 70: 276
  • Lichtenberger F., Nastainczyk W., Ullrich V. Cytochrome P-450 as an oxene transferas. Biochem. Biophys. Res. Commun. 1976; 70: 939
  • Macdonald T. L., Burka L. T., Wright S. T., Guengerich F. P. Mechanisms of hydroxyation by cytochrome P-450 exchange of iron-oxygen intermediates with wate. Biochem. Biophys. Res. Commun. 1982; 104: 620
  • Blake R. C., II, Coon M. J. On the mechanism of action of cytochrome P-450. Spectral intermediates in the reaction with iodo-sobenzene and its derivative. J. Biol. Chem. 1989; 264: 3694
  • Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation byp-hydroxybenzoate hydroxylas. J. Biol. Chem. 1976; 251: 2550
  • Frost J. W., Rastetter W. H. Flavoprotein monooxygenases: a chemical mode. J. Am. Chem. Soc. 1981; 103: 5242
  • Venkataram U. V., Bruice T. C. Determination of the kinetic pKa of a flavin 4a-pseudobase from a study of the hydrolysis of a 4a-hydroxy-5-ethyl-3-methyl-lumiflavin in H2O. The oxygen donation potential of 4a-hydroperoxyflavin. J. Chem. Soc. Chem. Commun. 1984; 899
  • Wessiak A., Bruice T. C. On the nature of the intermediate between 4a-hydroperoxyflavin and 4a-hydroxyflavin in the hydroxylation reaction of p-hydroxybenzoate hydroxylase. Synthesis of 6-aminopyrimidine-2,4,5(3H)-triones and the mechanism of aromatic.hydroxylation by flavin monooxygenase. J. Am. Chem. Soc. 1981; 103: 6998
  • Wessiak A., Bruice T. C. Synthesis and study of a 6-amino-5-oxo-3H,5H-uracil and derivatives. The structure of an intermediate proposed in mechanisms of flavin and pterin oxygenase. J. Am. Chem. Soc. 1983; 105: 4809
  • Wessiak A., Noar J. B., Bruice T. C. The possibility that the spectrum of intermediate two, seen in the course of reaction of flavoenzyme phenol hydroxylases, may be attributable to iminol isomers of a flavin-derived 6-aryiamino-5-oxo (3H,5H) uraci. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 332
  • Walsh C. Flavin coenzymes: at the crossroads of biological redox chemistr. Acc. Chem. Res. 1980; 13: 148
  • Hemmerich P., Massey V., Fenner H. Flavin and 5-deaza-flavin: a chemical evaluation of “modified” flavoproteins with respect to the mechanisms of redox biocatalysi. FEBS Lett. 1977; 84: 5
  • Ghisla A., Massey V. New flavins for old artificial flavins as active site probes of flavoprotein. Biochem. J. 1986; 239: 1
  • Sharpless K. B., Flood T. C. Oxotransition metal oxidants as mimics for the action of mixed-function oxygenases. “NIH Shift” with chromyl reagent. J. Am. Chem. Soc. 1971; 93: 2316
  • Sharpless K. B., Teranishi A.-Y., Bäckvall J.-E. Chromyl chloride oxidations of olefins. Possible role of organometallic intermediates in the oxidations of olefins by oxo transition metal specie. J. Am. Chem. Soc. 1977; 99: 3120
  • Sheldon R. A., Kochi J. K. Metal-Catalyzed Oxidations of Organic Compounds. Academic Press, New York 1981
  • Groves J. T., Nemo T. E., Myers R. S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes: oxygen transfer from iodosylbenzen. J. Am. Chem. Soc. 1979; 101: 1032
  • Groves J. T., Nemo T. E. Aliphatic hydroxylation catalyzed by iron porphyrin complexe. J. Am. Chem. Soc. 1983; 105: 6243
  • Suslick K., Cook B., Fox M. Shape-selective alkane hydroxylatio. J. Chem. Soc. Chem. Commun. 1985; 580
  • Groves J. T., Nemo T. E. Epoxidation reactions catalyzed by iron porphyrins. Oxygen transfer from iodosylbenzen. J. Am. Chem. Soc. 1983; 105: 5786
  • Lindsay Smith J. R., Nee M. W., Noar J. B., Bruice T. C. Oxidation of N-nitrosodibenzylamine and related compounds by metalloporphyrin-catalyzed model systems for the cytochrome P-450 dependent monooxygenase. J. Chem. Soc. Perkin Trans. 1984; 2: 255
  • Chang C. K., Ebina F. MH shift in haemin-iodosylbenzene-mediated hydroxylation. J. Chem. Soc. Chem. Commun. 1981; 778
  • Lindsay Smith J. R., Sleath P. R. Model systems for cytochrome P-450 dependent monooxygenases. Kinetic isotope effects for the oxidative demethylation of anisole and [Me-2H3]anisole by cytochrome P-450 dependent monooxygenase and model system. J. Chem. Soc. Perkin Trans. 1983; 2: 621
  • Groves J. T., Subramanian D. V. Hydroxylation by cytochrome P-450 and metalloporphyrin models. Evidence for ally lic rearrangemen. J. Am. Chem. Soc. 1984; 106: 2177
  • Ando W., Tajima R., Takata T. Oxidation of sulfide with ArIO catalyzed with TPPM(III)C. Ter. Letr. 1982; 23: 1685
  • Mansuy D., Devocelle L., Artaud I., Bartoni J.-P. Alkene oxidations by iodosylbenzene catalyzed by iron-porphyrins: fate of the catalyst and formation of N-alkyl-porphyrin green pigments from monosubstituted alkenes as in cytochrome P-450 reaction. Nouv. J. Chim. 1985/1986; 9: 711
  • Mashiko T., Dolphin D., Nakano T., Traylor T. G. N-Alkylporphyrin formation during the reactions of cytochrome P-450 model system. J. Am. Chem. Soc. 1985; 107: 3735
  • Groves J. T., Kruper W. J., Jr. Preparation and characterization of an oxoporphinatochromium(V) comple. J. Am. Chem. Soc. 1979; 101: 7613
  • Groves J. T., Kruper W. J., Jr., Haushalter R. C. Hydrocarbon oxidations with oxometalloporphinates: isolation and reactions of a (porphinato) manganese(V) comple. J. Am. Chem. Soc. 1980; 102: 6375
  • Mansuy D., Bartoli J.-F., Momenteau M. Alkane hydroxylation catalyzed by metalloporphyrins: evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidant. Tet. Lett. 1984; 23: 2781
  • Che C.-M., Cheng W.-K., Mak T. C. W. High-valent oxo complexes of osmium as selective oxidants for cyclohexene oxidation. Complexation of the bisamide tetradentate ligand bpb to osmium and the X-ray structure of trans-[OsIII(bpb) (PPh3)Cl][bpbH2= N,N'-bis(2′-pyridinecarboxamide)-1,2-benzene. J. Chem. Soc. Chem. Commun. 1986; 200
  • Che C.-M., Chung W.-C. Catalysed epoxidation and hydroxylation of alkene by osmium(III)-porphyrin complexe. J. Chem. Soc. Chem. Commun. 1986; 386
  • Franklin C. C., VanAtta R. B., Tai A. F., Valentine J. S. Copper ion mediated epoxidation of olefins by iodosylbenzen. J. Am. Chem. Soc. 1984; 106: 814
  • Groves J. T., Quinn R. Aerobic epoxidation of olefins with ruthenium porphyrin catalyst. J. Am. Chem. Soc. 1985; 107: 5790
  • Matsuda Y., Sakamoto S., Koshima H., Murakami Y. Photochemical epoxidation of olefins with molecular oxygen activated by niobium porphyrin: a functional model of cytochrome P-45. J. Am. Chem. Soc. 1985; 107: 6415
  • Kimura E., Machida R. A mono-oxygenase model for selective aromatic hydroxylation with nickel (II)-macrocyclic poly amine. J. Chem. Soc. Chem. Commun. 1984; 499
  • Andrews M. A., Cheng C.-W. F. Epoxidation of cyclic alkenes by bis(acetonitrile)chloronitropalladium: on the role of heterometal-locyclopentanes and β-hydrogen elimination in the catalytic oxidation of alkene. J. Am. Chem. Soc. 1982; 104: 4268
  • Ledon H. J., Durbut P., Varescon F. Selective epoxidation of olefins by molybdenum porphyrin catalyzed peroxy-bound heterolysi. J. Am. Chem. Soc. 1981; 103: 3601
  • Chong A., Sharpless K. B. On the mechanism of the molybdenum and vanadium catalyzed epoxidation of olefins by alkyl hydro-peroxide. J. Org. Chem. 1977; 42: 1587
  • Minoun H., Mignard M., Brechot P., Saussine L. Selective epoxidation of olefins by oxo [N-(2-oxidophenyl)salicylidenaminato] vanadium(V) alkylperoxides. On the mechanism of the halcon epoxidation proces. J. Am. Chem. Soc. 1986; 108: 3711
  • Traylor P. S., Dolphin D., Traylor T. G. Sterically protected hemins with electronegative substituents: efficient catalysts for hydroxylation and epoxidatio. J. Chem. Soc. Chem. Commun. 1984; 279
  • Groves J. T., Quinn R., McMurry T. J., Lang G., Bow B. Iron(IV) prophyrins from iron(LII) porphyrin cation radical. J. Chem. Soc. Chem. Commun. 1984; 1455
  • Battioni P., Renaud J.-P., Bartoli J. F., Mansuy D. Hydroxylation of alkanes by hydrogen peroxide: an efficient system using manganese porphyrins and imidazole as catalyst. J. Chem. Soc. Chem. Commun. 1986; 341
  • Mansuy D., Fontecave M., Bartoli J.-F. Monooxygenase-like dioxygen activation leading to alkane hydroxylation and olefin epoxidation by an MnII (porphyrin)-ascorbate biphasic syste. J. Chem. Soc. Chem. Commun. 1983; 253
  • De Poorter B., Meunler B. Metalloporphyrin-catalysed epoxidation of terminal aliphatic olefins with hypochlorite salts or potassium hydrogen persulfat. J. Chem. Soc. Perkin Trans. 1985; 2: 1737
  • Takato T., Audo W. Mild and selective oxygen atom transfer: n-Bu4 NIO4 with metalloporphyrin. Tet. Lett. 1983; 24: 3631
  • De Poorter B., Meunier B. Catalytic epoxidation of aliphatic terminal olefms with sodium hypochlorit. Tet. Lett. 1984; 25: 1895
  • Nee M. W., Bruice T. C. Use of the N-oxide of p-cyano-N,N-dimethylaniline as an “oxygen” donor in a cytochrome P-450 model syste. J. Am. Chem. Soc. 1982; 104: 6123
  • Yuan L.-C., Bruice T. C. Use of an oxaziridine as an oxene transfer agent to manganese(III) tetraphenylporphyrin chlorid. J. Chem. Soc. Chem. Commun. 1985; 868
  • Breslow R., Gehan S. H. Tosylamidation of cyclohexane by a cytochrome P-450 mode. J. Chem. Soc. Chem. Commun. 1982; 1400
  • Groves J. T., Takahaski T. Activation and transfer of nitrogen from a nitridomanganese.(V) porphyrin complex. The aza analog of epoxidatio. J. Am. Chem. Soc. 1983; 105: 2073
  • Mahy J.-P., Baffloni P., Mansuy D. Formation of an iron(III) porphyrin complex with a nitrene moiety inserted into a Fe-N bond during alkene aziridination by [(tosylimido)iodo] benzene catalyzed by iron(III) porphyrin. J. Am. Chem. Soc. 1986; 108: 1079
  • Lee W. A., Calderwaod T. S., Bruice T. C. Stabilization of highervalent states of iron porphyrin by hydroxide and methoxide ligands: electrochemical generation of iron(IV)-oxo porphyrin. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 4301
  • Groves J. T., Gilbert J. A. Electrochemical generation of an iron(IV) prophyri. Inorg. Chem. 1986; 25: 123
  • Suslick K. S., Acholla F. V., Cook B. R. Photocatalytic oxidation of hydrocarbons by (5,10,15,20-tetraphenylporphyrinato)manganese(III) perchlorate and periodat. J. Am. Chem. Soc. 1987; 109: 2818
  • Groves J. T., Myers R. S. Catalytic asymmetric epoxidations with chiral iron porphyrin. J. Am. Chem. Soc. 1983; 105: 5791
  • Lindsay Smith J. R., Mortimer D. N. The oxidation of organic compounds with iodosylbenzene catalyzed by tetra (4-N-methylpyridyl) porphinato iron (III) pentacation: a polar model system for the cytochrome P-450 dependent monooxygenase. J. Chem. Soc. Chem. Commun. 1985; 410
  • Khenkin A., Koifman O., Semeikin A., Shilov A., Shteinman A. Regioselectivity changes in hexane hydroxylation by iodo-zobenzene [sic] catalyzed by tetraarylporphinatoiron complexe. Tet. Lett. 1985; 26: 4247
  • Murugesan N., Ehrenfeld G. M., Hecht S. M. Oxygen transfer from bleomycin-metal complexe. J. Biol. Chem. 1982; 257: 8600
  • Tai A. F., Margerum L. D., Valentine J. S. Epoxidation of olefins by iodosylbenzene catalyzed by binuclear copper(II) complexe. J. Am. Chem. Soc. 1986; 108: 5006
  • Lee W. A., Bruice T. C. Homolytic and heterolytic oxygenoxygen bond scissions accompanying oxygen transfer to iron(III) porphyrins by percarboxylic acids and hydroperoxides. A mechanistic criterion for peroxidase and cytochrome P-45. J. Am. Chem. Soc. 1985; 107: 513
  • Labeque R., Marnett L. J. 10-Hydroperoxy-8,12-octadeca-dienoic acid: a diagnostic probe of alkoxyl radical generation in metal-hydroperoxide reaction. J. Am. Chem. Soc. 1987; 109: 2828
  • Groves J. T., Van Der Puy M. Stereospecific aliphatic hydroxylation by an iron-based oxidan. J. Am. Chem. Soc. 1974; 96: 5274
  • Sugimoto H., Sawyer D. T. Iron(II)-induced activation of hydroperoxides for the dehydrogenation and monooxygenation of organic substrates in acetonitril. J. Am. Chem. Soc. 1985; 107: 5712
  • Sugimoto H., Spencer L., Sawyer D. T. Ferric chloride-catalyzed activation of hydrogen peroxide for the demethylation of N,N-demethylaniline, the epoxidation of olefins, and the oxidative cleavage of vicinal diols in acetonitrile: a reaction mimic for cytochrome P-45. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 1731
  • Heimbrook D. C., Murray R. I., Egeberg K. D., Sligar S. G., Nee M. W., Brulce T. C. Demethylation of N,N-dimethylaniline and p-cyano-N,N-dimethylaniline and their N-oxides by cyto-chromes P-45LM2 and P-450CAM. J. Am. Chem. Soc. 1984; 106: 1514
  • Fujhnori K., Takata T., Fujiwara S., Kikuchi O., Oae S. Intervention of N,N-dimethylanilinium cation radical in the Polononovski type reaction of N,N-dimethylaniline N-oxide catalyzed by meso-tetraphenylporphinato irodimidazol. Tet. Lett. 1986; 27: 1617
  • Renaud J.-P., Battioni P., Bartoli J. F., Mansuy D. A very efficient system for alkene epoxidation by hydrogen peroxide: catalysis by manganese-porphyrins in the presence of imidazol. J. Chem. Soc. Chem. Commun. 1985; 888
  • Groves J. T., Watanabe Y. On the mechanism of olefin epoxidation by oxo-iron porphyrins. Direct observation of an intermediat. J. Am. Chem. Soc. 1986; 108: 507
  • Naruta Y., Maruyama K. Cytochrome P-450 modelling ox-ygenation of olefins within the space-restricted cavity of iron “BINAP porphyrin”: rate enhancement in the presence of imidazol. Tet. Lett. 1987; 28: 4553
  • Traylor T. G., Popovitz-Buo R. Hydrogen bonding to the proximal imidazole in heme protein model compounds: effects upon oxygen binding and peroxidase activit. J. Am. Chem. Soc. 1988; 110: 239
  • Nolte R. J. M., Razenberg J. A. S. J., Schuurman R. On the rate-determining step in the epoxidation of olefins by monooxy-genase model. J. Am. Chem. Soc. 1986; 108: 2751
  • Yuan L.-C., Bruice T. C. Influence of nitrogen base ligation and hydrogen bonding on the rate constants for oxygen transfer from percarboxylic acids and alkyl hydroperooxides to (meso-tetraphenyl-porphinato) manganese (III) chlorid. J. Am. Chem. Soc. 1986; 108: 1643
  • Ruf H. H., Wende P., Ullrich V. Models for cytochrome P-450. Characterization of hemin mercaptide complexes by electronic and ESR spectr. J. Inorg. Biochem. 1979; 11: 189
  • Battersby A. R., Howson W., Hamilton A. D. Model studies on the active site of cytochrome P-450: an FeII-porphyrin carrying a strapped thiolate ligan. J. Chem. Soc. Chem. Commun. 1982; 1266
  • Nolan K. B. Spectroscopic models for cytochrome P-450 derivatives: hyperporphyrin spectra in thiolatoiron(III)-porphyrin complexe. J. Chem. Soc. Chem. Commun. 1986; 760
  • Sakurai H., Hatayama E., Yoshimura T., Maeda M., Tamura H., Kawasaki K. Thiol-containing peptide-hemin complexes as models of cytochrome P-45. Biochem. Biophys. Res. Commun. 1983; 115: 590
  • Traylor T. G., Miksztal A. R. Mechanisms of hemin-catalyzed epoxidations: electron transfer from alkene. J. Am. Chem. Soc. 1987; 109: 2770
  • Collman J. P., Kodadek T., Raybuck S. A., Brauman J. I., Papazian L. M. Mechanism of oxygen atom transfer from high valent iron porphyrins to olefins: implications to the biological epoxidation of olefins by cytochrome P-45. J. Am. Chem. Soc. 1985; 107: 4343
  • Collman J. P., Kodadek T., Brauman J. I. Oxygenation of styrene by cytochrome P-450 model systems: a mechanistic stud. J. Am. Chem. Soc. 1986; 108: 2588
  • Traylor T. G., Nakano T., Miksztal A. R., Dunlap B. E. Transient formation of N-alkylhemins during hemin-catalyzed epoxidation of norbornene. Evidence concerning the mechanism of epoxidatio. J. Am. Chem. Soc. 1987; 109: 3625
  • Mansuy D., Battioni J.-P., Dupré D., Sartori E. Reversible iron-nitrogen migration of alkyl, aryl, or vinyl groups in iron porphyrins: a possible passage between u FeIII(porphyhrin) (R) and FeII(N-R) (porphyrin) complexe. J. Am. Chem. Soc. 1982; 104: 6159
  • Yamaguchi K., Takahara Y., Fueno T. Ab-initio molecular orbital studies of structure and reactivity of transition metal-oxo compound. Applied Quantum Chemistry, V. H. Smith, Jr., et al. D. Reidel. 1986; 155
  • Wedlund P., personal communication
  • Guengerich F. P. Oxidation of halogenated compounds by metal-loporphyrins, peroxides, and to cytochrome P-45. J. Biol. Chem. 1989; 264: 17198
  • Liebler D. C., Guengerich F. P., unpublished results
  • Hammons G. J., Alworth W. L., Hopkins N. E., Guengerich F. P., Kadlubar F. F. Mechanism-based inactivation of cytochrome P-450-dependent 2-naphthylamine N-oxidation activity of liver microsomes by 2-ethynylnaphthalen. Chem. Res. Toxicol.
  • Shimada T., Martin M. V., Pruess-Schwartz D., Marnett L. J., Guengerich F. P. Roles of individual forms of human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbon. Cancer Res.
  • Cashman J., personal communication
  • Ullrich V., personal communication
  • Hammons G. J., Kadlubar F. F., Guengerich F. P., unpublished results
  • Dolphin D., personal communication

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.